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Abstract. The main purpose of this paper is twofold. We first analyze in detail the mean-
ingful geometric aspect of the method introduced in [12], concerning families of irreducible,
nodal ”curves” on a smooth, projective threefold X. This analysis gives some geometric
interpretations not investigated in [12] and highlights several interesting connections with
families of other singular geometric ”objects” related to X and to other varieties.

Then, we use this method to study analogous problems for families of singular divisors on
ruled fourfolds suitably related to X. This enables us to show that Severi varieties of vector
bundles on X can be rephrased in terms of ”classical” Severi varieties of divisors on such
fourfolds.

Introduction

The theory of families of singular curves with fixed invariants (e.g. geometric genus, sin-

gularity type, number of irreducible components, etc.) and contained in a projective variety

X has been extensively studied from the beginning of Algebraic Geometry and it actually

receives a lot of attention, partially due to its connections with several fields in Geometry

and Physics.

Nodal curves play a central role in the subject of singular curves. Families of irreducible

and δ-nodal curves on a given projective variety X are usually called Severi varieties of

irreducible, δ-nodal curves in X. The terminology ”Severi variety” is due to the classical case

of families of nodal curves on X = P2, which was first studied by Severi (see [23]).

The case in which X is a smooth projective surface has recently given rise to a huge amount

of literature (see, for example, [4], [5], [6], [7], [11], [14], [15], [21], [22] just to mention a few.

For a chronological overview, the reader is referred for example to Section 2.3 in [10] and

to its bibliography). This depends not only on the great interest in the subject, but also

because for a Severi variety V on an arbitrary projective variety X there are several problems

concerning V like non-emptyness, smoothness, irreducibility, dimensional computation as well

as enumerative and moduli properties of the family of curves it parametrizes.

On the contrary, in higher dimension only a few results are known. Therefore, in [12] we

focused on the next relevant case, from the point of view of Algebraic Geometry: families of

nodal curves on smooth, projective threefolds.

In this paper, we show that the correspondence considered in [12], which was introduced

as an auxiliary tool for some related problems, reflects deep geometric properties of global

sections of rank-two vector bundles on a smooth threefold. We also study some of its intriguing

consequences, which were not explored in [12].
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To be more precise, let X be a smooth projective threefold and let F be a rank-two vector

bundle on X, which is assumed to be globally generated with general global section s whose

zero-locus V (s) is a smooth, irreducible curve D = Ds in X, of geometric genus g(D) = pa(D).

Take now P(H0(X, F)); from our assumptions on F, its general point parametrizes a global

section whose zero-locus is a smooth, irreducible curve. This projective space somehow gives

a scheme dominating a subvariety in which the curves move.

Given a positive integer δ ≤ pa(D), it makes sense to consider the locally closed subscheme:

Vδ(F) :={[s] ∈ P(H0(X, F)) | Cs := V (s) ⊂ X is irreducible

with only δ nodes as singularities};

(cf. formula (1.3)). These are usually called Severi varieties of global sections of F whose

zero-loci are irreducible, δ-nodal curves in X, of arithmetic genus pa(D) and geometric genus

g = pa(D) − δ (cf. [2], for X = P3, and [12] in general). This is because such schemes are

the natural generalization of the (classical) Severi varieties on smooth, projective surfaces

recalled before.

When Vδ(F) is not empty then its expected codimension in P(H0(X, F)) is δ (see e.g.

Proposition 1.4). Thus, one says that a point [s] ∈ Vδ(F) is a regular point if it is smooth

and such that dim[s](Vδ(F)) equals the expected one (cf. Definition 1.5). In order to find

regularity conditions, we introduced in [12] a cohomological description of the tangent space

T[s](Vδ(F)) (cf. Theorem 3.4 in [12]). In Section 2, we shall briefly recall this main result, as

well as some of its corollaries, not only for the reader convenience but mainly because it is

useful for the present paper. Precisely, we recall:

Theorem. 1 (see Theorem 2.1 and Proposition 2.3) Let X be a smooth projective threefold.

Let F be a globally generated rank-two vector bundle on X and δ a positive integer. Consider

[s] ∈ Vδ(F) and let C = V (s) ⊂ X. Denote by Σ the set of nodes of C. Let

P := PX(F)
π−→ X

be the projective space bundle together with its natural projection π on X and denote by OP(1)

its tautological line bundle. Then:

(i) [s] ∈ Vδ(F) corresponds to a divisor Gs ∈ |OP(1)| which contains the δ fibres Lpi
=

π−1(pi) ⊂ P, where pi ∈ Σ for 1 ≤ i ≤ δ.

Furthermore, there exists a zero-dimensional subscheme Σ1 ⊂ Gs of length δ, which is a

set of δ rational double points of Gs and each fibre Lpi
contains only one of the points of Σ1,

for 1 ≤ i ≤ δ.

(ii) Denote by IΣ1/P the ideal sheaf of Σ1 in P. The subsheaf of F defined by

(0.1) FΣ := π∗(IΣ1/P ⊗ OP(1))

is such that
H0(X, FΣ)

〈s〉
∼= T[s](Vδ(F)) ⊂ T[s](P(H0(F))) ∼=

H0(X, F)

〈s〉
i.e. global sections of FΣ (modulo the one-dimensional subspace 〈s〉) parametrize equisingular

first-order deformations of [s]. Thus, for ε ∈ C[T ]/(T 2) s.t. ε2 = 0, we have:

s + εs′ ∈ T[s](Vδ(F)) ⇔ s′ ∈ H0(X, FΣ) ⇔ Gs′ ∈ |IΣ1/P ⊗ OP(1)|,

where Gs′ is the divisor in P corresponding to s′.
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For brevity sake, if Λ :=
⋃δ

i=1 Lpi
= π−1(Σ), we shall say that the elements [s] ∈ Vδ(F)

and Gs ∈ |IΛ/P ⊗ OP(1)| as above form a (s, Gs)-Severi correspondence (cf. Definition 2.2).

The terminology of Severi correspondence will be further motivated by other results in the

last sections (cf. Definition 4.1, Theorems 3.1 and 5.1 and Corollary 4.19).

The aim of this paper is twofold: first we study in details the geometric meaning of

T[s](Vδ(F)) as well as of the (s, Gs)-Severi correspondence. We determine some interesting

consequences of this approach, which have not been explored in [12]. We also describe several

interesting connections with families of other singular geometric ”objects” related to X. In

particular, we show that the local analytical computations introduced in [2] are equivalent,

via the (s, Gs)-correspondence, to those using the divisorial approach of [12] (cf. Remarks

3.11, 3.21 and Propositions 3.14, 3.19).

On the other hand, we also show that the (s, Gs)-Severi correspondence resides in other

deep geometric reasons (cf. Theorems 4.5 and 5.1). We believe that this could be a useful

approach for several related problems on higher dimensional varieties; this will be the subject

of a future research.

The following first result of the paper gives a converse to the procedure introduced in [12].

Indeed, we show:

Theorem. 2 (cf. Theorem 3.1) Let X be a smooth projective threefold. Let F be a globally

generated rank-two vector bundle on X.

Let P := PX(F) be the projective space bundle, OP(1) its tautological line bundle and π the

natural projection onto X. Let Gs ∈ |OP(1)| be a divisor and let s ∈ H0(X, F) be the global

section corresponding to Gs. Let C := V (s) and assume that C is a curve (not necessarily

irreducible) on X. Thus:

(i) Gs is singular at a point p1 ∈ P if, and only if, C is singular at the point p ∈ C, which is

uniquely determined by the fact that p1 ∈ Lp = π−1(p).

(ii) In particular, p is a node for C if, and only if, p1 is a rational double point for Gs.

This is a basic tool for the results contained in Sections 4 and 5.

A related important aspect of the (s, Gs)-Severi correspondence is that we can determine

several equivalent geometric interpretations of first-order deformations given by sections in

H0(X, FΣ) via Theorems 1 and 2. Indeed, by using our divisorial approach, we prove:

Proposition. 1 (cf. Proposition 3.14 and Proposition 3.19) Let X be a smooth projective

threefold, F a globally generated rank-two vector bundle on X and L = c1(F). Let δ be a

positive integer, [s] ∈ Vδ(F) and C = V (s) be the corresponding irreducible, nodal curve in

X. Denote by Σ the set of nodes of C. Let FΣ be as in (0.1). Then, the following conditions

are equivalent:

(i) s′ ∈ H0(X, FΣ) \ 〈s〉;
(ii) V (s ∧ s′) ⊂ X is a surface which contains C and which is singular along Σ;

(iii) the divisor Gs′ passes through Σ1;

(iv) the surface Ss,s′ := Gs ∩Gs′ ⊂ P is singular along Σ1.

Interpretation (ii) above of T[s](Vδ(F)) has already been considered for X = P3 and via a

different approach in Proposition 2.3 in [2]. This in particular shows that the local compu-

tations introduced in [2] are equivalent, via the (s, Gs)-Severi correspondence, to the local

computations on P. Furthermore, the several distinct characterizations of tangent vectors to
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Vδ(F) at [s] given by Proposition 1 are consistent with the equivalent conditions of regularity

for Vδ(F) determined in [12] (cf. Corollary 2.15 and Remarks 3.22, 3.25).

What stated up to now suggests that the equivalence given by Theorems 1, 2 and by

Proposition 1 more deeply resides in the fact that the theory of Severi varieties of nodal

sections Vδ(F) on X can be rephrased in terms of ”classical” Severi varieties of irreducible,

singular divisors on PX(F). Indeed, denote by

Rδ(OP(1)) := {Gs ∈ |OP(1)| s.t. [s] ∈ Vδ(F)}

the schemes parametrizing families of expected codimension δ in |OP(1)|, whose elements are

irreducible divisors with only δ rational double points as singularities and which correspond

to irreducible, nodal curves on X given by zero-loci of global sections of F. For brevity sake,

these are called Pδ(F)-Severi varieties (cf. Definition 4.1 and formula (4.3)).

We remark that, by the (s, Gs)-Severi correspondence, if [s] ∈ Vδ(F) then the corresponding

divisor Gs is irreducible. Conversely, given an arbitrary irreducible divisor Gs ⊂ P with δ-

rational double points as the only singularities, take s the corresponding global section of

F; even if we assume that C = V (s) is of codimension two in X and with only δ nodes as

singularities, it does not follow that C is necessarily irreducible. We discuss some examples in

Remark 3.12 which show that the (s, Gs)-Severi correspondence is not one-to-one and which

motivate the above definition of Pδ(F)-Severi varieties.

We first prove:

Theorem. 3 (cf. Theorem 4.5 and Corollary 4.19) Let [Gs] ∈ Rδ(OP(1)) on P and let Σ1 be

the zero-dimensional scheme of the δ-rational double points of Gs ⊂ P. Then

T[Gs](Rδ(OP(1))) ∼=
H0(IΣ1/P ⊗ OP(1))

〈Gs〉
.

In particular,

[Gs] ∈ Rδ(OP(1)) is a regular point ⇔ [s] ∈ Vδ(F) is a regular point.

Finally, we deduce regularity results for Pδ(F)-Severi varieties Rδ(OP(1)) on P; indeed,

thanks to the (s, Gs)-Severi correspondence and to regularity results of Vδ(F) in [12], we

state:

Theorem. 4 (cf. Theorem 5.1) Let X be a smooth projective threefold, E be a globally

generated rank-two vector bundle on X, M be a very ample line bundle on X and k ≥ 0 and

δ > 0 be integers. Let P := PX(E⊗M⊗k) and OP(1) be its tautological line bundle. If

(∗) δ ≤ k + 1,

then Rδ(OP(1)) on P are regular at each point.

The upper-bounds in (∗) are shown to be almost sharp (cf. Remark 5.3).

The above result highlights once more the fundamental role of the (s, GS)-Severi corre-

spondence. Indeed, if one considers the Pδ(F)-Severi varieties independently from the corre-

sponding varieties Vδ(F) on X, the regularity condition for a point of Rδ(OP(1)) is equivalent

to the separation of suitable zero-dimensional schemes by the linear system |OP(1)| on the

fourfold P (cf. Corollary 4.19). In general, it is well-known how difficult is to establish when

a linear system separates points in projective varieties of dimension greater than or equal to

three (cf. e.g. [1], [9] and [17]). In some cases, some separation results can be found by using
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technical tools like multiplier ideals as well as the Nadel and the Kawamata-Viehweg vanish-

ing theorems (see, e.g. [8], for an overview). In our situation, thanks to the correspondence

between Vδ(F) on X and Rδ(OP(1)) on P, we deduce regularity conditions for Rδ(OP(1)) from

those already obtained for Vδ(F) in [12].

The paper consists of five sections. Section 1 contains some general terminology and

notation.

In Section 2 we briefly remind some fundamental definitions and results of [12], not only

for the reader convenience but mainly because some tools are frequently used in the whole

paper. The aim of Section 3 is to study in more details the (s, Gs)-Severi correspondence. We

consider several important geometric consequences of this correspondence (cf. e.g. Theorem

3.1, Propositions 3.14, 3.19) as well as the equivalence of some of these consequences with

the approach used in [2].

In Section 4 we focus on Pδ(F)-Severi varieties; we give a description of tangent spaces at

points of such schemes as well as we find conditions for their regularity (cf. Theorem 4.5 and

Corollary 4.19). Section 5 contains some almost-sharp upper-bounds on δ which imply the

regularity of Rδ(OP(1)) on P.
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1. Notation and Preliminaries

We work in the category of algebraic C-schemes. Y is a m-fold if it is a reduced, irreducible

and non-singular scheme of finite type and of dimension m. If m = 1, then Y is a (smooth)

curve; m = 2, 3 and 4 are the cases of a (non-singular) surface, threefold and fourfold,

respectively. If Z is a closed subscheme of a scheme Y , IZ/Y denotes the ideal sheaf of Z in

Y , NZ/Y the normal sheaf of Z in Y whereas N∨
Z/Y

∼= IZ/Y /I2
Z/Y is the conormal sheaf of Z

in Y . As usual, hi(Y, −) := dim H i(Y, −).

Given Y a projective scheme, ωY denotes its dualizing sheaf. When Y is a smooth variety,

then ωY coincides with its canonical bundle and KY denotes a canonical divisor s.t. ωY
∼=

OY (KY ); furthermore, TY denotes its tangent bundle.

If D is a reduced, irreducible curve, pa(D) = h1(OD) denotes its arithmetic genus, whereas

g(D) = pg(D) denotes its geometric genus, the arithmetic genus of its normalization.

Let Y be a projective m-fold and E be a rank-r vector bundle on Y ; ci(E) denotes the

ith-Chern class of E, 1 ≤ i ≤ r. As in [16] - Sect. II.7 - PY (E) denotes the projective space

bundle on Y , defined as Proj(Sym(E)). There is a surjection π∗(E) → OPY (E)(1), where
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OPY (E)(1) is the tautological line bundle on PY (E) and where π : PY (E) → Y is the natural

projection morphism.

For non reminded terminology, the reader is referred to [3], [13] and [16]. We now briefly

recall some definitions and results which will be frequently used in what follows.

Let X be a smooth projective threefold and F a rank-two vector bundle on X. If F is

globally generated on X, it is not restrictive if from now on we assume that the zero-locus

V (s) of its general global section s is a smooth, irreducible curve D = Ds in X (for details,

see [12]; for general motivations and backgrounds, the reader is referred to e.g. [19] and to

[24], Chapter IV).

From now on, denote by L ∈ Pic(X) the line bundle given by c1(F). Thus, by the Koszul

sequence of (F, s):

(1.1) 0 → OX → F → ID ⊗ L → 0,

we compute the geometric genus of D = V (s) in terms of the invariants of F and of X.

Precisely

(1.2) 2g(D)− 2 = 2pa(D)− 2 = deg(L⊗ ωX ⊗ OD).

Thus, if e.g. X = P3 and if we put ci = ci(F) ∈ Z, we have

deg(D) = c2 and g(D) = pa(D) =
1

2
(c2(c1 − 4)) + 1,

i.e. D is subcanonical of level (c1 − 4).

Take now P(H0(X, F)); from our assumptions on F, the general point of this projective

space parametrizes a global section whose zero-locus is a smooth, irreducible curve in X.

Given a positive integer δ ≤ pa(D), one consider the subset

(1.3)
Vδ(F) :={[s] ∈ P(H0(X, F)) | Cs := V (s) ⊂ X is irreducible

with only δ nodes as singularities};

therefore, any element of Vδ(F) determines a curve in X whose arithmetic genus pa(Cs) is

given by (1.2) and whose geometric genus is g = pa(Cs) − δ. We recall that Vδ(F) is a

locally closed subscheme of the projective space P(H0(X, F)); it is usually called the Severi

variety of global sections of F whose zero-loci are irreducible, δ-nodal curves in X (cf. [2], for

X = P3, and [12] in general). This is because such schemes are the natural generalization of

the (classical) Severi varieties of irreducible and δ-nodal curves in linear systems on smooth,

projective surfaces (see [5], [4], [7], [11], [14], [15], [21], [22] and [23], just to mention a few).

For brevity sake, we shall usually refer to Vδ(F) as the Severi variety of irreducible, δ-nodal

sections of F on X.

First possible questions on such Severi varieties are about their dimensions as well as their

smoothness properties. A preliminary estimate is given by the following result:

Proposition 1.4. Let X be a smooth projective threefold, F a globally generated rank-two

vector bundle on X and δ a positive integer. Then

expdim(Vδ(F)) =

{
h0(X, F)− 1− δ, if δ ≤ h0(X, F)− 1 = dim(P(H0(F))),

−1, if δ ≥ h0(X, F).

Proof. See Proposition 2.10 in [12]. �
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Assumption 1. From now on, given X and F as in Proposition 1.4, we shall always assume

Vδ(F) 6= ∅. We write [s] ∈ Vδ(F) to intend that the global section s ∈ H0(X, F) determines

the corresponding point [s] of the scheme Vδ(F). We simply denote by C (instead of Cs)

its zero-locus, when it is clear from the context that we focus on s. We finally consider

δ ≤ min{h0(X, F)− 1, pa(C)}, the latter is because we want C = V (s) to be irreducible, for

any [s] ∈ Vδ(F).

By Proposition 1.4, it is natural to state the following:

Definition 1.5. Let [s] ∈ Vδ(F), with δ ≤ min{h0(X, F)− 1, pa(C)}. Then [s] is said to be

a regular point of Vδ(F) if:

(i) [s] ∈ Vδ(F) is a smooth point, and

(ii) dim[s](Vδ(F)) = expdim(Vδ(F)) = dim(P(H0(X, F)))− δ.

Vδ(F) is said to be regular if it is regular at each point.

In [12] we presented a cohomological description of the tangent space T[s](Vδ(F)) which

allowed us to find several sufficient conditions for the regularity of Severi varieties Vδ(F) on

X (cf. Theorems 4.5, 5.9, 5.25, 5.28 and 5.36 in [12]).

One of the aim of this paper is to study in more details the deep geometric meaning of this

cohomological description of T[s](Vδ(F)) and its several connections (not investigated in [12])

with families of other singular geometric objects related to X and to F.

To do this, we first have to recall some results which are the starting point of our analysis.

2. The (s, Gs)-Severi correspondence

In this section we want to briefly recall the correspondence given in [12] between elements

of Vδ(F) on X and suitable singular divisors on the projective space bundle P := PX(F),

which is a fourfold ruled over X. This will be called the (s, Gs)-Severi correspondence, as in

Definition 2.2.

From now on, with conditions as in Assumption 1, let [s] ∈ Vδ(F). Then, in [12] we proved:

Theorem 2.1. (cf. Theorem 3.4 (i) in [12]) Let X be a smooth projective threefold. Let

F be a globally generated rank-two vector bundle on X and δ a positive integer. Consider

[s] ∈ Vδ(F) and let C = V (s) ⊂ X. Denote by Σ the set of nodes of C.

Let

P := PX(F)
π−→ X

be the projective space bundle together with its natural projection π on X and denote by OP(1)

its tautological line bundle.

Then, [s] ∈ Vδ(F) corresponds to a divisor Gs ∈ |OP(1)| which contains the δ fibres Lpi
=

π−1(pi) ⊂ P, where pi ∈ Σ for 1 ≤ i ≤ δ.

Furthermore, there exists a zero-dimensional subscheme Σ1 ⊂ Gs of length δ, which is a

set of δ rational double points of Gs and each fibre Lpi
contains only one of the points of Σ1,

for 1 ≤ i ≤ δ.

Proof. For complete details, the reader is referred to the proof of Theorem 3.4 (i) in [12]. �

For brevity sake, we give the following:
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Definition 2.2. With notation and assumptions as in Theorem 2.1, let Λ = π−1(Σ) =⋃δ
i=1 Lpi

. Then, the elements [s] ∈ Vδ(F) and Gs ∈ |IΛ/P ⊗OP(1)| are said to form a (s, Gs)-

Severi correspondence.

The terminology of ”Severi correspondence” will be further motivated by Definition 4.1,

Theorems 3.1 and 5.1 and Corollary 4.19.

Another result of [12] which is useful to remind is the following:

Proposition 2.3. (cf. Theorem 3.4 (ii) in [12]) With assumptions and notation as in The-

orem 2.1, denote by IΣ1/P the ideal sheaf of Σ1 in P. Consider the subsheaf of F defined

by

(2.4) FΣ := π∗(IΣ1/P ⊗ OP(1)).

Then,

(2.5)
H0(X, FΣ)

〈s〉
∼= T[s](Vδ(F)) ⊂ T[s](P(H0(F))) ∼=

H0(X, F)

〈s〉
,

i.e. global sections of FΣ (modulo the one-dimensional subspace 〈s〉) parametrize equisingular

first-order deformations of [s]. In particular, for ε ∈ C[T ]/(T 2) s.t. ε2 = 0, we have:

(2.6) s + εs′ ∈ T[s](Vδ(F)) ⇔ s′ ∈ H0(X, FΣ) ⇔ Gs′ ∈ |IΣ1/P ⊗ OP(1)|,

where Gs′ is the divisor in P corresponding to s′.

Proof. The reader is referred to the proof of Theorem 3.4 (ii) in [12].

�

Remark 2.7. As in [12], one can show that FΣ fits in the exact diagram:

(2.8)

0 0

↓ ↓
0 → IC/X ⊗ F

∼=→ IC/X ⊗ F → 0

↓ ↓ ↓
0 → FΣ → F → OΣ → 0

↓ ↓ ↓∼=
0 → N′

C → F|C → T 1
C → 0

↓ ↓ ↓
0 0 0 ,

where T 1
C is the first cotangent sheaf of C (for details, see [20]) and where N′

C is the equisingular

sheaf defined as the kernel of the natural surjection

(2.9) 0 → N′
C → NC/X → T 1

C → 0,

(see, for example, [22]). Recall also that, since C = V (s) and since it is nodal, then NC/X
∼=

F|C and T 1
C
∼= OΣ.

By the second row of (2.8) one can consider the map

(2.10) H0(X, F)
µX−→ H0(X, OΣ),

which is not defined by evaluating the global sections of F at Σ (indeed FΣ has rank one at

each node). Its geometric meaning is given by the local description of the exact sequence

(2.11) 0 → FΣ → F → OΣ → 0.
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If p ∈ Σ, take Up ⊂ X an analytical neighbourhood of p with local coordinates x = (x1, x2, x3)

such that x(p) = (0, 0, 0). If s ∈ H0(X, F) is such that s|Up = (f1, f2) then, as in [2] for

X = P3, one can consider its Jacobian map

(2.12) TUp |C
J(s|Up )
−→ NC/Up → T 1

C ,

which is given by:

(2.13) J(s|Up) :=

(
∂f1

∂x1

∂f1

∂x2

∂f1

∂x3
∂f2

∂x1

∂f2

∂x2

∂f2

∂x3

)
.

Since in our case [s] ∈ Vδ(F), by (2.13) one easily sees that µX is the composition of the

evaluation at p of global sections of F followed by the projection

C2
(p)

π1→ C(p),

where C2
(p)
∼= F ⊗ Op, C(p)

∼= T 1
C,p and π1((x, y)) = x (for more details, cf. §3 in [12]).

On the other hand, by the (s, Gs)-Severi correspondence, one can also consider the standard

evaluation map at Σ1 of tautological divisors on P, which will be denoted by

(2.14) H0(P, OP(1))
ρP−→ H0(P, OΣ1).

In [12], we deduced the following result which will play a fundamental role in § 5 (cf. Corollary

4.19 and Theorem 5.1).

Corollary 2.15. (cf. Corollary 3.9 in [12]) From (2.8), it follows that

(2.16)
[s] ∈ Vδ(F) is regular ⇔ H0(X, F)

µX→→ H0(X, OΣ)

⇔ H0(P, OP(1))
ρP→→ H0(P, OΣ1).

Proof. The equivalence of µX and ρP easily follows from the (s, Gs)-Severi correspondence

(see also § 3 in [12]). Formula (2.16) directly follows from Proposition 1.4, Theorem 2.1 and

Proposition 2.3. �

3. Connection among various singular subschemes of X and of P

The aim of this section is to study in more details the (s, Gs)-Severi correspondence of Def-

inition 2.2, introduced in [12] and briefly recalled in the previous section. We consider several

important geometric consequences of this correspondence. In particular, we show that the

local analytical computations introduced in [2] are equivalent via the (s, Gs)-correspondence

to those using the divisorial approach in [12] (cf. Remarks 3.11, 3.21 and Propositions 3.14,

3.19).

We start with the following result, which determines a converse of the approach introduced

in [12]. Indeed, we more generally prove:

Theorem 3.1. Let X be a smooth projective threefold. Let F be a globally generated rank-two

vector bundle on X.

Let P := PX(F) be the projective space bundle, OP(1) its tautological line bundle and π the

natural projection onto X. Let Gs ∈ |OP(1)| be a divisor and let s ∈ H0(X, F) be the global

section corresponding to Gs. Let C := V (s) and assume that C is a curve (not necessarily

irreducible) on X. Thus:
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(i) Gs is singular at a point p1 ∈ P if, and only if, C is singular at the point p ∈ C, which is

uniquely determined by the fact that p1 ∈ Lp = π−1(p).

(ii) In particular, p is a node for C if, and only if, p1 is a rational double point for Gs.

Proof. (i) Let p1 ∈ Gs and let p ∈ X such that p1 ∈ Lp = π−1(p) ⊂ P. Let U = Up be

an analytical neighbourhood of p in X where F trivializes and whose local coordinates are

x = (x1, x2, x3). If s|U = (f1, f2), by defintion of projective space bundle, the local equation

of Gs in π−1(U) is

(3.2) F (x1, x2, x3, u, v) := uf1 + vf2,

where [u, v] are local homogeneous coordinates on the fibres over U . Therefore, p1 ∈ π−1(U)

is singular for Gs if, and only if, there exists a solution of

(3.3) F =
∂F

∂x1

=
∂F

∂x2

=
∂F

∂x3

=
∂F

∂u
=

∂F

∂v
= 0.

Observe that (3.3) gives:

(3.4)
uf1 + vf2 = ∂f1

∂x1
u + ∂f2

∂x1
v = ∂f1

∂x2
u + ∂f2

∂x2
v =

= ∂f1

∂x3
u + ∂f2

∂x3
v = f1 = f2 = 0.

The last two equations of (3.4) imply that a singular point of Gs must be on the π-fibre over

a point of the locus C = V (s) ⊂ X. This means that p ∈ U ∩ C; let L = Lp be its fibre.

We can restrict the system (3.4) to L (by a little abuse of notation, we shall always denote

by [u, v] the homogeneous coordinates on L). We thus get:

(3.5)
∂f1

∂x1

(p)u +
∂f2

∂x1

(p)v =
∂f1

∂x2

(p)u +
∂f2

∂x2

(p)v =
∂f1

∂x3

(p)u +
∂f2

∂x3

(p)v = 0.

Therefore, there exists a solution [u, v] ∈ L ∼= P1 if, and only if, the system (3.5) has rank

less than or equal to one. This is equivalent to saying that

(3.6) (
∂f1

∂x1

(p),
∂f1

∂x2

(p),
∂f1

∂x3

(p)) = λ(
∂f2

∂x1

(p),
∂f2

∂x2

(p),
∂f2

∂x3

(p)),

for some λ ∈ C∗, i.e.

(3.7) rank(J(s|U)(p)) ≤ 1,

with J(s|U) as in (2.13). This is equivalent to the fact that p ∈ Sing(C). Furthermore, by

the above computations and by the definition of projective space bundle, one sees that the

point p1 ∈ Lp has homogeneous coordinates:

(3.8)
[u, v] = [− ∂f2

∂x1
(p), ∂f1

∂x1
(p)] = [− ∂f2

∂x2
(p), ∂f1

∂x2
(p)]

= [− ∂f2

∂x3
(p), ∂f1

∂x3
(p)] = [−λ, 1]

(when they make sense).

(ii) (⇒) As in Theorem 2.1 (cf. Thm. 3.4 (i) in [12]), the claim follows from the fact that

locally analytically s|U = (x1x2, x3), since a node is a planar singularity.

(⇐) One can use part (i) above and the fact that, in suitable local analytical coordinates,

a rational double point of a threefold is always locally given by {x1x2 + x3t = 0}, where

(x1, x2, x3, t) are coordinates in A4. Thus, the local equation of Gs in π−1(U) = U × P1 is

given by

(3.9) ux1x2 + vx3 = 0,
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where [u, v] are the homogeneous coordinates of the fibres over U and t = v
u
. Then s is locally

analytically given by

(3.10) s|Up = (x1x2, x3),

so one can conclude. �

Remark 3.11. Observe first that, from (3.2), it easily follows that the multiplicity of Gs at

the point p1 along the π-fibre Lp increases when C = V (s) has multiplicity worse than two

at p.

When, in particular, p is a node one can give some geometrical characterizations of the

singular point p1 ∈ Lp in terms of s. Indeed, since p is a node then C = V (s) is a local complete

intersection so NC/X is locally free of rank two on C. By (2.12) and (2.13), one observes that

in this case Im(J(s|U)) does not generate the whole vector space V := (OC,p/mp)
⊕2 given by

elements in NC/X,p not vanishing at p; in fact, if s|U := (f1, f2), then Im(J(s|U)) generates

the one-dimensional subspace:

W := {v ∈ C2 | v ∈ 〈(∂f1

∂x1

(p),
∂f2

∂x1

(p)〉},

where 〈( ∂f1

∂x1
(p), ∂f2

∂x1
(p)〉 = 〈( ∂f1

∂x2
(p), ∂f2

∂x2
(p)〉 = 〈( ∂f1

∂x3
(p), ∂f2

∂x3
(p)〉. By definition of PX(F), the

points of the fibre Lp are in one-to-one correspondence with the one-dimensional quotients

of V . In our case, the singular point p1 corresponds to the quotient V/W which exactly

gives (3.8). The singularity of Gs depends on the fact that the tangent planes at p to the

(local) surfaces given by V (f1) and V (f2) in U , respectively, are not transverse. In fact, these

tangent planes coincide, as it follows from (3.6), so that the curve section C = V (s) has not

a unique tangent line.

To conclude, observe that the singular points of Gs move on P as [s] moves in Vδ(F). When

[s], [s′] ∈ Vδ(F) are such that C = V (s) and C ′ = V (s′) have a node at the same point p ∈ X,

then the singular points p1 and q1 of Gs and Gs′ , respectively, are points on the same fibre

Lp; in the other case, p1 and q1 belong to distinct π-fibres.

Remark 3.12. It is important to observe that the (s, Gs)-Severi correspondence is not a one-

to-one correspondence. Indeed, for a given [s] ∈ Vδ(F) the corresponding Gs is irreducible.

Conversely, given an arbitrary irreducible divisor Gs ⊂ P with δ-rational double points as

the only singularities, take s the corresponding global section of F. Even if we assume that

C = V (s) is in codimension two in X and with only δ nodes as singularities, it is not true

that C is necessarily irreducible.

Indeed, take X = P3 and F = OP3(2) ⊕ OP3(2). Take Q1, Q2 ⊂ P3 two smooth quadrics

given by quadratic polynomials qi, 1 ≤ i ≤ 2, respectively. We can choose the qi’s in such a

way that Q1 ∩Q2 is a divisor C = Γ + L on e.g. Q1, where Γ is a twisted cubic of type (2, 1)

on Q1 whereas L is of type (0, 1) on Q1. Since s = (q1, q2) ∈ H0(P3, F) and since ΓL = 2,

then C = V (s) is a 2-nodal curve in P3 which is reducible. Thus, from (1.3), it follows that

[s] ∈| V2(F).

On the other hand, if we take P = Proj(Sym(F)), the above section s ∈ H0(X, F) comes

from a divisor Gs ∈ |OP(1)| which is irreducible. To see this, we first observe that from the

exact sequence

0 → OP(−1) → OP → OGs → 0
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it follows that Gs is connected. Since Gs is a divisor in P with only 2 rational double points

as singularities, by dimension count it is also irreducible.

The previous remark motivates Definition 4.1 given in Section 4, where we shall consider

the theory of Severi varieties of nodal sections Vδ(F) on X in terms of ”classical” Severi

varieties of irreducible divisors on PX(F) with δ-rational double points.

Another important consequence of the (s, Gs)-Severi correspondence is that we can deter-

mine several interesting geometric interpretations of first-order deformations given by sec-

tions in H0(X, FΣ) via the divisorial approach of Theorems 2.1 and 3.1. To start with, let

[s] ∈ Vδ(F), C = V (s), Σ = Sing(C). Denote by L := c1(F) ∈ Pic(X).

By (1.1), one has:

(3.13) T[s](Vδ(F)) ⊂ T[s](P(H0(X,F))) ∼=
H0(X, F)

H0(X, OX)
↪→ H0(X, IC/X ⊗ L).

Therefore, as proved in Proposition 2.3 in [2] for the case X = P3 and via another approach,

first-order deformations of [s] in the Severi variety Vδ(F) can be related to suitable divisors

of |L| on X and containing C.

Precisely, we have:

Proposition 3.14. Let X be a smooth projective threefold, F a globally generated rank-two

vector bundle on X and L = c1(F). Let δ be a positive integer, [s] ∈ Vδ(F) and C = V (s) be

the corresponding irreducible, nodal curve in X. Denote by Σ the set of nodes of C. Let FΣ

be as in (2.4). Then:

(i) s′ ∈ H0(X, FΣ)\〈s〉 if, and only if, V (s∧s′) is a divisor in |IC/X⊗L| which is singular

along Σ.

(ii) The singularities of V (s∧ s′) are along Σ and along the (possibly empty) intersection

scheme C ∩ V (s′).

Proof. (i) This point has already been proved in [2] for X = P3 and via another approach.

Here we give our proof which uses the (s, Gs)-Severi correspondence. Let p ∈ Σ be a node of

C and let U = Up be an analytical neighbourhood of X containing p. Let s′ ∈ H0(X, FΣ)\〈s〉
and assume that

s|U = (f1, f2), s′|U = (g1, g2), fi, gi ∈ OX(U), 1 ≤ i ≤ 2,

are the local analytical expression of s and s′ in U .

⇒) Denote by mp the maximal ideal of the point p in the stalk OX,p. Since by assumption

[s] ∈ Vδ(F) and p ∈ Σ, we can assume that the reduction of s in F ⊗ (mp/m
2
p) is (1, 0).

This means that if we consider homogeneous coordinates [u, v] on the π-fibre Lp
∼= P1 over

p, the corresponding rational double point p1 for Gs on Lp has coordinates [0, 1] on such a

line. Since by assumption s′ ∈ H0(FΣ) \ 〈s〉, in particular Gs′ is a divisor distinct from Gs

and which passes through p1 = [0, 1]. Therefore, we can assume that the reduction of s′ in

F ⊗ (OX,p/mp) is (a, 0). If a = 0, this means that Gs′ contains Lp; otherwise, as in (3.9), the

local equation of Gs′ is given by {au = 0}, so that the intersection point between Gs′ and Lp

is indeed p1 = [0, 1].
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In any case, we have that g2 ∈ mp and g1 = a + j1, where j1 ∈ mp. Analogously, we have

that f1 ∈ mp and f2 ∈ m2
p. Therefore,

(3.15) det

(
f1 f2

a + j1 g2

)
= f1g2 − f2(a + j1) ∈ m2

p.

On the other hand, since s′ ∈ H0(X, F) \ 〈s〉, then V (s∧ s′) corresponds to a divisor in |L|
containing C = V (s) whose local equation in U is given by

(3.16) f1g2 − f2g1 = 0.

By (3.15), it follows that V (s ∧ s′) is singular at each node of C.

⇐) Fix (x1, x2, x3) local analytical coordinates in U . Since p ∈ C = V (s), then

(3.17)
∂

∂xi

(f1g2 − g1f2)(p) = g1(p)
∂f2

∂xi

(p)− g2(p)
∂f1

∂xi

(p), 1 ≤ i ≤ 3

holds. Since V (s ∧ s′) is a singular divisor along Σ by assumption, from (3.16) and (3.17) it

follows that either s′ passes through p or s′(p) is proportional to each pair:

(3.18) (
∂f1

∂xi

(p),
∂f2

∂xi

(p)), 1 ≤ i ≤ 3.

In the former case, we have that Gs′ ∈ |ILp/P⊗OP(1)|, where Lp is the π-fibre over p ∈ Σ; in the

latter case, by the very definition of FΣ and by (2.11), (2.12) we have that Gs′ ∈ |Ip1⊗OP(1)|,
where p1 ∈ Σ1 is the corresponding point to p ∈ Σ. In any case, Gs′ passes through p1.

If we globalize this approach, in both cases, Gs′ passes through Σ1. By (2.4) and by the

fact that V (s ∧ s′) is a divisor, it follows that s′ ∈ H0(X, FΣ) \ 〈s〉.
(ii) Assume that q ∈ C \ Σ and that s′(q) 6= (0, 0); in this case, after part (i), if (3.17) is

equal to 0 at q, for each 1 ≤ i ≤ 3, we would have that (g1(q), g2(q)) is linear dependent on

each pair in (3.18). In particular, the three pairs in (3.18) would be linearly dependent. This

is a contradiction; indeed, since q ∈ C \ Σ, the Jacobian map in (2.12) is surjective at q, i.e.

T 1
C,q = 0. On the other hand, since NC/X,q

∼= O⊕2
C,q, then we must have that two of the three

pairs in (3.18) are linearly independent at q.

This implies that V (s∧ s′) cannot be singular outside Σ∪ (C ∩V (s′)). On the other hand,

in the other cases - i.e. either q ∈ Σ or q ∈ (C ∩ V (s′)) or both - it is easy to observe that

(3.17) always vanishes at q, so that V (s ∧ s′) is singular at each such point. �

This shows that the local computations on X for divisors V (s ∧ s′), introduced in [2], are

equivalent via the (s, Gs)-Severi correspondence to the local computations on P introduced

in Theorem 2.1 and Proposition 2.3.

Furthermore, we remark that surfaces in X given by V (s ∧ s′), with [s] ∈ Vδ(F) and

s′ ∈ H0(X, FΣ) \ 〈s〉, are certainly singular along Σ if the zero-locus V (s′) passes there.

However, they can be also singular along Σ even if V (s′) does not pass there; this happens

when each equation on the right-hand side of (3.17) vanishes, since C = V (s) is singular

along Σ.

To sum up, we have:

Proposition 3.19. By using notation and assumptions as in Theorem 2.1 and in Proposition

2.3, the following conditions are equivalent:

(i) s′ ∈ H0(X, FΣ) \ 〈s〉;
(ii) V (s ∧ s′) ⊂ X is a surface which contains C and which is singular along Σ;
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(iii) the divisor Gs′ passes through Σ1

(iv) the surface Ss,s′ := Gs ∩Gs′ ⊂ P is singular along Σ1;

Proof. Some of the implications are already proven:

(i) ⇔ (ii): see Proposition 3.14, (i).

(ii) ⇔ (iii): Let s′ ∈ H0(X, F) \ 〈s〉 and let p ∈ Σ. Take U an analytical neighbourhood of

p and assume that s′|U = (g1, g2), for some g1, g2 ∈ OX(U) so that the local equation of Gs′

in π−1(U) is ug1 + vg2 = 0 (cf. e.g. (3.2)). Two cases can occur. If s′(p) = 0, then also Gs′

contains the fibre Lp and there is nothing to prove. In the other case, Gs′ passes through the

singular point of Gs along L ( i.e. [−λ, 1] as in (3.8)) if, and only if,

(3.20) [−g2(p), g1(p)] = [−λ, 1].

This means that [−g2(p), g1(p)] is a solution of the system (3.5), which is equivalent to the

fact that each equation on the right-hand side of (3.17) vanishes; by Proposition 3.14, this is

equivalent to the fact that the surface V (s ∧ s′) is singular at p.

(iii) ⇔ (iv): trivial consequence of the fact that Gs is always singular at Σ1 by Theorem 2.1.

�

We observe some differences between the approaches on X and on P given by the (s, Gs)-

Severi correspondence.

Remark 3.21. We observed above that V (s ∧ s′), with s′ ∈ H0(X, FΣ), is singular along Σ

if either V (s′) contains it or not. From the correspondence between V (s∧ s′) and Ss,s′ we see

that in the former case the surface Ss,s′ has to contain Λ = π−1(Σ) =
⋃δ

i=1 Lpi
, whereas in

the latter, Ss,s′ has to pass through the point p1
i ∈ Lpi

, 1 ≤ i ≤ δ, which is singular for Gs so

- a fortiori - for Ss,s′ . In any case, differently from V (s ∧ s′), the surface Ss,s′ always contains

Σ1 and dominates V (s∧ s′). In particular, if s′ is the general section in H0(X, FΣ) \ 〈s〉 such

that V (s′)∩C = ∅ then, by the Zariski Main Theorem, Ss,s′ is isomorphic via π to the normal

surface V (s ∧ s′).

Remark 3.22. By using the (s, Gs)-Severi correspondence, one can better understand the

fact that the inclusion IΣ/X ⊗ F ⊆ FΣ is proper, as it follows from

(3.23) 0 → IΣ/X ⊗ F → F → F ⊗ OΣ
∼= O⊕2

Σ → 0

and from (2.11). Indeed, by (2.4), the general section s′ ∈ H0(X, FΣ) corresponds to a

divisor Gs′ in |OP(1)| which simply passes through the scheme Σ1 of δ rational double points

of the divisor Gs ∈ |OP(1)|. From (3.17), we observe that among elements in H0(X, FΣ)

there are global sections s∗ ∈ H0(X, IΣ/X ⊗ F). Any of this section determines a divisor

Gs∗ ∈ |IΛ/P ⊗ OP(1)|, where Λ =
⋃

pi∈Σ Lpi
. In this case, we have

(3.24) 0 → IΛ/P ⊗ OP(1) → OP(1) → OP(1)⊗ OΛ
∼=

δ⊕
i=1

OLpi
(1) → 0,

where Σ = {p1, . . . , pδ}. Since OLpi
(1) ∼= OP1(1), for each 1 ≤ i ≤ δ, it is clear that

|IΛ/P⊗OP(1)| is properly contained in |IΣ1/P⊗OP(1)|. Therefore, |IΛ/P⊗OP(1)| has expected

codimension equal to 2δ in |OP(1)|.
For completeness sake, we conclude by observing that the subsheaf IC/X ⊗ F ⊂ FΣ gives

global sections which are related in the (s, Gs)-Severi correspondence to divisors in |IF/P ⊗
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OP(1)|, where F := Proj(Sym(F|C)) = P1
C is a singular, ruled surface contained in P with

π-fibres over the base curve C.

Remark 3.25. To conclude this section, we observe that Propositions 2.3 and 3.19 give

several distinct but equivalent characterizations of tangent vectors to Vδ(F) at [s]. These

conditions are consistent with those of regularity in Corollary 2.15.

Recall that the map ρP in (2.16) is a standard restriction map. Therefore, |OP(1)| does

not separate Σ1 if, and only if, each divisor in |OP(1)| passing through all but one point p1
j of

Σ1 passes also through the point p1
j , for some 1 ≤ j ≤ δ. By Theorems 2.1 and 3.19 and by

Proposition 2.3, this happens if, and only if, for each [s] ∈ Vδ(F) and for each s′ ∈ H0(X, FΣ),

the surface Ss,s′ = Gs∩Gs′ which is singular along all but one point p1
j of Σ1 is singular also at

the remaining point p1
j , for some 1 ≤ j ≤ δ. This happens if, and only if, for each [s] ∈ Vδ(F)

and for each s′ ∈ H0(X, FΣ), the surface V (s ∧ s′) ⊂ X which is singular along all but one

point pj of Σ is singular also at the remaining point pj, for some 1 ≤ j ≤ δ; this is equivalent

to the non-surjectivity of the map µX , since the section s′ ∈ H0(X, F) which vanishes in the

composition F →→ F|C →→ OΣ\{pj} also vanishes in the composition F →→ F|C →→ O{pj}.

4. Pδ(F)-Severi varieties of singular divisors on P

What showed up to now suggests that the equivalences given by Theorems 2.1, 3.1 for

geometric singular loci, by Propositions 2.3, 3.19 for tangent vectors and by Corollary 2.15 for

vector space maps reside in a more deep geometric equivalence of families of singular objects.

Indeed, as we shall prove in Corollary 4.19 and Theorem 5.1, the procedure introduced in

[12] and recalled in § 2 rephrases Severi varieties of nodal sections Vδ(F) on X in terms of

”classical” Severi varieties of some singular divisors on smooth ruled fourfolds. This, once

more, motivates the terminology introduced in Definition 2.2 and highlights the rich geometry

which is behind the (s, Gs)-Severi correspondence.

By taking into account Theorem 3.1 and Remark 3.12, we give the following:

Definition 4.1. With notation as in Assumption 1 and Theorem 2.1, consider the scheme

(4.2) Rδ(OP(1)) := {Gs ∈ |OP(1)| s.t. [s] ∈ Vδ(F)}.

For any F and δ, these schemes parametrize families of divisors in the tautological linear

system |OP(1)| which are irreducible, with δ rational double points as the only singularities

and which are related to elements in Vδ(F). For brevity sake, these will be called Pδ(F)-Severi

varieties.

From now on, we shall always consider Rδ(OP(1)) 6= ∅. It is clear that:

(4.3) expdim(Rδ(OP(1))) = dim(|OP(1)|)− δ;

indeed, imposing a rational double point gives at most 5 conditions on |OP(1)|; each such

point varies on any of the π-fibre over X.

As in Definition 1.5, from (4.3) it is natural to give the following:

Definition 4.4. Let [Gs] ∈ Rδ(OP(1)). Then [Gs] is said to be a regular point of Rδ(OP(1))

if:

(i) [Gs] ∈ Rδ(OP(1)) is a smooth point, and

(ii) dim[Gs](Rδ(OP(1))) = expdim(Rδ(OP(1))) = dim(|OP(1)|)− δ.

The Pδ(F)-Severi variety Rδ(OP(1)) is said to be regular if it is regular at each point.
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As in Theorem 2.1, in order to find regularity conditions it is crucial to give a description

of the tangent space at a point [Gs] to the given Pδ(F)-Severi variety Rδ(OP(1)).

Theorem 4.5. Let [Gs] ∈ Rδ(OP(1)) on P and let Σ1 be the zero-dimensional scheme of the

δ-rational double points of Gs ⊂ P. Then:

(4.6) T[Gs](Rδ(OP(1))) ∼=
H0(IΣ1/P ⊗ OP(1))

〈Gs〉
.

In particular, if ε ∈ C[T ]/(T 2) is such that ε2 = 0, then:

Gs + ε Gr ∈ T[Gs](Rδ(OP(1)) ⇔ Gr ∈ |IΣ1/P ⊗ OP(1))|.

Proof. The divisor Gs ⊂ P, related to the point [Gs] ∈ Rδ(OP(1)), corresponds to a section

[s] ∈ Vδ(F) on X. Therefore, if p ∈ Σ = Sing(C) is a node and if U ⊂ X is an analytical

neighbourhood containing p, then the local equation of Gs in π−1(U) ∼= U × P1 is given by

ux1x2 + vx3 = 0 (cf. formula (3.9) and the proof of Theorem 3.4 (i) in [12]).

In the open chart where v 6= 0, Gs is smooth whereas, in the open chart where u 6= 0, the

local equation of Gs is

(4.7) Gs = V (x1x2 + x3t),

where t = v
u

and (x1, x2, x3, t) coordinates in A4.

We can consider the Jacobian map of Gs in this A4. This is given by:

TA4|Gs

JGs−→ NGs/A4

∂/∂x1 −→ x2

∂/∂x2 −→ x1

∂/∂x3 −→ t

∂/∂t −→ x3,

where NGs/A4 is locally free of rank one on Gs. It is then clear that JGs is surjective except

at the origin 0 ∈ A4, i.e. at the singularity of Gs in U . By local analytical computations, we

get:

(4.8) coker(JGs)
∼=

C[[x1, x2, x3, t]]/(x1x2 + x3t)

(x1, x2, x3, t)
∼= C;

Globally speaking, given Gs ⊂ P whose singular scheme is Σ1, we have the exact sequence

of sheaves on Gs:

(4.9) TP|Gs

JGs→ NGs/P → T 1
Gs
→ 0,

where T 1
Gs

is a sky-scraper sheaf supported on Σ1 and of rank one at each point of Σ1 by

(4.8).

As in (2.9) for nodal curves, denote by N′
Gs

the image of JGs in (4.9). This is the equisingular

sheaf, whose global sections parametrize equisingular first-order deformations of Gs in P.

From (4.8) and from the fact that NGs/P is locally free of rank-one, it follows that

(4.10) N′
Gs
∼= mp1 , for all p1 ∈ Σ1,

where mp1 ⊂ OGs,p1 is the maximal ideal of p1 ∈ Gs.

On the other hand, one can consider the standard diagram:
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(4.11)

0 0 0

↓ ↓ ↓
0 → OP

· Gs→ IΣ1/P ⊗ OP(1) → IΣ1/Gs
⊗ OGs(1) → 0

|| ↓ ↓
0 → OP

· Gs→ OP(1) → OGs(1) → 0

↓ ↓ ↓
0 → OΣ1

∼=→ OΣ1 → 0

↓ ↓
0 0 ;

by (4.10) and (4.11), we get that there is an injection

(4.12)
H0(P, IΣ1/P ⊗ OP(1))

H0(P, OP)
↪→ H0(Gs, N

′
Gs

),

which is an isomorphism when P (equivalently X) is regular, i.e. h1(P, OP) = 0. Therefore,

the vector space on the left-hand-side of (4.12) actually parametrizes equisingular first-order

deformations of Gs in |OP(1)|. �

Remark 4.13. Recall that when one studies classical Severi varieties of irreducible, δ-nodal

curves on a smooth projective surface, there is also a parametric approach for equisingular

first-order deformations (cf., e.g [4] and [22]).

Precisely, let S be an arbitrary smooth, projective surface, |OS(D)| a complete linear system

on S, whose general element is assumed to be a smooth and irreducible curve. One considers

the Severi variety V|OS(D)|,δ, for any δ ≤ pa(D), which parametrizes reduced, irreducible curves

in |OS(D)| having δ-nodes as the only singularities. If [C] ∈ V|OS(D)|,δ, this point corresponds

to a curve C ∼ D on S, such that N := Sing(C) ⊂ S is the 0-dimensional scheme of its δ

nodes; one can consider:

(4.14)

C̃ ⊂ S̃

↓ ϕN ↓ µN

C ⊂ S ,

where

• µN is the blow-up of S along N ,

• ϕN is the normalization of C,

• C̃ is a smooth, irreducible curve of (geometric) genus g = g(C̃) = pa(D)− δ.

It is a standard result that T[C](V|OS(D)|, δ) ∼=
H0(S, IN/S(D))

〈C〉 is isomorphic to a (proper)

subspace of H0(NϕN
), where NϕN

is the normal bundle to the map ϕN which is the line

bundle on C̃ defined by:

0 → TC̃ → ϕ∗(TS) → NϕN
→ 0.

It is well-known that H0(C̃, NϕN
) parametrizes equisingular first-order deformations of C in

S and that the subspace T[C](V|OS(D)|, δ), parametrizing equisingular first-order deformations

of C in |OS(D)|, coincides with the whole vector space when e.g. S is a regular surface.

On the other hand, for irreducible nodal curves on surfaces, the parametric approach

coincides with the Cartesian approach, which makes use of the equisingular sheaf N′
C defined

as in (2.9). Indeed, in the surface case, one has N′
C
∼= ϕ∗(NϕN

) (cf. e.g. [22]).
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Therefore, if in particular S is e.g. regular one has

(4.15) T[C](V|OS(D)|, δ) ∼= H0(C, N′
C) ∼= H0(C̃, NϕN

).

The same does not occur for divisors in P which are elements of Rδ(OP(1)), even if we assume

for simplicity that X (and so P) is regular, i.e. h1(X, OX) = 0.

Indeed, let

µΣ1 : P̃ → P and ϕΣ1 : G̃s → Gs

be the blow-up of P along Σ1 and the desingularization of Gs, respectively. The map ϕΣ1 is

induced by µΣ1 as it follows by using a diagram similar to (4.14) and by the fact that Σ1 is

a scheme of ordinary double points for Gs. Let B := Σδ
i=1Ei be the µΣ1-exceptional divisor.

Thus,

µ∗
Σ1(Gs) = G̃s + 2B, µ∗

Σ1(KP) = KP̃ − 3B.

By the exact sequence:

0 → TG̃s
→ ϕ∗

Σ1(TP) → NϕΣ1 → 0

and by the adjunction formula on P̃, we get that:

(4.16) NϕΣ1
∼= OG̃s

(µ∗
Σ1(Gs) + B).

Tensoring by OG̃s
(µ∗

Σ1(Gs) + B) the exact sequence

0 → OP̃(−µ∗
Σ1(Gs) + 2B) → OP̃ → OG̃s

→ 0,

we get

0 → OP̃(3B) → OP̃(µ∗
Σ1(Gs) + B) → NϕΣ1 → 0.

By Fujita’s Lemma (see e.g. [18], Lemma 1-3-2) and by the fact that B is effective and

µΣ1-exceptional, we get:

H0(OP̃(µ∗
Σ1(Gs) + B)) ∼= H0(OP(1)) and H i(OP̃(3B)) ∼= H i(OP), ∀ i ≥ 0.

By the regularity of X, we have H1(P, OP) = (0). Therefore, we have

(4.17) H0(NϕΣ1 )
∼=

H0(P, OP(1))

H0(P, OP)
= H0(Gs, OGs(1)).

On the other hand, from the regularity assumption of X, (4.12) is an isomorphism, so

H0(N′
Gs

) ∼= H0(IΣ1/Gs
⊗OGs(1)). Thus, by (4.6) and by (4.17), differently from (4.15) in this

case we have:

(4.18) T[Gs](Rδ(OP(1))) ∼= H0(Gs, N
′
Gs

) ⊂ H0(G̃s, NϕΣ1 ).

In particular, first-order deformations given by general vectors in H0(NϕΣ1 ) are not equisin-

gular.

To conclude the section, let ρP be as in (2.14). Then, from Theorem 4.5, it immediately

follows:

Corollary 4.19. With assumptions and notation as in Theorem 4.5, we have:

[Gs] ∈ Rδ(OP(1)) is a regular point ⇔ ρP is surjective

⇔ [s] ∈ Vδ(F) is a regular point

(in the sense of Definition 1.5).

Proof. The first equivalence is a direct consequence of (4.3) and Theorem 4.5. The other

follows from Corollary 2.15. �
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5. Some uniform regularity results for Vδ(F) and Rδ(OP(1))

In this section we deduce regularity results for Pδ(F)-Severi varieties Rδ(OP(1)) of irre-

ducible divisors in |OP(1)| on P. By using a similar approach for regularity results in [12]

for Severi varieties Vδ(F) on X, we find upper-bounds on the number δ which ensure the

regularity of Rδ(OP(1)); these upper-bounds are shown to be almost sharp (cf. Remark 5.3).

This approach highlights once more the importance of the (s, GS)-Severi correspondence.

Indeed, if one considers the Pδ(F)-Severi varieties independently from the corresponding

varieties Vδ(F) on X, the regularity condition for a point of Rδ(OP(1)) is equivalent to the

separation of suitable zero-dimensional schemes by the linear system |OP(1)| on the fourfold

P (cf. Corollary 4.19). In general, it is well-known how difficult is to establish when a linear

system separates points in projective varieties of dimension greater than or equal to three (cf.

e.g. [1], [9] and [17]). In some cases, some separation results can be found by using technical

tools like multiplier ideals as well as the Nadel and the Kawamata-Viehweg vanishing theorems

(see, e.g. [8], for an overview). In our situation, thanks to the correspondence between Vδ(F)

on X and Rδ(OP(1)) on P, we deduce regularity conditions for Rδ(OP(1)) from those already

obtained for Vδ(F) in [12].

From now on, let X be a smooth projective threefold, E a globally generated rank-two

vector bundle and M a very ample line bundle on X; let k ≥ 0 and δ > 0 be integers. With

notation and assumptions as in Section 1, we shall always take

F = E⊗M⊗k

and consider the scheme Vδ(E⊗M⊗k) on X.

One can use for Rδ(OP(1)) the same approach of Theorem 4.5 in [12], where we considered

the more particular case of X ⊂ Pr and M = OX(1) and where we determined conditions on

E and on k and uniform upper-bounds on the number of nodes δ implying that each point of

Vδ(E⊗M⊗k) is regular.

Theorem 5.1. Let X be a smooth projective threefold, E a globally generated rank-two vector

bundle on X, M a very ample line bundle on X and k ≥ 0 and δ > 0 integers.

Let P := PX(E ⊗ M⊗k) and let OP(1) be its tautological line bundle. Let Rδ(OP(1)) be the

Pδ(F)-Severi variety of irreducible divisors having δ-rational double points on P. Then, if:

(5.2) δ ≤ k + 1,

Rδ(OP(1)) is regular.

Proof. One observes that (5.2) is a sufficient condition for the regularity of Vδ(E ⊗ M⊗k)

on X; the proof is analogous to that of Theorem 4.5 in [12], where the case X ⊂ Pr and

M = OX(1) has been considered. Then, one can conclude by using Corollary 4.19. �

Remark 5.3. Observe that the bound (5.2) is uniform, i.e. it does not depend on the

postulation of either the rational double points of divisors in Rδ(OP(1)) or the nodes of the

curves which are zero-loci of sections parametrized by Vδ(E⊗M⊗k).

Furthermore, in [12] we observed that the bound δ ≤ k + 1 is effective and almost sharp.

Indeed, as introduced in [2] for the asymptotic case, one can easily construct examples of

non-regular points [s] ∈ Vk+4(OP3(k + 1) ⊕ OP3(k + 4)), for any k ≥ 3, whose corresponding

curve C has its (k + 4) nodes lying on a line L ⊂ P3; anyhow, one can also show that

Vk+4(OP3(k + 1)⊕ OP3(k + 4)) is generically regular.
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