PUBLICATIONS, PREPRINTS, WORK IN PROGRESS

 

PUBLISHED PAPERS

[48] M. L. Fania, F. Flamini, "A note on some moduli spaces of Ulrich bundles", Rendiconti Circolo Mat. Palermo, (2024). open access & pdf

[47] M. L. Fania, F. Flamini, "Ulrich bundles on some threefold scrolls over IF_e", Advances in Mathematics, 436 (2024), 109409. pdf

[46] C. Ciliberto, F. Flamini and A. L. Knutsen, "Elliptic curves, ACM bundles and Ulrich bundles on prime Fano threefolds", Collectanea Mathematica, (2023). pdf

[45] C. Ciliberto, F. Flamini and A. L. Knutsen, "Urlich bundles on Del Pezzo threefolds", Journal of Algebra, 634 (2023), 209-236. pdf

[44] C. Ciliberto, F. Flamini and A. L. Knutsen, "Urlich bundles on a general blow-up of the plane", Annali Matematica Pura ed Applicata (2023) pdf

[43] F. Flamini, P. Supino "On some components of Hilbert schemes of curves", in “The Art of doing Algebraic Geometry, Trends in Mathematics, Eds. T. Dedieu, F. Flamini, C. Fontanari, C. Galati, R. Pardini, p. 187-216, 2023. pdf.

[42] G. Bini, S. Boissiere, F. Flamini, "Some families of big and stable bundles on K3 surfaces and on their Hilbert schemes of points", Manuscripta Mathematica (2022). pdf

[41] F. Bastianelli, C. Ciliberto, F. Flamini, P. Supino "Cones of lines having high contact with general hypersurfaces and applications", Mathematische Nachrichten (2022) pdf.

[40] F. Bastianelli, C. Ciliberto, F. Flamini, P. Supino "On Fano schemes of linear subspaces of general complete intersections", Arxiv der Mathematik, 115 (2020), 639-645 pdf.

[39] G. Bini, F. Flamini, "Big vector bundles on surfaces and fourfolds", Mediterranean Journal of Mathematics, 17 (2020), n. 1, art. 17, pp. 1--20. pdf

[38] F. Bastianelli, C. Ciliberto, F. Flamini, P. Supino "On complete intesections containing a linear subspace", Geom. Ded., 204 (2020), pp. 231-239. pdf.

[37] F. Bastianelli, C. Ciliberto, F. Flamini, P. Supino "Gonality of curves on general hypersurfaces", Journal de Mathématiques Pures et Appliquées, 125 (2019), p. 94-118. pdf.

[36] C. Ciliberto, F. Flamini, M. Zaidenberg "A remark on the intersection of plane curves", Cont. Math. ("Functional Analysis and Geometry. Selim Krein Centennial"), 733 (2019), pp. 109-128. pdf.

[35] Y. Choi, F. Flamini, S. Kim "Moduli spaces of bundles and Hilbert schemes over n-gonal curves", Coll. Math., 70, no.2 (2019), pp. 295-321. pdf.

[34] C. Ciliberto, F. Flamini, C. Galati, A.L. Knutsen "Degenerations of differentials and the moduli problem of curves on a K3", Cont. Math. ("Local and Global Methods in Algebraic Geometry", vol. in honor of Lawrence Ein), 712 (2018), 59-79. pdf.

[33] Y. Choi, F. Flamini, S. Kim "Brill-Noether loci of rank-two vector bundles on a general n-gonal curve", Proc. American Mathematical Society 146, no.8 (2018), p. 3233-3248. pdf.

[32] F. Bastianelli, C. Ciliberto, F. Flamini, P. Supino "A note on gonality of curves on general hypersurfaces", Boll.Unione Mat. Ital., 11 (2018), no.1, pp. 31-38. pdf.

[31] A. Calabri, C. Ciliberto, F. Flamini and R. Miranda, Corrigendum to the paper "On the K^2 of degenerations of surfaces and the multiple point formula", Annals of Mathematics 186 (2017), no.1, pp. 315-318. pdf.

[30] C. Ciliberto, F. Flamini, C. Galati, A. L. Knutsen "Moduli of nodal curves on K3 surfaces", Advances in Mathematics, 309 (2017), 624-654. pdf.

[29] C. Ciliberto, F. Flamini, C. Galati, A.Knutsen "A note on deformations of regular embeddings", Rend. Circ. Mat. Palermo, 66 (2017), 53-63, and “Erratum to A note on deformations of regular embeddings”, Rend. Circ. Mat. Palermo, 66 (2017), 65-67. pdf.

[28] M.L. Fania, F. Flamini, "Hilbert schemes of some threefold scrolls over F_e", Advances in Geometry, 16 (2016), no. 4, p. 413-436. pdf.

[27] C. Ciliberto, F. Flamini, M. Zaidenberg "Gaps for geometric genera", Archiv der Mathematik, 106 (2016), 531-541. pdf.

[26] C. Ciliberto, F. Flamini, "Nodal curves on K3 surfaces: state of the art and open problems”, in Oberwolfach Reports (EMS), 12 (4), 2015, 2939–2967. pdf.

[25] G.M. Besana, M.L. Fania, F. Flamini, "On families of rank-2 uniform bundles on Hirzebruch surfaces and Hilbert schemes of their scrolls", Rendiconti Istituto Matematica Università Trieste, 47 (2015), pp. 27-44. pdf.

[24] C. Ciliberto, F. Flamini, "Extensions of line bundles and Brill--Noether loci of rank-two vector bundles on a general curve", Revue Roumaine de Mathématiques Pures et Appliquées, 60 - 3 (2015), 201-255.pdf.

[23] C. Ciliberto, F. Flamini, M. Zaidenberg "Genera of curves on a very general surface in IP^3" International Mathematics Research Notices, rnv055, doi:10.1093/imrn/rnv055, 22 (2015), p. 12177--12205 pdf (see also Max-Planck-Institut fuer Mathematik - Preprint Series 2014 (53)- MPIM14-53).

[22] G.M. Besana, M.L. Fania, F. Flamini " Hilbert scheme of some threefold scrolls over the Hirzebruch surface F_1", Journal of the Mathematical Society of Japan, 65 - 4 (2013), 1243-1272. pdf.

[21] C. Ciliberto, F. Flamini, "Brill-Noether loci of stable rank-two vector bundles on a general curve", EMS SERIES OF CONGRESS REPORTS, Vol. "Geometry and Arithmetic". Editors C.Faber, G.Farkas, R.de Jong, (2012), 61-74. pdf.

[20] C. Ciliberto, F. Flamini, "On the branch curve of a general projection of a surface to a plane", Transactions of the American Mathematical Society, 363 - 7 (2011), 3457-3471. pdf.

[19] F. Flamini, E. Sernesi, "The curve of lines on a prime Fano threefold of genus 8", International Journal of Mathematics, 21, No. 12 (2010), 1561-1584. pdf.

[18] F. Flamini, "IP^r-scrolls arising from Brill-Noether theory and K3-surfaces", Manuscripta Mathematica, 132 (2010), 199-220. pdf.

[17] A. Calabri, C. Ciliberto, F. Flamini, R. Miranda, "Special scrolls whose base curve has general moduli", Interactions of Classical and Numerical Algebraic Geometry, Bates et al. (eds.), Contemporary Mathematics, 496 (2009), 133-155, pdf.

[16] F. Flamini, A.L. Knutsen, G. Pacienza, "On families of rational curves in the Hilbert square of a surface (with an appendix by Edoardo Sernesi)", pp. 639-678; Appendix: "Partial desingularization of families of nodal curves", E. Sernesi (Univ. Roma Tre), pp. 679-682, Michigan Mathematical Journal 58 (2009), 639-682. pdf

[15] A. Calabri, C. Ciliberto, F. Flamini, R. Miranda, "Brill-Noether theory and non-special scrolls", Geometriae Dedicata , 139 (2009), 121-138.pdf.

[14] F. Flamini, A.L. Knutsen, G. Pacienza, E. Sernesi, "Nodal curves with general moduli on K3 surfaces", Communications in Algebra, 36 (2008), no. 1, 3955-3971. pdf.

[13] A. Calabri, C. Ciliberto, F. Flamini, R. Miranda, "Non-special scrolls with general moduli", Rend. Circolo Matematico Palermo, 57 (2008), no. 1, 1-31. pdf.

[12] F. Flamini, A.L. Knutsen, G. Pacienza, "Singular curves on a K3 surface and linear series on their normalizations", International Journal of Mathematics, 18 (2007), no. 6, pp. 671-693. pdf.

[11] A. Calabri, C. Ciliberto, F. Flamini and R. Miranda, ""On the genus of reducible surfaces and degenerations of surfaces", Annales de l'Institut Fourier, 57 (2007), no.2, pp. 491-516. pdf.

[10] A. Calabri, C. Ciliberto, F. Flamini and R. Miranda, "On the K^2 of degenerations of surfaces and the multiple point formula", Annals of Mathematics 165 (2007), no.2, pp. 335-395. pdf.

[9] A. Calabri, C. Ciliberto, F. Flamini, R. Miranda, "Degenerations of scrolls to union of planes" Rend. Lincei Mat. Appl. (Springer), 17 (2006), no.2, pp. 95-123. pdf.

[8] G. Bini, F. Flamini, "Symmetric functions from the moduli spaces of curves via vanishing theorems", Global Journal of Mathematics and Mathematical Sciences 1 (2005), no.1, pp. 77-90. pdf.

[7] F. Flamini, "Equivalence of families of singular schemes on threefolds and on ruled fourfolds", Collectanea Mathematica 55 (2004), no.1, pp. 37-60. pdf.

[6] A. Calabri, C. Ciliberto, F. Flamini and R. Miranda, "On the geometric genus of reducible surfaces and degenerations of surfaces to union of planes", Proceedings of the Fano Conference - Torino - 29 September -5 October 2002, (2004), pp. 277-312. pdf.

[5] F. Flamini, ``Families of nodal curves on smooth projective threefolds and their regularity via postulation of nodes", Transactions of the American Mathematical Society355 (2003), pp. 4901-4932. pdf

[4] F. Flamini, ``Moduli of nodal curves on smooth surfaces of general type"; Journal of Algebraic Geometry, 11 (2002), no.4, pp. 725-760. pdf.

[3] F. Flamini, ``Some results of regularity for Severi varieties of projective surfaces"; Communications in Algebra, 29 (2001), pp. 2297-2311. pdf

[2] F. Flamini, C. Madonna ``Geometric linear normality for nodal curves on some projective surfaces"; Bollettino Unione Matmeatica Italiana, Sez. B (8), 4-B (2001), pp. 269-283. pdf.

[1] F. Flamini, ``Towards an inductive construction of self-associated sets of points"; Le Matematiche. LIII (1998) pp. 33-41. pdf.



CONTRIBUTION AS A MEMBER OF THE EDITORIAL BOARD OF SCIENTIFIC VOLUMES

[3] “The Art of doing Algebraic Geometry”, Trends in Mathematics, Eds. T. Dedieu, F. Flamini, C. Fontanari, C. Galati, R. Pardini,

    [2] C.Ciliberto, T. Dedieu, F. Flamini, R. Pardini "Birational geometry of surfaces. Preface", Bollettino UMI, 11, no. 1 (2018), 1-3 (Eds. Ciliberto-Dedieu-Flamini-Pardini). pdf.

    [1] C.Ciliberto, T. Dedieu, F. Flamini, R. Pardini, C. Galati, S. Rollenske, "Birational geometry of surfaces. Open Problems", Bollettino UMI, 11, no. 1 (2018), 5-11 (Eds. Ciliberto-Dedieu-Flamini-Pardini). pdf.



PUBLISHED BOOKS

[3] F. Flamini, "A first course in Algebraic Geometry and Algebraic Varieties", Essential Textbooks in Mathematics, London, World Scientific, 2023. Book link

[2] F. Flamini, A. Verra ``Matrici e vettori. Corso di base di Geometria e Algebra Lineare."; Carocci Editore, Collana: LE SCIENZE, (2008) pp. 380. Pagina Web della casa Editrice e del Testo

[1] G. Bini, F. Flamini, "Finite Commutative Rings and Their Applications", THE SPRINGER INTERNATIONAL SERIES IN ENGENEERING AND COMPUTER SCIENCE,vol. 680, Boston, Kluwer Academic Publishers, 2002. (Originally in "The Kluwer international series in engeneering and computer science" Kluwer Ac. Pub. merged with Springer Verlag). Springer link

SPECIAL COURSES: PUBLISHED NOTES

F. Flamini, "Lectures on Brill-Noether theory", in Proceedings of the workshop "Curves and Jacobians", Eds. J-M Muk, Y. R. Kim, Korea Institute for Advanced Study, (2011), 1-20. pdf.

BOOK REVIEWS

F. Flamini, Review of the book “Ulrich Bundles: From Commutative Algebra to Algebraic Geometry” by Laura Costa, Rosa María Miró-Roig and Joan Pons-Llopis, in EMS Magazine 127,(2023).

PREPRINTS

[2] Y. Choi, F. Flamini, S. Kim, "On the irreducible components of some Brill-Noether loci of rank-two, stable bundles over a general ν-gonal curve”, ArXiv:2503.04132[math.AG]6Mar2025, pp.1--105 (2025). pdf.

[1] A. Calabri, C. Ciliberto, F. Flamini and R. Miranda, "On degenerations of surfaces", Arxiv 0310009 [math.AG] 9 Mag 2008, pp. 1--85. pdf