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On the K2 of degenerations of surfaces
and the multiple point formula

By A. Calabri, C. Ciliberto, F. Flamini, and R. Miranda*

Abstract

In this paper we study some properties of reducible surfaces, in particular
of unions of planes. When the surface is the central fibre of an embedded flat
degeneration of surfaces in a projective space, we deduce some properties of
the smooth surface which is the general fibre of the degeneration from some
combinatorial properties of the central fibre. In particular, we show that there
are strong constraints on the invariants of a smooth surface which degener-
ates to configurations of planes with global normal crossings or other mild
singularities.

Our interest in these problems has been raised by a series of interesting
articles by Guido Zappa in the 1950’s.

1. Introduction

In this paper we study in detail several properties of flat degenerations of
surfaces whose general fibre is a smooth projective algebraic surface and whose
central fibre is a reduced, connected surface X ⊂ Pr, r � 3, which will usually
be assumed to be a union of planes.

As a first application of this approach, we shall see that there are strong
constraints on the invariants of a smooth projective surface which degener-
ates to configurations of planes with global normal crossings or other mild
singularities (cf. §8).

Our results include formulas on the basic invariants of smoothable sur-
faces, especially the K2 (see e.g. Theorem 6.1).

These formulas are useful in studying a wide range of open problems, such
as what happens in the curve case, where one considers stick curves, i.e. unions
of lines with only nodes as singularities. Indeed, as stick curves are used to
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HPRN-CT-2000-00099. The first three authors are members of G.N.S.A.G.A. at I.N.d.A.M.
“Francesco Severi”.
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study moduli spaces of smooth curves and are strictly related to fundamen-
tal problems such as the Zeuthen problem (cf. [20] and [35]), degenerations of
surfaces to unions of planes naturally arise in several important instances, like
toric geometry (cf. e.g. [2], [16] and [26]) and the study of the behaviour of
components of moduli spaces of smooth surfaces and their compactifications.
For example, see the recent paper [27], where the abelian surface case is con-
sidered, or several papers related to the K3 surface case (see, e.g. [7], [8] and
[14]).

Using the techniques developed here, we are able to prove a Miyaoka-Yau
type inequality (see Theorem 8.4 and Proposition 8.16).

In general, we expect that degenerations of surfaces to unions of planes will
find many applications. These include the systematic classification of surfaces
with low invariants (pg and K2), and especially a classification of possible
boundary components to moduli spaces.

When a family of surfaces may degenerate to a union of planes is an open
problem, and in some sense this is one of the most interesting questions in the
subject. The techniques we develop here in some cases allow us to conclude
that this is not possible. When it is possible, we obtain restrictions on the
invariants which may lead to further theorems on classification, for example,
the problem of bounding the irregularity of surfaces in P4.

Other applications include the possibility of performing braid monodromy
computations (see [9], [29], [30], [36]). We hope that future work will include
an analysis of higher-dimensional analogues to the constructions and computa-
tions, leading for example to interesting degenerations of Calabi-Yau manifolds.

Our interest in degenerations to unions of planes has been stimulated by
a series of papers by Guido Zappa that appeared in the 1940–50’s regarding in
particular: (1) degenerations of scrolls to unions of planes and (2) the computa-
tion of bounds for the topological invariants of an arbitrary smooth projective
surface which degenerates to a union of planes (see [39] to [45]).

In this paper we shall consider a reduced, connected, projective surface X

which is a union of planes — or more generally a union of smooth surfaces —
whose singularities are:

• in codimension one, double curves which are smooth and irreducible along
which two surfaces meet transversally;

• multiple points, which are locally analytically isomorphic to the vertex
of a cone over a stick curve, with arithmetic genus either zero or one,
which is projectively normal in the projective space it spans.

These multiple points will be called Zappatic singularities and X will be called
a Zappatic surface. If moreover X ⊂ Pr, for some positive r, and if all its
irreducible components are planes, then X is called a planar Zappatic surface.
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We will mainly concentrate on the so called good Zappatic surfaces, i.e.
Zappatic surfaces having only Zappatic singularities whose associated stick
curve has one of the following dual graphs (cf. Examples 2.6 and 2.7, Defini-
tion 3.5, Figures 3 and 5):

Rn: a chain of length n, with n � 3;

Sn: a fork with n − 1 teeth, with n � 4;

En: a cycle of order n, with n � 3.

Let us call Rn-, Sn-, En-point the corresponding multiple point of the Zappatic
surface X.

We first study some combinatorial properties of a Zappatic surface X

(cf. §3). We then focus on the case in which X is the central fibre of an
embedded flat degeneration X → ∆, where ∆ is the complex unit disk and
where X ⊂ ∆ × Pr, r � 3, is a closed subscheme of relative dimension two.
In this case, we deduce some properties of the general fibre Xt, t �= 0, of the
degeneration from the aforementioned properties of the central fibre X0 = X

(see §§4, 6, 7 and 8).
A first instance of this approach can be found in [3], where we gave some

partial results on the computation of h0(X, ωX), when X is a Zappatic surface
with global normal crossings and ωX is its dualizing sheaf. This computation
has been completed in [5] for any good Zappatic surface X. In the particular
case in which X is smoothable, namely if X is the central fibre of a flat de-
generation, we prove in [5] that h0(X, ωX) equals the geometric genus of the
general fibre, by computing the semistable reduction of the degeneration and
by applying the well-known Clemens-Schmid exact sequence (cf. also [31]).

In this paper we address two main problems.
We will first compute the K2 of a smooth surface which degenerates to a

good Zappatic surface; i.e. we will compute K2
Xt

, where Xt is the general fibre
of a degeneration X → ∆ such that the central fibre X0 is a good Zappatic
surface (see §6).

We will then prove a basic inequality, called the Multiple Point Formula
(cf. Theorem 7.2), which can be viewed as a generalization, for good Zappatic
singularities, of the well-known Triple Point Formula (see Lemma 7.7 and cf.
[13]).

Both results follow from a detailed analysis of local properties of the total
space X of the degeneration at a good Zappatic singularity of the central
fibre X.

We apply the computation of K2 and the Multiple Point Formula to prove
several results concerning degenerations of surfaces. Precisely, if χ and g de-
note, respectively, the Euler-Poincaré characteristic and the sectional genus of
the general fibre Xt, for t ∈ ∆ \ {0}, then:
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Figure 1:

Theorem 1 (cf. Theorem 8.4). Let X → ∆ be a good, planar Zappatic
degeneration, where the central fibre X0 = X has at most R3-, E3-, E4- and
E5-points. Then

K2 � 8χ + 1 − g.(1.1)

Moreover, the equality holds in (1.1) if and only if Xt is either the Veronese
surface in P5 degenerating to four planes with associated graph S4 (i.e. with
three R3-points, see Figure 1.a), or an elliptic scroll of degree n � 5 in Pn−1

degenerating to n planes with associated graph a cycle En (see Figure 1.b).
Furthermore, if Xt is a surface of general type, then

K2 < 8χ − g.

In particular, we have:

Corollary (cf. Corollaries 8.10 and 8.12). Let X be a good, planar
Zappatic degeneration.

(a) Assume that Xt, t ∈ ∆ \ {0}, is a scroll of sectional genus g � 2. Then
X0 = X has worse singularities than R3-, E3-, E4- and E5-points.

(b) If Xt is a minimal surface of general type and X0 = X has at most R3-,
E3-, E4- and E5-points, then

g � 6χ + 5.

These improve the main results of Zappa in [44].
Let us describe in more detail the contents of the paper. Section 2 contains

some basic results on reducible curves and their dual graphs.
In Section 3, we give the definition of Zappatic singularities and of (planar,

good) Zappatic surfaces. We associate to a good Zappatic surface X a graph
GX which encodes the configuration of the irreducible components of X as well
as of its Zappatic singularities (see Definition 3.6).

In Section 4, we introduce the definition of Zappatic degeneration of sur-
faces and we recall some properties of smooth surfaces which degenerate to
Zappatic ones.
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In Section 5 we recall the notions of minimal singularity and quasi-minimal
singularity, which are needed to study the singularities of the total space X
of a degeneration of surfaces at a good Zappatic singularity of its central fibre
X0 = X (cf. also [23] and [24]).

Indeed, in Section 6, the local analysis of minimal and quasi-minimal
singularities allows us to compute K2

Xt
, for t ∈ ∆ \ {0}, when Xt is the general

fibre of a degeneration such that the central fibre is a good Zappatic surface.
More precisely, we prove the following main result (see Theorem 6.1):

Theorem 2. Let X → ∆ be a degeneration of surfaces whose central fibre
is a good Zappatic surface X = X0 =

⋃v
i=1 Xi. Let Cij := Xi ∩Xj be a smooth

(possibly reducible) curve of the double locus of X, considered as a curve on
Xi, and let gij be its geometric genus, 1 � i �= j � v. Let v and e be the
number of vertices and edges of the graph GX associated to X. Let fn, rn, sn

be the number of En-, Rn-, Sn-points of X, respectively. If K2 := K2
Xt

, for
t �= 0, then:

K2 =
v∑

i=1

K2
Xi

+
∑
j �=i

(4gij − C2
ij)

 − 8e +
∑
n�3

2nfn + r3 + k(1.2)

where k depends only on the presence of Rn- and Sn-points, for n � 4, and
precisely : ∑

n�4

(n − 2)(rn + sn) � k �
∑
n�4

(
(2n − 5)rn +

(
n − 1

2

)
sn

)
.(1.3)

In the case that the central fibre is also planar, we have the following:

Corollary (cf. Corollary 6.4). Let X → ∆ be an embedded degeneration
of surfaces whose central fibre is a good, planar Zappatic surface X = X0 =⋃v

i=1 Πi. Then:

K2 = 9v − 10e +
∑
n�3

2nfn + r3 + k(1.4)

where k is as in (1.3) and depends only on the presence of Rn- and Sn-points,
for n � 4.

The inequalities in the theorem and the corollary above reflect deep geo-
metric properties of the degeneration. For example, if X → ∆ is a degeneration
with central fibre X a Zappatic surface which is the union of four planes hav-
ing only an R4-point, Theorem 2 states that 8 � K2 � 9. The two values
of K2 correspond to the fact that X, which is the cone over a stick curve
CR4 (cf. Example 2.6), can be smoothed either to the Veronese surface, which
has K2 = 9, or to a rational normal quartic scroll in P5, which has K2 = 8
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(cf. Remark 6.22). This in turn corresponds to different local structures of the
total space of the degeneration at the R4-point. Moreover, the local deforma-
tion space of an R4-point is reducible.

Section 7 is devoted to the Multiple Point Formula (1.5) below (see The-
orem 7.2):

Theorem 3. Let X be a good Zappatic surface which is the central fibre
of a good Zappatic degeneration X → ∆. Let γ = X1∩X2 be the intersection of
two irreducible components X1, X2 of X. Denote by fn(γ) [rn(γ) and sn(γ),
respectively ] the number of En-points [Rn-points and Sn-points, respectively ]
of X along γ. Denote by dγ the number of double points of the total space X
along γ, off the Zappatic singularities of X. Then:

(1.5) deg(Nγ|X1
) + deg(Nγ|X2

) + f3(γ) − r3(γ)

−
∑
n�4

(rn(γ) + sn(γ) + fn(γ)) � dγ � 0.

In particular, if X is also planar, then:

2 + f3(γ) − r3(γ) −
∑
n�4

(rn(γ) + sn(γ) + fn(γ)) � dγ � 0.(1.6)

Furthermore, if dX denotes the total number of double points of X , off the
Zappatic singularities of X, then:

2e + 3f3 − 2r3 −
∑
n�4

nfn −
∑
n�4

(n − 1)(sn + rn) � dX � 0.(1.7)

In Section 8 we apply the above results to prove several generalizations
of statements given by Zappa. For example we show that worse singularities
than normal crossings are needed in order to degenerate as many surfaces as
possible to unions of planes.

Acknowledgments. The authors would like to thank Janos Kollár for some
useful discussions and references.

2. Reducible curves and associated graphs

Let C be a projective curve and let Ci, i = 1, . . . , n, be its irreducible
components. We will assume that:

• C is connected and reduced;

• C has at most nodes as singularities;

• the curves Ci, i = 1, . . . , n, are smooth.
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If two components Ci, Cj , i < j, intersect at mij points, we will denote
by P h

ij , h = 1, . . . , mij , the corresponding nodes of C.
We can associate to this situation a simple (i.e. with no loops), weighted

connected graph GC , with vertex vi weighted by the genus gi of Ci:

• whose vertices v1, . . . , vn, correspond to the components C1, . . . , Cn;

• whose edges ηh
ij , i < j, h = 1, . . . , mij , joining the vertices vi and vj ,

correspond to the nodes P h
ij of C.

We will assume the graph to be lexicographically oriented, i.e. each edge
is assumed to be oriented from the vertex with lower index to the one with
higher.

We will use the following notation:

• v is the number of vertices of GC , i.e. v = n;

• e is the number of edges of GC ;

• χ(GC) = v − e is the Euler-Poincaré characteristic of GC ;

• h1(GC) = 1 − χ(GC) is the first Betti number of GC .

Notice that conversely, given any simple, connected, weighted (oriented)
graph G, there is some curve C such that G = GC .

One has the following basic result (cf. e.g. [1] or directly [3]):

Theorem 2.1. In the above situation

χ(OC) = χ(GC) −
v∑

i=1

gi = v − e −
v∑

i=1

gi.(2.2)

We remark that formula (2.2) is equivalent to:

pa(C) = h1(GC) +
v∑

i=1

gi(2.3)

(cf. Proposition 3.11.)
Notice that C is Gorenstein, i.e. the dualizing sheaf ωC is invertible. One

defines the ω-genus of C to be

pω(C) := h0(C, ωC).(2.4)

Observe that, when C is smooth, the ω-genus coincides with the geometric
genus of C.
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Figure 2: Dual graph of an “impossible” stick curve.

In general, by the Riemann-Roch theorem, one has

pω(C) = pa(C) = h1(GC) +
v∑

i=1

gi = e − v + 1 +
v∑

i=1

gi.(2.5)

If we have a flat family C → ∆ over a disc ∆ with general fibre Ct smooth
and irreducible of genus g and special fibre C0 = C, then we can combinatorially
compute g via the formula:

g = pa(C) = h1(GC) +
v∑

i=1

gi.

Often we will consider C as above embedded in a projective space Pr. In
this situation each curve Ci will have a certain degree di, and we will consider
the graph GC as double weighted, by attributing to each vertex the pair of
weights (gi, di). Moreover we will attribute to the graph a further marking
number, i.e. r the embedding dimension of C.

The total degree of C is

d =
v∑

i=1

di

which is also invariant by flat degeneration.
More often we will consider the case in which each curve Ci is a line. The

corresponding curve C is called a stick curve. In this case the double weighting
is (0, 1) for each vertex, and it will be omitted if no confusion arises.

It should be stressed that it is not true that for any simple, connected,
double weighted graph G there is a curve C in a projective space such that
GC = G. For example there is no stick curve corresponding to the graph of
Figure 2.

We now give two examples of stick curves which will be frequently used
in this paper.

Example 2.6. Let Tn be any connected tree with n � 3 vertices. This
corresponds to a nondegenerate stick curve of degree n in Pn, which we denote
by CTn

. Indeed one can check that, taking a general point pi on each component
of CTn

, the line bundle OCTn
(p1 + · · · + pn) is very ample. Of course CTn

has
arithmetic genus 0 and is a flat limit of rational normal curves in Pn.
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We will often consider two particular kinds of trees Tn: a chain Rn of
length n and the fork Sn with n−1 teeth, i.e. a tree consisting of n−1 vertices
joining a further vertex (see Figures 3.(a) and (b)). The curve CRn

is the
union of n lines l1, l2, . . . , ln spanning Pn, such that li ∩ lj = ∅ if and only if
1 < |i − j|. The curve CSn

is the union of n lines l1, l2, . . . , ln spanning Pn,
such that l1, . . . , ln−1 all intersect ln at distinct points (see Figure 4).
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(a) A chain Rn (b) A fork Sn with n − 1 teeth
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(c) A cycle En

Figure 3: Examples of dual graphs.
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Figure 4: Examples of stick curves.
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Example 2.7. Let Zn be any simple, connected graph with n � 3 vertices
and h1(Zn, C) = 1. This corresponds to an arithmetically normal stick curve
of degree n in Pn−1, which we denote by CZn

(as in Example 2.6). The curve
CZn

has arithmetic genus 1 and it is a flat limit of elliptic normal curves in
Pn−1.

We will often consider the particular case of a cycle En of order n (see
Figure 3.c). The curve CEn

is the union of n lines l1, l2, . . . , ln spanning Pn−1,
such that li ∩ lj = ∅ if and only if 1 < |i − j| < n − 1 (see Figure 4).

We remark that CEn
is projectively Gorenstein (i.e. it is projectively

Cohen-Macaulay and sub-canonical); indeed ωCEn
is trivial, since there is an

everywhere-nonzero, global section of ωCEn
, given by the meromorphic 1-form

on each component with residues 1 and −1 at the nodes (in a suitable order).
All the other CZn

’s, instead, are not Gorenstein because ωCZn
, although

of degree zero, is not trivial. Indeed a graph Zn, different from En, certainly
has a vertex with valence 1. This corresponds to a line l such that ωCZn

⊗Ol

is not trivial.

3. Zappatic surfaces and associated graphs

We will now give a parallel development, for surfaces, to the case of curves
recalled in the previous section. Before doing this, we need to recall the sin-
gularities we will allow.

Definition 3.1 (Zappatic singularity). Let X be a surface and let x ∈ X

be a point. We will say that x is a Zappatic singularity for X if (X, x) is locally
analytically isomorphic to a pair (Y, y) where Y is the cone over either a curve
CTn

or a curve CZn
, n � 3, and y is the vertex of the cone. Accordingly we

will say that x is either a Tn- or a Zn-point for X.

Observe that either Tn- or Zn-points are not classified by n, unless n = 3.
We will consider the following situation.

Definition 3.2 (Zappatic surface). Let X be a projective surface with its
irreducible components X1, . . . , Xv. We will assume that X has the following
properties:

• X is reduced and connected in codimension one;

• X1, . . . , Xv are smooth;

• the singularities in codimension one of X are at most double curves
which are smooth and irreducible and along which two surfaces meet
transversally;

• the further singularities of X are Zappatic singularities.
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A surface like X will be called a Zappatic surface. If moreover X is
embedded in a projective space Pr and all of its irreducible components are
planes, we will say that X is a planar Zappatic surface. In this case, the
irreducible components of X will sometimes be denoted by Πi instead of Xi,
1 � i � v.

Notation 3.3. Let X be a Zappatic surface. Let us denote by:

• Xi: an irreducible component of X, 1 � i � v;

• Cij := Xi ∩ Xj , 1 � i �= j � v, if Xi and Xj meet along a curve,
otherwise set Cij = ∅. We assume that each Cij is smooth but not
necessarily irreducible;

• gij : the geometric genus of Cij , 1 � i �= j � v; i.e. gij is the sum of
the geometric genera of the irreducible (equiv., connected) components
of Cij ;

• C := Sing(X) = ∪i<jCij : the union of all the double curves of X;

• Σijk := Xi ∩Xj ∩Xk, 1 � i �= j �= k � v, if Xi ∩Xj ∩Xk �= ∅, otherwise
Σijk = ∅;

• mijk : the cardinality of the set Σijk;

• P h
ijk : the Zappatic singular point belonging to Σijk, for h = 1, . . . , mijk.

Furthermore, if X ⊂ Pr, for some r, we denote by

• d = deg(X) : the degree of X;

• di = deg(Xi) : the degree of Xi, i � i � v;

• cij = deg(Cij): the degree of Cij , 1 � i �= j � v;

• D : a general hyperplane section of X;

• g : the arithmetic genus of D;

• Di : the (smooth) irreducible component of D lying in Xi, which is a
general hyperplane section of Xi, 1 � i � v;

• gi : the genus of Di, 1 � i � v.

Notice that if X is a planar Zappatic surface, then each Cij , when not
empty, is a line and each nonempty set Σijk is a singleton.
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Remark 3.4. Observe that a Zappatic surface X is Cohen-Macaulay. More
precisely, X has global normal crossings except at points Tn, n � 3, and Zm,
m � 4. Thus the dualizing sheaf ωX is well-defined. If X has only En-points as
Zappatic singularities, then X is Gorenstein; hence ωX is an invertible sheaf.

Definition 3.5 (Good Zappatic surface). The good Zappatic singularities
are the

• Rn-points, for n � 3,

• Sn-points, for n � 4,

• En-points, for n � 3,

which are the Zappatic singularities whose associated stick curves are respec-
tively CRn

, CSn
, CEn

(see Examples 2.6 and 2.7, Figures 3, 4 and 5).
A good Zappatic surface is a Zappatic surface with only good Zappatic

singularities.
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Figure 5: Examples of good Zappatic singularities.
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To a good Zappatic surface X we can associate an oriented complex GX ,
which we will also call the associated graph to X.

Definition 3.6 (The associated graph to X). Let X be a good Zappatic
surface with Notation 3.3. The graph GX associated to X is defined as follows
(cf. Figure 6):

• Each surface Xi corresponds to a vertex vi.

• Each irreducible component of the double curve Cij = C1
ij ∪ . . . ∪ C

hij

ij

corresponds to an edge et
ij , 1 � t � hij , joining vi and vj . The edge

et
ij , i < j, is oriented from the vertex vi to the one vj . The union of all

the edges et
ij joining vi and vj is denoted by ẽij , which corresponds to

the (possibly reducible) double curve Cij .

• Each En-point P of X is a face of the graph whose n edges correspond to
the double curves concurring at P . This is called a n-face of the graph.

• For each Rn-point P , with n � 3, if P ∈ Xi1 ∩ Xi2 ∩ · · · ∩ Xin
, where

Xij
meets Xik

along a curve Cijik
only if 1 = |j − k|, we add in the

graph a dashed edge joining the vertices corresponding to Xi1 and Xin
.

The dashed edge ei1,in
, together with the other n − 1 edges eij ,ij+1 , j =

1, . . . , n − 1, bound an open n-face of the graph.

• For each Sn-point P , with n � 4, if P ∈ Xi1 ∩ Xi2 ∩ · · · ∩ Xin
, where

Xi1 , . . . , Xin−1 all meet Xin
along curves Cijin

, j = 1, . . . , n− 1, concur-
ring at P , we mark this in the graph by a n-angle spanned by the edges
corresponding to the curves Cijin

, j = 1, . . . , n − 1.

In the sequel, when we speak of faces of GX we always mean closed faces.
Of course each vertex vi is weighted with the relevant invariants of the corre-
sponding surface Xi. We will usually omit these weights if X is planar, i.e. if
all the Xi’s are planes.

Since each Rn-, Sn-, En-point is an element of some set of points Σijk

(cf. Notation 3.3), there can be different faces (as well as open faces and angles)
of GX which are incident on the same set of vertices and edges. However this
cannot occur if X is planar.

Consider three vertices vi, vj , vk of GX in such a way that vi is joined with
vj and vk. Assume for simplicity that the double curves Cij , 1 � i < j � v,
are irreducible. Then, any point in Cij ∩Cik is either an Rn-, or an Sn-, or an
En-point, and the curves Cij and Cik intersect transversally, by definition of
Zappatic singularities. Hence we can compute the intersection number Cij ·Cik

by adding the number of closed and open faces and of angles involving the edges
eij , eik. In particular, if X is planar, for every pair of adjacent edges only one
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Figure 6: Associated graphs of R3-, E3-, R4- and S4-points (cf. Figure 5).
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Figure 7: Associated graph of an R3-point in a good, planar Zappatic surface.

of the following possibilities occur: either they belong to an open face, or to
a closed one, or to an angle. Therefore for good, planar Zappatic surfaces we
can avoid marking open 3-faces without losing any information (see Figures 6
and 7).

As for stick curves, if G is a given graph as above, there does not neces-
sarily exist a good planar Zappatic surface X such that its associated graph is
G = GX .

Example 3.7. Consider the graph G of Figure 8. If G were the associated
graph of a good planar Zappatic surface X, then X should be a global normal
crossing union of four planes with five double lines and two E3 points, P123

and P134, both lying on the double line C13. Since the lines C23 and C34 (resp.
C14 and C12) both lie on the plane X3 (resp. X1), they should intersect. This
means that the planes X2, X4 also should intersect along a line; therefore the
edge e24 should appear in the graph.

Analogously to Example 3.7, one can easily see that, if the 1-skeleton
of G is E3 or E4, then in order to have a planar Zappatic surface X such
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Figure 8: Graph associated to an impossible planar Zappatic surface.

that GX = G, the 2-skeleton of G has to consist of the face bounded by the
1-skeleton.

We can also consider an example of a good Zappatic surface with reducible
double curves.

Example 3.8. Consider D1 and D2 two general plane curves of degree m

and n, respectively. Therefore, they are smooth, irreducible and they transver-
sally intersect each other in mn points. Consider the surfaces:

X1 = D1 × P1 and X2 = D2 × P1.

The union of these two surfaces, together with the plane P2 = X3 containing
the two curves, determines a good Zappatic surface X with only E3-points as
Zappatic singularities.

More precisely, by using Notation 3.3, we have:

• C13 = X1 ∩ X3 = D1, C23 = X2 ∩ X3 = D2, C12 = X1 ∩ X2 =
∑mn

k=1 Fk,
where each Fk is a fibre isomorphic to P1;

• Σ123 = X1 ∩X2 ∩X3 consists of the mn points of the intersection of D1

and D2 in X3.

Observe that C12 is smooth but not irreducible. Therefore, the graph GX

consists of three vertices, mn + 2 edges and mn triangles incident on them.

In order to combinatorially compute some of the invariants of a good
Zappatic surface, we need some notation.

Notation 3.9. Let X be a good Zappatic surface (with invariants as in
Notation 3.3) and let G = GX be its associated graph. We denote by

• V : the (indexed) set of vertices of G;

• v : the cardinality of V , i.e. the number of irreducible components of X;

• E : the set of edges of G; this is indexed by the ordered triples (i, j, t) ∈
V × V × N, where i < j and 1 � t � hij , such that the corresponding
surfaces Xi, Xj meet along the curve Cij = Cji = C1

ij ∪ . . . ∪ C
hij

ij ;
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• e : the cardinality of E, i.e. the number of irreducible components of
double curves in X;

• fn : the number of n-faces of G, i.e. the number of En-points of X, for
n � 3;

• f :=
∑

n�3 fn, the number of faces of G, i.e. the total number of
En-points of X, for all n � 3;

• rn : the number of open n-faces of G, i.e. the number of Rn-points of X,
for n � 3;

• r:=
∑

n�3 rn, the total number of Rn-points of X, for all n � 3;

• sn : the number of n-angles of G, i.e. the number of Sn-points of X, for
n � 4;

• s: =
∑

n�4 sn: the total number of Sn-points of X, for all n � 4;

• wi: the valence of the ith vertex vi of G, i.e. the number of irreducible
double curves lying on Xi;

• χ(G) := v − e + f , i.e. the Euler-Poincaré characteristic of G;

• G(1) : the 1-skeleton of G, i.e. the graph obtained from G by forgetting
all the faces, dashed edges and angles;

• χ(G(1)) = v − e, i.e. the Euler-Poincaré characteristic of G(1).

Remark 3.10. Observe that, when X is a good, planar Zappatic surface,
E = Ẽ and the 1-skeleton G

(1)
X of GX coincides with the dual graph GD of the

general hyperplane section D of X.

As a straightforward generalization of what we proved in [3], one can
compute the following invariants:

Proposition 3.11. Let X =
⋃v

i=1 Xi ⊂ Pr be a good Zappatic surface.
Let G = GX be its associated graph, whose number of faces is f . Let C be the
double locus of X, i.e. the union of the double curves of X, Cij = Cji = Xi∩Xj

and let cij = deg(Cij). Let Di be a general hyperplane section of Xi, and denote
by gi its genus. Then:

(i) the arithmetic genus of a general hyperplane section D of X is:

g =
v∑

i=1

gi +
∑

1�i<j�v

cij − v + 1.(3.12)
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In particular, when X is a good, planar Zappatic surface, then

g = e − v + 1 = 1 − χ(G(1));(3.13)

(ii) the Euler-Poincaré characteristic of X is:

χ(OX) =
v∑

i=1

χ(OXi
) −

∑
1�i<j�v

χ(OCij
) + f.(3.14)

In particular, when X is a good, planar Zappatic surface, then

χ(OX) = χ(GX) = v − e + f.(3.15)

Proof. For complete details the reader is referred to [4], or, when Cij are
irreducible, to [3, Props 3.12 and 3.15].

Not all of the invariants of X can be directly computed by the graph GX .
For example, if ωX denotes the dualizing sheaf of X, the computation of the
h0(X, ωX), which plays a fundamental role in degeneration theory, is actually
much more involved (cf. [3] and [5]).

To conclude this section, we observe that in the particular case of good,
planar Zappatic surfaces one can determine a simple relation among the num-
bers of Zappatic singularities, as the next lemma shows.

Lemma 3.16. Let G be the associated graph to a good, planar Zappatic
surface X =

⋃v
i=1 Xi. Then, by Notation 3.9,
v∑

i=1

wi(wi − 1)
2

=
∑
n�3

(nfn + (n − 2)rn) +
∑
n�4

(
n − 1

2

)
sn.(3.17)

Proof. The dual graph of three planes which form an R3-point consists of
two adjacent edges (cf. Figure 7). The total number of two adjacent edges in
G is the left-hand side member of (3.17) by definition of valence wi. On the
other hand, an n-face (resp. an open n-face, resp. an n-angle) clearly contains
exactly n (resp. n − 2, resp.

(
n−1

2

)
) pairs of adjacent edges.

4. Degenerations to Zappatic surfaces

In this section we will focus on flat degenerations of smooth surfaces to
Zappatic ones.

Definition 4.1. Let ∆ be the spectrum of a DVR (equiv. the complex unit
disk). A degeneration of relative dimension n is a proper and flat morphism

X
π��

∆
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such that Xt = π−1(t) is a smooth, irreducible, n-dimensional, projective vari-
ety, for t �= 0.

If Y is a smooth, projective variety, the degeneration

X
π

��

⊂ ∆ × Y

pr1��(((
(((

∆

is said to be an embedded degeneration in Y of relative dimension n. When it
is clear from the context, we will omit the term embedded.

A degeneration is said to be semistable (see, e.g., [31]) if the total space
X is smooth and if the central fibre X0 is a divisor in X with global normal
crossings, i.e. X0 =

∑
Xi is a sum of smooth, irreducible components, Xi’s,

which meet transversally so that locally analytically the morphism π is defined
by

(x1, . . . , xn+1) → x1x2 · · ·xk = t ∈ ∆, k � n + 1.

Given an arbitrary degeneration π : X → ∆, the well-known Semistable
Reduction Theorem (see [22]) states that there exist a base change β : ∆ → ∆
(defined by β(t) = tm, for some m), a semistable degeneration ψ : Z → ∆ and
a diagram

Z
f ��'''

ψ ��&
&&

&&
&&

Xβ

��

�� X

��
∆

β �� ∆

such that f is a birational map obtained by blowing-up and blowing-down
subvarieties of the central fibre.

From now on, we will be concerned with degenerations of relative dimen-
sion two, namely degenerations of smooth, projective surfaces.

Definition 4.2. Let X → ∆ be a degeneration (equiv. an embedded de-
generation) of surfaces. Denote by Xt the general fibre, which is by definition
a smooth, irreducible and projective surface; let X = X0 denote the central
fibre. We will say that the degeneration is Zappatic if X is a Zappatic surface,
the total space X is smooth except for:

• ordinary double points at points of the double locus of X, which are not
the Zappatic singularities of X;

• further singular points at the Zappatic singularities of X of type Tn, for
n � 3, and Zn, for n � 4,

and there exists a birational morphism X ′ → X , which is the composition of
blow-ups at points of the central fibre, such that X ′ is smooth.
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A Zappatic degeneration will be called good if the central fibre is moreover
a good Zappatic surface. Similarly, an embedded degeneration will be called a
planar Zappatic degeneration if its central fibre is a planar Zappatic surface.

Notice that we require the total space X to be smooth at E3-points of X.

The singularities of the total space X of an arbitrary degeneration with
Zappatic central fibre will be described in Section 5.

Notation 4.3. Let X → ∆ be a degeneration of surfaces and let Xt be
the general fibre, which is by definition a smooth, irreducible and projective
surface. Then, we consider the following intrinsic invariants of Xt:

• χ := χ(OXt
);

• K2 := K2
Xt

.

If the degeneration is assumed to be embedded in Pr, for some r, then we also
have:

• d := deg(Xt);

• g := (K + H)H/2 + 1, the sectional genus of Xt.

We will be mainly interested in computing these invariants in terms of the
central fibre X. For some of them, this is quite simple. For instance, when
X → ∆ is an embedded degeneration in Pr, for some r, and if the central fibre
X0 = X =

⋃v
i=1 Xi, where the Xi’s are smooth, irreducible surfaces of degree

di, 1 � i � v, then by the flatness of the family we have

d =
v∑

i=1

di.

When X = X0 is a good Zappatic surface (in particular a good, planar
Zappatic surface), we can easily compute some of the above invariants by using
our results of Section 3. Indeed, by Proposition 3.11 and by the flatness of the
family, we get:

Proposition 4.4. Let X → ∆ be a degeneration of surfaces and suppose
that the central fibre X0 = X =

⋃v
i=1 Xi is a good Zappatic surface. Let

G = GX be its associated graph (cf. Notation 3.9). Let C be the double locus
of X, i.e. the union of the double curves of X, Cij = Cji = Xi ∩ Xj and let
cij = deg(Cij).

(i) If f denotes the number of (closed) faces of G, then

χ =
v∑

i=1

χ(OXi
) −

∑
1�i<j�v

χ(OCij
) + f.(4.5)
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Moreover, if X = X0 is a good, planar Zappatic surface, then

χ = χ(G) = v − e + f,(4.6)

where e denotes the number of edges of G.

(ii) Assume further that X → ∆ is embedded in Pr. Let D be a general
hyperplane section of X; let Di be the ith-smooth, irreducible component of D,
which is a general hyperplane section of Xi, and let gi be its genus. Then

g =
v∑

i=1

gi +
∑

1�i<j�v

cij − v + 1.(4.7)

When X is a good, planar Zappatic surface, if G(1) denotes the 1-skeleton of
G, then:

g = 1 − χ(G(1)) = e − v + 1.(4.8)

In the particular case that X → ∆ is a semistable Zappatic degeneration,
i.e. if X has only E3-points as Zappatic singularities and the total space X is
smooth, then χ can be computed also in a different way by topological methods
(cf. e.g. [31]).

Proposition 4.4 is indeed more general: X is allowed to have any good
Zappatic singularity, namely Rn-, Sn- and En-points, for any n � 3, the total
space X is possibly singular, even in dimension one, and, moreover, our com-
putations do not depend on the fact that X is smoothable, i.e. that X is the
central fibre of a degeneration.

5. Minimal and quasi-minimal singularities

In this section we shall describe the singularities that the total space of a
degeneration of surfaces has at the Zappatic singularities of its central fibre. We
need to recall a few general facts about reduced Cohen-Macaulay singularities
and two fundamental concepts introduced and studied by Kollár in [23] and
[24].

Recall that V = V1 ∪ · · · ∪ Vr ⊂ Pn, a reduced, equidimensional and non-
degenerate scheme, is said to be connected in codimension one if it is possible
to arrange its irreducible components V1, . . . , Vr in such a way that

codimVj
Vj ∩ (V1 ∪ · · · ∪ Vj−1) = 1, for 2 � j � r.

Remark 5.1. Let X be a surface in Pr and C be a hyperplane section
of X. If C is a projectively Cohen-Macaulay curve, then X is connected in
codimension one. This immediately follows from the fact that X is projectively
Cohen-Macaulay.
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Given Y , an arbitrary algebraic variety, if y ∈ Y is a reduced, Cohen-
Macaulay singularity then

emdimy(Y ) � multy(Y ) + dimy(Y ) − 1,(5.2)

where emdimy(Y ) = dim(mY,y/m2
Y,y) is the embedding dimension of Y at the

point y, where mY,y ⊂ OY,y denotes the maximal ideal of y in Y (see, e.g.,
[23]).

For any singularity y ∈ Y of an algebraic variety Y , let us set

δy(Y ) = multy(Y ) + dimy(Y ) − emdimy(Y ) − 1.(5.3)

If y ∈ Y is reduced and Cohen-Macaulay, then formula (5.2) states that
δy(Y ) � 0.

Let H be any effective Cartier divisor of Y containing y. Of course one
has

multy(H) � multy(Y ).

Lemma 5.4. In the above setting, if emdimy(Y ) = emdimy(H), then
multy(H) > multy(Y ).

Proof. Let f ∈ OY,y be a local equation defining H around y. If f ∈
mY,y \ m2

Y,y (nonzero), then f determines a nontrivial linear functional on the
Zariski tangent space Ty(Y ) ∼= (mY,y/m2

Y,y)
∨. By the definition of emdimy(H)

and the fact that f ∈ mY,y \m2
Y,y, it follows that emdimy(H) = emdimy(Y )−1.

Thus, if emdimy(Y ) = emdimy(H), then f ∈ mh
Y,y, for some h � 2. Therefore,

multy(H) � h multy(Y ) > multy(Y ).

We let

ν := νy(H) = min{n ∈ N | f ∈ mn
Y,y}.(5.5)

Notice that:

multy(H) � ν multy(Y ), emdimy(H) =

{
emdimy(Y ) if ν > 1,

emdimy(Y ) − 1 if ν = 1.
(5.6)

Lemma 5.7. One has
δy(H) � δy(Y ).

Furthermore:

(i) If the equality holds, then either

(1) multy(H) = multy(Y ), emdimy(H) = emdimy(Y )− 1 and νy(H) =
1, or

(2) multy(H) = multy(Y )+1, emdimy(H) = emdimy(Y ), in which case
νy(H) = 2 and multy(Y ) = 1.
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(ii) If δy(H) = δy(Y ) + 1, then either

(1) multy(H) = multy(Y ) + 1, emdimy(H) = emdimy(Y )− 1, in which
case νy(H) = 1, or

(2) multy(H) = multy(Y ) + 2 and emdimy(H) = emdimy(Y ), in which
case either
(a) 2 � νy(H) � 3 and multy(Y ) = 1, or
(b) νy(H) = multy(Y ) = 2.

Proof. It is a straightforward consequence of (5.3), of Lemma 5.4 and of
(5.6).

We will say that H has general behaviour at y if

multy(H) = multy(Y ).(5.8)

We will say that H has good behaviour at y if

δy(H) = δy(Y ).(5.9)

Notice that if H is a general hyperplane section through y, than H has
both general and good behaviour.

We want to discuss in more detail the relations between the two notions.
We note the following facts:

Lemma 5.10. In the above setting :

(i) If H has general behaviour at y, then it has also good behaviour at y.

(ii) If H has good behaviour at y, then either

(1) H has also general behaviour and emdimy(Y ) = emdimy(H)+1, or

(2) emdimy(Y ) = emdimy(H), in which case multy(Y ) = 1 and νy(H) =
multy(H) = 2.

Proof. The first assertion is a trivial consequence of Lemma 5.4.
If H has good behaviour and multy(Y ) = multy(H), then it is clear that

emdimy(Y ) = emdimy(H) + 1. Otherwise, if multy(Y ) �= multy(H), then
multy(H) = multy(Y ) + 1 and emdimy(Y ) = emdimy(H). By Lemma 5.7, (i),
we have the second assertion.

As mentioned above, we can now give two fundamental definitions (cf. [23]
and [24]):

Definition 5.11. Let Y be an algebraic variety. A reduced, Cohen-
Macaulay singularity y ∈ Y is called minimal if the tangent cone of Y at
y is geometrically reduced and δy(Y ) = 0.
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Remark 5.12. Notice that if y is a smooth point for Y , then δy(Y ) = 0
and we are in the minimal case.

Definition 5.13. Let Y be an algebraic variety. A reduced, Cohen-
Macaulay singularity y ∈ Y is called quasi-minimal if the tangent cone of
Y at y is geometrically reduced and δy(Y ) = 1.

It is important to notice the following:

Proposition 5.14. Let Y be a projective threefold and y ∈ Y be a point.
Let H be an effective Cartier divisor of Y passing through y.

(i) If H has a minimal singularity at y, then Y has also a minimal singularity
at y. Furthermore H has general behaviour at y, unless Y is smooth at
y and νy(H) = multy(H) = 2.

(ii) If H has a quasi-minimal, Gorenstein singularity at y then Y has also a
quasi-minimal singularity at y, unless either

(1) multy(H) = 3 and 1 � multy(Y ) � 2, or

(2) emdimy(Y ) = 4, multy(Y ) = 2 and emdimy(H) = multy(H) = 4.

Proof. Since y ∈ H is a minimal (resp. quasi-minimal) singularity, hence
reduced and Cohen-Macaulay, the singularity y ∈ Y is reduced and Cohen-
Macaulay too.

Assume that y ∈ H is a minimal singularity, i.e. δy(H) = 0. By Lemma
5.7, (i), and by the fact that δy(Y ) � 0, one has δy(Y ) = 0. In particular, H

has good behaviour at y. By Lemma 5.10, (ii), either Y is smooth at y and
νy(H) = 2, or H has general behaviour at y. In the latter case, the tangent
cone of Y at y is geometrically reduced, as is the tangent cone of H at y.
Therefore, in both cases Y has a minimal singularity at y, which proves (i).

Assume that y ∈ H is a quasi-minimal singularity, namely δy(H) = 1. By
Lemma 5.7, then either δy(Y ) = 1 or δy(Y ) = 0.

If δy(Y ) = 1, then the case (i.2) in Lemma 5.7 cannot occur; otherwise we
would have δy(H) = 0, against the assumption. Thus H has general behaviour
and, as above, the tangent cone of Y at y is geometrically reduced, as the
tangent cone of H at y is. Therefore Y has a quasi-minimal singularity at y.

If δy(Y ) = 0, we have the possibilities listed in Lemma 5.7, (ii). If (1)
holds, we have multy(H) = 3, i.e. we are in case (ii.1) of the statement. Indeed,
Y is Gorenstein at y as H is, and therefore δy(Y ) = 0 implies that multy(Y ) � 2
by Corollary 3.2 in [34]; thus multy(H) � 3, and in fact multy(H) = 3 because
δy(H) = 1. Also the possibilities listed in Lemma 5.7, (ii.2) lead to cases listed
in the statement.
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Remark 5.15. From an analytic viewpoint, case (1) in Proposition 5.14
(ii), when Y is smooth at y, can be thought of as Y = P3 and H a cubic surface
with a triple point at y.

On the other hand, case (2) can be thought of as Y being a quadric cone
in P4 with vertex at y and as H being cut out by another quadric cone with
vertex at y. The resulting singularity is therefore the cone over a quartic curve
Γ in P3 with arithmetic genus 1, which is the complete intersection of two
quadrics.

Now we describe the relation between minimal and quasi-minimal singu-
larities and Zappatic singularities. First we need the following straightforward
result:

Lemma 5.16. Any Tn-point (resp. Zn-point) is a minimal (resp. quasi-
minimal) surface singularity.

The following direct consequence of Proposition 5.14 will be important for
us:

Proposition 5.17. Let X be a surface with a Zappatic singularity at a
point x ∈ X and let X be a threefold containing X as a Cartier divisor.

• If x is a Tn-point for X, then x is a minimal singularity for X and X

has general behaviour at x.

• If x is an En-point for X, then X has a quasi-minimal singularity at x

and X has general behaviour at x, unless either :

(i) multx(X) = 3 and 1 � multx(X ) � 2, or

(ii) emdimx(X ) = 4, multx(X ) = 2 and emdimx(X) = multx(X) = 4.

In the sequel, we will need a description of a surface having as a hyperplane
section a stick curve of type CSn

, CRn
, and CEn

(cf. Examples 2.6 and 2.7).
First of all, we recall well-known results about minimal degree surfaces

(cf. [18, p. 525]).

Theorem 5.18 (del Pezzo). Let X be an irreducible, nondegenerate sur-
face of minimal degree in Pr, r � 3. Then X has degree r − 1 and is one of
the following :

(i) a rational normal scroll ;

(ii) the Veronese surface, if r = 5.

Next we recall the result of Xambó concerning reducible minimal degree
surfaces (see [37]).
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Theorem 5.19 (Xambó). Let X be a nondegenerate surface which is
connected in codimension one and of minimal degree in Pr, r � 3. Then,
X has degree r − 1, any irreducible component of X is a minimal degree sur-
face in a suitable projective space and any two components intersect along a
line.

Let X⊂Pr be an irreducible, nondegenerate, projectively Cohen-Macaulay
surface with canonical singularities, i.e. with Du Val singularities. We recall
that X is called a del Pezzo surface if OX(−1) 
 ωX . We note that a del
Pezzo surface is projectively Gorenstein (for connections between commutative
algebra and projective geometry, we refer the reader to e.g. [11], [17] and [25]).

Theorem 5.20 (del Pezzo, [10]). Let X be an irreducible, nondegener-
ate, linearly normal surface of degree r in Pr. Then one of the following oc-
curs:

(i) One has 3 � r � 9 and X is either

a. the image of the blow-up of P2 at 9 − r suitable points, mapped to
Pr via the linear system of cubics through the 9 − r points, or

b. the 2-Veronese image in P8 of a quadric in P3.

In each case, X is a del Pezzo surface.

(ii) X is a cone over a smooth elliptic normal curve of degree r in Pr−1.

Proof. This is a classical result. For a complete proof in modern language,
see e.g. [4].

Since cones as in (ii) above are projectively Gorenstein surfaces, the sur-
faces listed in Theorem 5.20 will be called minimal Gorenstein surfaces.

We shall make use of the following easy consequence of the Riemann-Roch
theorem.

Lemma 5.21. Let D ⊂ Pr be a reduced (possibly reducible), nondegenerate
and linearly normal curve of degree r + d in Pr, with 0 � d < r. Then
pa(D) = d.

Theorem 5.22. Let X be a nondegenerate, projectively Cohen-Macaulay
surface of degree r in Pr, r � 3, which is connected in codimension one. Then,
any irreducible component of X is either

(i) a minimal Gorenstein surface, and there is at most one such component,
or

(ii) a minimal degree surface.
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If there is a component of type (i), then the intersection in codimension
one of any two distinct components can only be a line.

If there is no component of type (i), then the intersection in codimension
one of any two distinct components is either a line or a (possibly reducible)
conic. Moreover, if two components meet along a conic, all the other intersec-
tions are lines.

Furthermore, X is projectively Gorenstein if and only if either

(a) X is irreducible of type (i), or

(b) X consists of only two components of type (ii) meeting along a conic, or

(c) X consists of ν, 3 � ν � r, components of type (ii) meeting along lines
and the dual graph GD of a general hyperplane section D of X is a
cycle Eν .

Proof. Consider D a general hyperplane section of X. Since X is projec-
tively Cohen-Macaulay, it is arithmetically Cohen-Macaulay. This implies that
D is an arithmetically Cohen-Macaulay (equiv. arithmetically normal) curve.
By Lemma 5.21, pa(D) = 1. Therefore, for each connected subcurve D′ of D,
one has 0 � pa(D′) � 1 and there is at most one irreducible component D′′

with pa(D′′) = 1. In particular two connected subcurves of D can meet at
most in two points. This implies that two irreducible components of X meet
either along a line or along a conic. The linear normality of X immediately im-
plies that each irreducible component is linearly normal too. As a consequence
of Theorem 5.20 and of Lemma 5.21, all this proves the statement about the
components of X and their intersection in codimension one.

It remains to prove the final part of the statement.
If X is irreducible, the assertion is trivial, so assume X reducible.
Suppose that all the intersections in codimension one of the distinct com-

ponents of X are lines. If either the dual graph GD of a general hyperplane
section D of X is not a cycle or there is an irreducible component of D which
is not rational, then D is not Gorenstein (see the discussion at the end of
Example 2.7), contradicting the assumption that X is Gorenstein.

Conversely, if GD is a cycle Eν and each component of D is rational, then
D is projectively Gorenstein. In particular, if all the components of D are lines,
then D isomorphic to CEν

(cf. again Example 2.7). Therefore X is projectively
Gorenstein too.

Suppose that X consists of two irreducible components meeting along a
conic. Then D consists of two rational normal curves meeting at two points;
thus the dualizing sheaf ωD is trivial, i.e. D is projectively Gorenstein and
therefore so is X.

Conversely, let us suppose that X is projectively Gorenstein and there are
two irreducible components X1 and X2 meeting along a conic. If there are
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other components, then there is a component X ′ meeting all the rest along a
line. Thus, the hyperplane section contains a rational curve meeting all the
rest at a point. Therefore the dualizing sheaf of D is not trivial, hence D is
not Gorenstein, thus X is not Gorenstein.

By using Theorems 5.18, 5.19 and 5.20, we can prove the following result:

Proposition 5.23. Let X be a nondegenerate surface in Pr, for some r,
and let n � 3 be an integer.

(i) If r = n + 1 and if a hyperplane section of X is CRn
, then either :

a. X is a smooth rational cubic scroll, possible only if n = 3, or

b. X is a Zappatic surface, with ν irreducible components of X which
are either planes or smooth quadrics, meeting along lines, and the
Zappatic singularities of X are h � 1 points of type Rmi

, i =
1, . . . , h, such that

h∑
i=1

(mi − 2) = ν − 2.(5.24)

In particular X has global normal crossings if and only if ν = 2, i.e.
if and only if either n = 3 and X consists of a plane and a quadric
meeting along a line, or n = 4 and X consists of two quadrics
meeting along a line.

(ii) If r = n + 1 and if a hyperplane section of X is CSn
, then either :

a. X is the union of a smooth rational normal scroll X1 = S(1, d − 1)
of degree d, 2 � d � n, and of n−d disjoint planes each meeting X1

along different lines of the same ruling, in which case X has global
normal crossings; or

b. X is planar Zappatic surface with h � 1 points of type Smi
, i =

1, . . . , h, such that

h∑
i=1

(
mi − 1

2

)
=

(
n − 1

2

)
.(5.25)

(iii) If r = n and if a hyperplane section of X is CEn
then either :

a. X is an irreducible del Pezzo surface of degree n in Pn, possible only
if n � 6; in particular X is smooth if n = 6; or
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b. X has two irreducible components X1 and X2, meeting along a
(possibly reducible) conic; Xi, i = 1, 2, is either a smooth ratio-
nal cubic scroll, or a quadric, or a plane; in particular X has global
normal crossings if X1 ∩ X2 is a smooth conic and neither X1 nor
X2 is a quadric cone;

c. X is a Zappatic surface whose irreducible components X1, . . . , Xν

of X are either planes or smooth quadrics. Moreover X has a
unique Eν-point, and no other Zappatic singularity, the singular-
ities in codimension one being double lines.

Proof. (i) According to Remark 5.1 and Theorem 5.19, X is connected
in codimension one and is a union of minimal degree surfaces meeting along
lines. Since a hyperplane section is a CRn

, then each irreducible component Y

of X has to contain some line and therefore it is a rational normal scroll, or a
plane. Furthermore Y has a hyperplane section which is a connected subcurve
of CRn

. It is then clear that Y is either a plane, or a quadric or a smooth
rational normal cubic scroll.

We claim that Y cannot be a quadric cone. In fact, in this case, the
hyperplane sections of Y consisting of lines pass through the vertex y ∈ Y .
Since Y ∩ (X \ Y ) also consists of lines passing through y, we see that no
hyperplane section of X is a CRn

.
Reasoning similarly, one sees that if a component Y of X is a smooth

rational cubic scroll, then Y is the only component of X, i.e. Y = X, which
proves statement a.

Suppose now that X is reducible, so that its components are either planes
or smooth quadrics. The dual graph GD of a general hyperplane section D

of X is a chain of length ν and any connecting edge corresponds to a double
line of X. Let x ∈ X be a singular point and let Y1, . . . , Ym be the irreducible
components of X containing x. Let G′ be the subgraph of GD corresponding
to Y1 ∪ · · · ∪ Ym. Since X is projectively Cohen-Macaulay, then clearly G′ is
connected, hence it is a chain. This shows that x is a Zappatic singularity of
type Rm.

Finally we prove formula (5.24). Suppose that the Zappatic singularities
of X are h points x1, . . . , xh of type Rm1 , . . . , Rmh

, respectively. Notice that
the hypothesis that a hyperplane section of X is a CRn

implies that two double
lines of X lying on the same irreducible component have to meet at a point,
because they are either lines in a plane or fibres of different rulings on a quadric.

So the graph GX consists of h open faces corresponding to the points xi,
1 � i � h, and two contiguous open faces must share a common edge, as
shown in Figure 9. Thus, both formula (5.24) and the last part of statement
b. immediately follow.
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•
xi

�
) $ * ' + # , �• •

xi+1

,
� - . ' / 0 � )• • • •

Figure 9: The points xi and xi+1 share a common edge in the associated graph
GX .

(ii) Arguing as in the proof of (i), one sees that any irreducible component
Y of X is either a plane, or a smooth quadric or a smooth rational normal scroll
with a line as a directrix.

If Y is a rational normal scroll S(1, d − 1) of degree d � 2, the subgraph
of Sn corresponding to the hyperplane section of Y is Sd. Then a. follows in
this case, namely all the other components of X are planes meeting Y along
lines of the ruling. Note that, since X spans a Pn+1, these planes are pairwise
skew and therefore X has global normal crossings.

Suppose now that X is a union of planes. Then X consists of a plane Π
and of n−1 more planes meeting Π along distinct lines. Arguing as in part (i),
one sees that the planes different from Π pairwise meet only at a point in Π.
Hence X is smooth off Π. On the other hand, it is clear that the singularities xi

in Π are Zappatic of type Smi
, i = 1, . . . , h. This corresponds to the fact that

mi − 1 planes different from Π pass through the same point xi ∈ Π. Formula
(5.25) follows by suitably counting the number of pairs of double lines in the
configuration.

(iii) If X is irreducible, then a. holds by elementary properties of lines on
a del Pezzo surface.

Suppose that X is reducible. Every irreducible component Y of X has
a hyperplane section which is a stick curve strictly contained in CEn

. By an
argument we already used in part (i), then Y is either a plane, or a quadric or
a smooth rational normal cubic scroll.

Suppose that an irreducible component Y meets X \ Y along a conic.
Since CEn

is projectively Gorenstein, then also X is projectively Gorenstein;
so, by Theorem 5.22, X consists of only two irreducible components and b.
follows.

Again by Theorem 5.22 and reasoning as in part (i), one sees that all the
irreducible components of X are either planes or smooth quadrics and the dual
graph GD of a general hyperplane section D of X is a cycle Eν of length ν.

As we saw in part (i), two double lines of X lying on the same irreducible
component Y of X meet at a point of Y . Hence X has some singularity besides
the general points on the double lines. Again, as we saw in part (i), such a
singularity can be either of type Rm or of type Em, where Rm or En are
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subgraphs of the dual graph GD of a general hyperplane section D of X. Since
X is projectively Gorenstein, it has only Gorenstein singularities; in particular
Rm-points are excluded. Thus, the only singularity compatible with the above
graph is a Eν-point.

Remark 5.26. At the end of the proof of part (iii), instead of using the
Gorenstein property, one can prove by a direct computation that a surface X

of degree n, which is a union of planes and smooth quadrics and such that
the dual graph GD of a general hyperplane section D of X is a cycle of length
ν, must have an Eν-point and no other Zappatic singularity in order to span
a Pn.

Corollary 5.27. Let X → ∆ be a degeneration of surfaces whose central
fibre X is Zappatic. Let x ∈ X be a Tn-point. Let X ′ be the blow-up of X at x.
Let E be the exceptional divisor, let X ′ be the proper transform of X, Γ = CTn

be the intersection curve of E and X ′. Then E is a minimal degree surface of
degree n in Pn+1 = P(TX ,x), and Γ is one of its hyperplane sections.

In particular, if x is either an Rn- or an Sn-point, then E is as described
in Proposition 5.23.

Proof. The first part of the statement directly follows from Lemma 5.16,
Proposition 5.17 and Theorem 5.19.

We close this section by stating a result which will be useful in the sequel:

Corollary 5.28. Let y be a point of a projective threefold Y . Let H be
an effective Cartier divisor on Y passing through y. If H has an En-point at y,
then Y is Gorenstein at y.

Proof. Recall that H is Gorenstein at y (cf. Remark 3.4) and apply part
(ii) of Proposition 5.14.

Let X → ∆ be a degeneration of surfaces whose central fibre X is good
Zappatic. From Definition 3.2 and Corollary 5.28, it follows that X is Goren-
stein at all the points of X, except at its Rn- and Sn-points.

6. Combinatorial computation of K2

The results contained in Section 5 will be used in this section to prove
combinatorial formulas for K2 = K2

Xt
, where Xt is a smooth surface which

degenerates to a good Zappatic surface X0 = X =
⋃v

i=1 Xi, i.e. Xt is the
general fibre of a degeneration of surfaces whose central fibre is good Zappatic
(cf. Notation 4.3).
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Indeed, by using the combinatorial data associated to X and GX (cf.
Definition 3.6 and Notation 3.9), we shall prove the following main result:

Theorem 6.1. Let X → ∆ be a degeneration of surfaces whose central
fibre is a good Zappatic surface X = X0 =

⋃v
i=1 Xi. Let Cij = Xi ∩ Xj be a

double curve of X, which is considered as a curve on Xi, for 1 � i �= j � v.
If K2 := K2

Xt
, for t �= 0, then (cf. Notation 3.9):

K2 =
v∑

i=1

K2
Xi

+
∑
j �=i

(4gij − C2
ij)

 − 8e +
∑
n�3

2nfn + r3 + k,(6.2)

where k depends only on the presence of Rn- and Sn-points, for n � 4, and
precisely: ∑

n�4

(n − 2)(rn + sn) � k �
∑
n�4

(
(2n − 5)rn +

(
n − 1

2

)
sn

)
.(6.3)

In case X is an embedded degeneration and X is also planar, we have the
following:

Corollary 6.4. Let X → ∆ be an embedded degeneration of surfaces
whose central fibre is a good planar Zappatic surface X = X0 =

⋃v
i=1 Πi.

Then:

K2 = 9v − 10e +
∑
n�3

2nfn + r3 + k(6.5)

where k is as in (6.3) and depends only on the presence of Rn- and Sn-points,
for n � 4.

Proof. Clearly gij = 0, for each 1 � i �= j � v, whereas C2
ij = 1, for each

pair (i, j) such that eij ∈ E; otherwise C2
ij = 0.

The proof of Theorem 6.1 will be done in several steps. The first one is to
compute K2 when X has only En-points. In this case, and only in this case,
KX is a Cartier divisor.

Theorem 6.6. Under the assumptions of Theorem 6.1, if X =
⋃v

i=1 Xi

has only En-points, for n � 3, then:

K2 =
v∑

i=1

K2
Xi

+
∑
j �=i

(4gij − C2
ij)

 − 8e +
∑
n�3

2nfn.(6.7)
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Proof. Note that the total space X is Gorenstein: this is clear for the
double points; for the En-points of X, see Corollary 5.28. Thus, KX is a
Cartier divisor on X . Therefore KX is also Cartier and it makes sense to
consider K2

X and the adjunction formula states KX = (KX + X)|X .

We claim that

KX |Xi
= (KX + X)|Xi

= KXi
+ Ci,(6.8)

where Ci =
∑

j �=i Cij is the union of the double curves of X lying on the
irreducible component Xi, for each 1 � i � v. Since OX(KX) is invertible, it
suffices to prove (6.8) off the En-points. In other words, we can consider the
surfaces Xi as if they were Cartier divisors on X . Then, we have:

KX |Xi
= (KX + X)|Xi

=
(
KX + Xi +

∑
j �=i

Xj

)
|Xi

= KXi
+ Ci,(6.9)

as we had to show. Furthermore:

K2 = (KX + Xt)2 · Xt = (KX + X)2 · X = (KX + X)2 ·
v∑

i=1

Xi(6.10)

=
v∑

i=1

(
(KX + X)|Xi

)2 =
v∑

i=1

(K2
Xi

+ 2CiKXi
+ C2

i )

=
v∑

i=1

K2
Xi

+
v∑

i=1

CiKXi
+

v∑
i=1

Ci(Ci + KXi
)

=
v∑

i=1

K2
Xi

+
v∑

i=1

(
∑
j �=i

Cij)KXi
+

v∑
i=1

2(pa(Ci) − 1).

As in Notation 3.9, Cij =
∑hij

t=1 Ct
ij is the sum of its disjoint, smooth,

irreducible components, where hij is the number of these components. Thus,

CijKXi
=

hij∑
t=1

(Ct
ijKXi

),

for each 1 � i �= j � v. Denoting by gt
ij the geometric genus of the smooth,

irreducible curve Ct
ij , by the adjunction formula on each Ct

ij , we have the
following intersection number on the surface Xi:

CijKXi
=

hij∑
t=1

(2gt
ij − 2 − (Ct

ij)
2) = 2gij − 2hij − C2

ij ,

where the last equality follows from the definition of the geometric genus of
Cij and the fact that Cs

ijC
t
ij = 0, for any 1 � t �= s � hij .
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Therefore, by the distributivity of the intersection form and by (6.10), we
get:

K2 =
v∑

i=1

K2
Xi

+
v∑

i=1

∑
j �=i

(2gij − 2hij) − C2
ij

 +
v∑

i=1

2(pa(Ci) − 1).(6.11)

For each index i, consider now the normalization νi : C̃i → Ci of the curve
Ci lying on Xi; this determines the short exact sequence:

0 → OCi
→ (νi)∗(OC̃i

) → ti → 0,(6.12)

where ti is a sky-scraper sheaf supported on Sing(Ci), as a curve in Xi. By
Notation 3.9, the long exact sequence in cohomology induced by (6.12) gives
that:

χ(OCi
) + h0(ti) =

∑
j �=i

hij∑
t=1

χ(OCt
ij
) =

∑
j �=i

(hij − gij).

Since χ(OCi
) = 1 − pa(Ci),

pa(Ci) − 1 =
∑
j �=i

(gij − hij) + h0(ti), 1 � i � v.(6.13)

By plugging formula (6.13) in (6.11), we get:

K2 =
v∑

i=1

K2
Xi

+
∑
j �=i

(4gij − C2
ij)

 − 8e + 2
v∑

i=1

h0(ti).(6.14)

To complete the proof, we need to compute h0(ti). By definition of ti,
this computation is a local problem. Suppose that p is an En-point of X lying
on Xi, for some i. By the very definition of En-point (cf. Definition 3.1 and
Example 2.7), p is a node for the curve Ci ⊂ Xi; therefore h0(ti|p) = 1. The
same holds on each of the other n − 1 curves Cj ⊂ Xj , 1 � j �= i � n,
concurring at the En-point p. Therefore, by (6.14), we get (6.7).

Proof of Theorem 6.1. The previous argument proves that, in this more
general case, one has:

K2 =
v∑

i=1

K2
Xi

+
∑
j �=i

(4gij − C2
ij)

 − 8e + 2
v∑

i=1

h0(ti) − c(6.15)

where c is a positive correction term which depends only on the points where
X is not Gorenstein, i.e. at the Rn- and Sn-points of its central fibre X.

To prove the statement, we have to compute:
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(i) the contribution of h0(ti) given by the Rn- and the Sn-points of X, for
each 1 � i � v;

(ii) the correction term c.

For (i), suppose first that p is an Rn-point of X and let Ci be one of
the curves passing through p. By definition (cf. Example 2.6), the point p

is either a smooth point or a node for Ci ⊂ Xi. In the first case we have
h0(ti|p) = 0 whereas, in the latter, h0(ti|p) = 1. More precisely, among the n

indexes involved in the Rn-point there are exactly two indexes, say i1 and in,
such that Cij

is smooth at p, for j = 1 and j = n, and n − 2 indexes such
that Cij

has a node at p, for 2 � j � n − 1. On the other hand, if we assume
that p is an Sn-point, then p is an ordinary (n− 1)-tuple point for only one of
the curves concurring at p, say Ci ⊂ Xi, and a simple point for all the other
curves Cj ⊂ Xj , 1 � j �= i � n. Recall that an ordinary (n − 1)-tuple point
contributes

(
n−1

2

)
to h0(ti).

Therefore, from (6.15), we have:

K2 =
v∑

i=1

K2
Xi

+
∑
j �=i

(4gij − C2
ij)

 − 8e

+
∑
n�3

2nfn +
∑
n�3

2(n − 2)rn +
∑
n�4

(n − 1)(n − 2)sn − c.

In order to compute the correction term c, we have to perform a partial
resolution of X at the Rn- and Sn-points of X, which makes the total space
Gorenstein. This will give us (6.2), i.e.

K2 =
v∑

i=1

K2
Xi

+
∑
j �=i

(4gij − C2
ij)

 − 8e +
∑
n�3

2nfn + r3 + k,

where

k :=
∑
n�3

2(n − 2)rn − r3 +
∑
n�4

(n − 1)(n − 2)sn − c.

It is clear that the contribution to c of each such point is purely local. In
other words,

c =
∑

x

cx

where x varies in the set of Rn- and Sn-points of X and where cx is the
contribution at x to the computation of K2 as above.

In the next Proposition 6.16, we shall compute such local contributions.
This result, together with Theorem 6.6, will conclude the proof.
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Proposition 6.16. Under the hypotheses of Theorem 6.1, if x ∈ X is an
Rn-point then:

n − 2 � cx � 1,

whereas if x ∈ X is an Sn-point then:

(n − 2)2 � cx �
(

n − 1
2

)
.

Proof. Since the problem is local, we may (and will) assume that X is
Gorenstein, except at a point x, and that each irreducible component Xi of X

passing through x is a plane, denoted by Πi.
First we will deal with the case n = 3.

Claim 6.17. If x is an R3-point, then

cx = 1.

Proof of the claim. Let us blow-up the point x ∈ X as in Corollary 5.27.

E1 E2 E3

E

Π′
1 Π′

2 Π′
3

blow-up x−−−−−−→

11
11

11
11

11
11 •

11
11

11
11

11
11

22
22
22
22
22
22

22
22
22
22
22
22

x

Π1

Π2

Π3

Figure 10: Blowing-up an R3-point x.

We get a new total space X ′ and denote by E the exceptional divisor, by
Π′

i the proper transform of Πi and by X ′ = ∪Π′
i the proper transform of X, as

in Figure 10. We remark that the three planes Πi, i = 1, 2, 3, concurring at x,
are blown-up in this process, whereas the remaining planes stay untouched. We
call Ei the exceptional divisor on the blown-up plane Πi. Let Γ = E1+E2+E3

be the intersection curve of E and X ′. By Corollary 5.27, E is a nondegenerate
surface of degree 3 in P4, with Γ as a hyperplane section.

Suppose first that E is irreducible. Then X ′ is Gorenstein and by adjunc-
tion:

K2 = (KX′ + Γ)2 + (KE + Γ)2.(6.18)

Since E is a rational normal cubic scroll in P4, then:

(KE + Γ)2 = 1,(6.19)
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whereas the other term is:

(KX′ + Γ)2 =
∑

i

(KX′|Π′
i
+ ΓΠ′

i
)2 =

3∑
i=1

(KX′|Π′
i
+ Ei)2 +

∑
j�4

K2
X′|Π′

j
.

Reasoning as in the proof of Theorem 6.6, one sees that∑
j�4

K2
X′|Π′

j
=

∑
j�4

(wj − 3)2.

On the other hand,

(KX′|Π′
i
+ Ei)2 = (wi − 3)2 − 1, i = 1, 3, (KX′|Π′

2
+ E2)2 = (w2 − 3)2.

Putting all together, we see that cx = 1.
Suppose now that E is reducible and X ′ is still Gorenstein. In this case E

is as described in Proposition 5.23 (ii), b, and in Corollary 5.27 and the proof
proceeds as above, once one notes that (6.19) holds. This can be left to the
reader to verify (see Figure 11).
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3333333

E3

0 4444444

Figure 11: E splits in a plane and a quadric.

Suppose that E is reducible and X ′ is not Gorenstein. This means that
E consists of a cone over a CR3 with vertex x′, hence x′ is again an R3-point.
Therefore we have to repeat the process by blowing-up x′. After finitely many
steps this procedure stops (cf. e.g. Proposition 3.4.13 in [23]). In order to
conclude the proof in this case, one has simply to note that no contribution to
K2 comes from the surfaces created in the intermediate steps.

To see this, it suffices to make this computation when only two blow-ups
are needed. This is the situation shown in Figure 12 where:

• X ′′ → X ′ is the blow-up at x′,

• X ′ =
∑

Π′
i the proper transform of X ′ on X ′′,

• E′ = P ′
1 + P ′

2 + P ′
3 is the strict transform of E = P1 + P2 + P3 on X ′′,

• E′′ is the exceptional divisor of the blow-up.
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Figure 12: blowing-up an R3-point x′ infinitely near to the R3-point x

Note that P ′
i , i = 1, 2, 3, is the blow-up of the plane Pi. We denote by Λi the

pullback to P ′
i of a line, and by Ai the exceptional divisor of P ′

i . Then their
contributions to the computation of K2 are:

(KP ′
i
+ Λi + (Λi − Ai) + Ai)2 = (−Λi + Ai)2 = 0, i = 1, 3,

(KP ′
2
+ Λ2 + 2(Λ2 − A2) + A2)2 = 0.

This concludes the proof of Claim 6.17.

Consider now the case that n = 4 and x is an R4-point.

Claim 6.20. If x is an R4-point, then

2 � cx � 1.

Proof of the claim. As before, we blow-up the point x ∈ X ; let X ′ be the
new total space and let E be the exceptional divisor. By Corollary 5.27, E is
a nondegenerate surface of minimal degree in P5 with Γ = E1 + E2 + E3 + E4

as a hyperplane section. By Proposition 5.23, E is reducible and the following
cases may occur:

(i) E has global normal crossings, in which case E consists of two quadrics
Q1, Q2 meeting along a line (see Figure 13);

(ii) E has one R3-point x′, in which case E consists of a quadric Q and two
planes P1, P2 (see Figure 14);

(iii) E has two R3-points x′, x′′, in which case E consists of four planes
P1, . . . , P4, i.e. a planar Zappatic surface whose associated graph is the
tree R4 (see Figure 15);

(iv) E has one R4-point x′, in which case E consists of four planes, i.e. a
planar Zappatic surface whose associated graph is an open 4-face (cf.
Figures 5, 6 and 16).
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Figure 15: E consists of four planes and has two R3-points x′, x′′.

In case (i), X ′ is Gorenstein and we can compute K2 as we did in the
proof of Claim 6.17. Formula (6.18) still holds and one has (KE + Γ)2 = 0,

whereas:

(KX′ + Γ)2 =
∑

i

(KX′|Π′
i
+ ΓΠ′

i
)2(6.21)

=
4∑

i=1

(KX′|Π′
i
+ Ei)2 +

∑
j�4

K2
X′|Π′

j
=

∑
j�1

(wj − 3)2 − 2,

because the computations on the blown-up planes Π′
1, . . . ,Π′

4 give:

(KX′|Π′
i
+ Ei)2 = (wi − 3)2 − 1, i = 1, 4,

(KX′|Π′
i
+ Ei)2 = (wi − 3)2, i = 2, 3.

This proves that cx = 2 in this case.
In case (ii), there are two possibilities corresponding to cases (a) and (b)

of Figure 14. Let us first consider the former possibility. By Claim 6.17, in
order to compute K2 we have to add up three quantities:

• the contribution of (KX′ + Γ)2, which is computed in (6.21);

• the contribution to K2 of E, as if E had only global normal crossings;
i.e.,

(KP1 + A1 + E1)2 + (KP2 + A2 + E4)2 + (KQ + A1 + A2 + E2 + E3)2 = 2

• the contribution of the R3-point x′, which is cx′ = 1 by Claim 6.17.

Putting all this together, it follows that cx = 1 in this case. Consider now the
latter possibility, i.e. suppose that the quadric meets only one plane. We can
compute the three contributions to K2 as above: the contribution of (KX′+Γ)2

and of the R3-point x′ do not change, whereas the contribution to K2 of E, as
if E had only global normal crossings, is:

(KQ + A1 + E1 + E2)2 + (KP1 + A1 + A2 + E3)2 + (KP4 + A3 + E4)2 = 1;

therefore we find that cx = 2, which concludes the proof for case (ii).



374 A. CALABRI, C. CILIBERTO, F. FLAMINI, AND R. MIRANDA

E′′

P ′
1 P ′

2 P ′
3 P ′

4

Π′
1 Π′

2 Π′
3 Π′

4

blow-up x′

−−−−−−→

��
��

��
��

�� 

$$$$$$$$$$$$$$$$$$

��
��

��
��

��

E1

E2 E3


E4

9999999999999999

::::::::::::::::

##################

Π′
1

Π′
2 Π′

3

Π′
4

P1

P2 P3

P4

•x
′

Figure 16: Blowing-up an R4-point x′ infinitely near to x.

In case (iii), we use the same strategy as in case (ii), namely we add up
(KX′ +Γ)2, the contribution to K2 of E, as if E had only global normal cross-
ings, which turns out to be 2, and then subtract 2, because of the contribution
of the two R3-points x′, x′′. Summing up, one finds cx = 2 in this case.

In case (iv), we have to repeat the process by blowing-up x′, see Figure 16.
After finitely many steps (cf. e.g. Proposition 3.4.13 in [23]), this procedure
stops in the sense that the exceptional divisor will be as in case (i), (ii) or (iii).
In order to conclude the proof of Claim 6.20, one has to remark that no con-
tribution to K2 comes from the surfaces created in the intermediate steps (the
blown-up planes P ′

i in Figure 16). This can be done exactly in the same way
as we did in the proof of Claim 6.17.

Remark 6.22. The proof of Claim 6.20 is purely combinatorial. However
there is a nice geometric motivation for the two cases cx = 2 and cx = 1, when
x is an R4-point, which resides in the fact that the local deformation space
of an R4-point is reducible. This corresponds to the fact that the cone over
CR4 can be smoothed in both a Veronese surface and a rational normal quartic
scroll, which have K2 = 9 and K2 = 8, respectively.

Consider now the case that x is an Rn-point.

Claim 6.23. If x is an Rn-point, then

n − 2 � cx � 1.(6.24)

Proof of the claim. The claim for n = 3, 4 has already been proved, so we
assume n � 5 and proceed by induction on n. As usual, we blow-up the point
x ∈ X .

By Corollary 5.27, the exceptional divisor E is a nondegenerate surface of
minimal degree in Pn+1 with Γ = E1 + . . . + En as a hyperplane section. By
Proposition 5.23, E is reducible and the following cases may occur:
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(i) E consists of ν � 3 irreducible components P1, . . . , Pν , which are ei-
ther planes or smooth quadrics, and E has h Zappatic singular points
x1, . . . , xh of type Rm1 , . . . , Rmh

such that mi < n, i = 1, . . . , h;

(ii) E has one Rn-point x′, in which case E consists of n planes, i.e. a planar
Zappatic surface whose associated graph is an open n-face.

In case (ii), one has to repeat the process by blowing-up x′. After finitely
many steps (cf. e.g. Proposition 3.4.13 in [23]), the exceptional divisor will
necessarily be as in case (i). We remark that no contribution to K2 comes
from the surfaces created in the intermediate steps, as one can prove exactly
in the same way as we did in the proof of Claim 6.17.

Thus, it suffices to prove the statement for the case (i). Notice that X ′ is
not Gorenstein; nonetheless we can compute K2 since we know (the upper and
lower bounds of) the contribution of xi by induction. We can indeed proceed
as in case (ii) of the proof of Claim 6.20, namely, we have to add up three
quantities:

• the contribution of (KX′ + Γ)2;

• the contribution to K2 of E, as if E had only global normal crossings;

• the contributions of the points xi which are known by induction.

Let us compute these contributions. As for the first, one has:

(KX′ + Γ)2 =
n∑

i=1

(KX′|Π′
i
+ Ei)2 +

∑
j�n

K2
X′|Π′

j
=

∑
j�1

(wj − 3)2 − 2,

since the computations on the blown-up planes Π′
1, . . . ,Π′

n give:

(KX′|Π′
i
+ Ei)2 = (wi − 3)2 − 1, i = 1, n,

(KX′|Π′
i
+ Ei)2 = (wi − 3)2, 2 � i � n − 1.

In order to compute the second contribution, one has to introduce some
notation; precisely we let:

• P1, . . . , Pν be the irreducible components of E, which are either planes
or smooth quadrics, ordered in such a way that the intersections in codi-
mension one are as follows: Pi meets Pi+1, i = 1, . . . , ν − 1, along a
line;

• Ai be the line which is the intersection of Pi and Pi+1;

• εi = deg(Pi) − 1, which is 0 if Pi is a plane and 1 if Pi is a quadric;
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• j(i) = i +
∑i−1

k=1 εj . With this notation, if Pi is a plane, it meets the
blown-up plane Π′

j(i) along Ej(i), whereas if Pi is a quadric, it meets the
blown-up planes Π′

j(i) and Π′
j(i)+1 along Ej(i) and Ej(i)+1, respectively.

Then the contribution to K2 of E, as if E had only global normal crossings,
is:

(KP1 + A1 + E1 + ε1E2)2 + (KPν
+ Aν−1 + ενEn−1 + En)2

+
ν−1∑
i=2

(KPi
+ Ai−1 + Ai + Ej(i) + εiEj(i)+1)

2 = 2 − ε1 − εν .

Finally, by induction, the contribution
∑h

i=1 cxi
of the points xi is such

that:

ν − 2 =
h∑

i=1

(mi − 2) �
h∑

i=1

cxi
�

h∑
i=1

1 = h,

where the first equality is just (5.24).
Putting all this together, it follows that:

cx = ε1 + εν +
h∑

i=1

cxi
;

hence an upper bound for cx is

cx � ε1 + εν + ν − 2 � n − 2,

because n = ν +
∑ν

i=1 εi, whereas a lower bound is

cx � ε1 + εν + h � h � 1,(6.25)

which concludes the proof of Claim 6.23.

Remark 6.26. If cx = 1, then in (6.25) all inequalities must be equalities;
thus h = 1 and ε1 = εν = 0. This means that there is only one point x1

infinitely near to x, of type Rν , and that the external irreducible components
of E, i.e. P1 and Pν , are planes. There is no combinatorial obstruction to this
situation.

For example, let x be an Rn-point such that the exceptional divisor E

consists of ν = n − 1 irreducible components, namely n − 2 planes and a
quadric adjacent to two planes, forming an Rn−1-point x′. By the proof of
Claim 6.20 (case (ii), former possibility), it follows that cx = cx′ . Since, as we
saw, the contribution of an R4-point can be 1, by induction we may have that
also an Rn-point contributes by 1.

From the proof of Claim 6.23, it follows that the upper bound cx = n− 2
is attained when for example the exceptional divisor E consists of n planes
forming n − 2 points of type R3.
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More generally, one can see that there is no combinatorial obstruction for
cx to attain any possible value between the upper and lower bounds in (6.24).

Finally, consider the case that x is of type Sn.

Claim 6.27. If x is an Sn-point, then

(n − 2)2 � cx �
(

n − 1
2

)
.(6.28)

Proof. We remark that we do not need to take care of 1-dimensional
singularities of the total space of the degeneration, as we have already noted
in Claim 6.23.

Notice that S3 = R3 and, for n = 3, formula (6.28) trivially follows from
Claim 6.17. So we assume n � 4. Blow-up x, as usual; let X ′ be the new total
space and E the exceptional divisor. By Proposition 5.23, three cases may
occur: either

(i) E has global normal crossings, i.e. E is the union of a smooth rational
normal scroll X1 = S(1, d − 1) of degree d, 2 � d � n, and of n − d

disjoint planes P1, . . . , Pn−d, each meeting X1 along different lines of the
same ruling; or

(ii) E is a union of n planes P1, . . . , Pn with h Zappatic singular points
x1, . . . , xh of type Sm1 , . . . , Smh

such that 3 � mi < n, i = 1, . . . , h, and
(5.25) holds; or

(iii) E is a union of n planes with one Sn-point x′.

In case (iii), one has to repeat the process by blowing-up x′. After finitely
many steps (cf. e.g. Proposition 3.4.13 in [23]), the exceptional divisor will
necessarily be as in cases either (i) or (ii). We remark that no contribution to
K2 comes from the surfaces created in the intermediate steps. Indeed, by the
same notation as in the Rn-case in Claim 6.17, if x is an Sn point and if Π1 is
the plane corresponding to the vertex of valence n− 1 in the associated graph,
we have (cf. Figure 17):

(KP ′
1
+ Λ1 + A1 + (n − 1)(Λ1 − A1))2 = (n − 3)2 − (n − 3)2 = 0,

(KP ′
i
+ Λi + Ai + (Λi − Ai))2 = 1 − 1 = 0, 2 � i � n.

Thus, it suffices to prove the statement for the first two cases (i) and (ii).
Consider the case (i), namely E has global normal crossings. Then X ′

is Gorenstein and we may compute K2 as in (6.18). The contribution of
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Figure 17: Blowing-up an S5-point x′ infinitely near to an S5-point x

the blown-up planes Π′
1, . . . ,Π′

n (with again the indexes such that Π′
1 meets

Π′
2, . . . ,Π′

n in a line) is:

(KX′|Π′
i
+ Ei)2 = (wi − 3)2 − 1, i = 2, . . . , n,

(KX′|Π′
1
+ E1)2 = (w1 − 3)2 − (n − 3)2,

(6.29)

whereas the contribution of E turns out to be:

(KE + Γ)2 = 4 − n.(6.30)

Indeed, one finds that:(
(KE + Γ)|X1

)2 = (−A + (n − d − 1)F )2 = d + 4 − 2n,(
(KE + Γ)|Pi

)2 = 1, i = 1, . . . , n − d,

where A is the linear directrix of X1 and F is its fibre; therefore (6.30) holds.
Summing up, we have

cx = n − 4 + (n − 1) + (n − 3)2 = (n − 2)2,(6.31)

which proves (6.28) in case (i).
In case (ii), E is not Gorenstein, nonetheless we can compute K2 since

we know (the upper and lower bounds of) the contribution of xi by induction.
We can indeed proceed as in case (ii) of the proof of Claim 6.20; namely, we
have to add up three quantities:

• the contribution of (KX′ + Γ)2, which was computed in (6.29);

• the contribution to K2 of E, as if E had only global normal crossings,
which is:(

KP1 + E1 +
n∑

i=2

Ai

)2
+

n∑
i=2

(KPi
+ Ei + Ai)2 = (n − 3)2 + n − 1,

where Π′
1 is the blown-up plane meeting all the other blown-up planes

in a line, Ei is the exceptional curve on Π′
i and Ai is the double line

intersection of P1 with Pi;
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• the contribution
∑h

i=1 cxi
of the points xi, which by induction, is such

that:
h∑

i=1

(mi − 2)2 �
h∑

i=1

cxi
�

h∑
i=1

(
mi − 1

2

)
=

(
n − 1

2

)
,(6.32)

where the last equality is just (5.25).

Putting all together, one sees that

cx =
h∑

i=1

cxi
;

hence (6.32) gives the claimed lower bound; as for the upper bound:

cx �
h∑

i=1

(mi − 2)2 =
h∑

i=1

(mi − 1)(mi − 2) −
h∑

i=1

(mi − 2)

(∗)
= (n − 1)(n − 2) −

h∑
i=1

(mi − 2) � (n − 1)(n − 2) − (n − 2) = (n − 2)2,

where the equality (∗) follows from (5.25). This completes the proof of
Claim 6.27.

The above Claims 6.23 and 6.27 prove Proposition 6.16 and, so, Theo-
rem 6.1.

Remark 6.33. Notice that the upper bound cx = (n−2)2 is attained when
for example the exceptional divisor E has global normal crossings
(cf. case (i) in Claim 6.27). The lower bound cx =

(
n−1

2

)
can be attained

if the exceptional divisor E consists of n planes forming
(
n−1

2

)
points of type

S3 = R3.
Contrary to what happens for the Rn-points, not all the values between the

upper and the lower bound are realised by cx, for an Sn-point x. Indeed they
are not even combinatorially possible. For example, there are combinatorial
obstructions for an S6-point x to have cx = 15 (cf. [4]).

7. The multiple point formula

The aim of this section is to prove a fundamental inequality, which involves
the Zappatic singularities of a given good Zappatic surface X (see Theorem
7.2), under the hypothesis that X is the central fibre of a good Zappatic de-
generation as in Definition 4.2. This inequality can be viewed as an extension
of the well-known Triple Point Formula (see Lemma 7.7 and cf. [13]), which
holds only for semistable degenerations. As corollaries, we will obtain, among
other things, the main result contained in Zappa’s paper [44] (cf. Section 8).

Let us introduce some notation.



380 A. CALABRI, C. CILIBERTO, F. FLAMINI, AND R. MIRANDA

Notation 7.1. Let X be a good Zappatic surface. We denote by:

• γ = X1 ∩ X2 the intersection of two irreducible components X1, X2 of
X;

• Fγ the divisor on γ consisting of the E3-points of X along γ;

• fn(γ) the number of En-points of X along γ; in particular, f3(γ) =
deg(Fγ);

• rn(γ) the number of Rn-points of X along γ;

• sn(γ) the number of Sn-points of X along γ;

• ρn(γ) := rn(γ) + sn(γ), for n � 4, and ρ3(γ) = r3(γ).

If X is the central fibre of a good Zappatic degeneration X → ∆, we
denote by:

• Dγ the divisor of γ consisting of the double points of X along γ off the
Zappatic singularities of X;

• dγ = deg(Dγ);

• dX the total number of double points of X off the Zappatic singularities
of X.

The main result of this section is the following:

Theorem 7.2 (Multiple Point Formula). Let X be a surface which is the
central fibre of a good Zappatic degeneration X → ∆. Let γ = X1 ∩ X2 be the
intersection of two irreducible components X1, X2 of X. Then

(7.3) deg(Nγ|X1
) + deg(Nγ|X2

) + f3(γ) − r3(γ)

−
∑
n�4

(ρn(γ) + fn(γ)) � dγ � 0.

In the planar case, one has:

Corollary 7.4. Let X be a surface which is the central fibre of a good,
planar Zappatic degeneration X → ∆. Let γ be a double line of X. Then

2 + f3(γ) − r3(γ) −
∑
n�4

(ρn(γ) + fn(γ)) � dγ � 0.(7.5)

Therefore:

2e + 3f3 − 2r3 −
∑
n�4

nfn −
∑
n�4

(n − 1)ρn � dX � 0.(7.6)
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As for Theorem 6.1, the proof of Theorem 7.2 will be done in several steps,
the first of which is the classical:

Lemma 7.7 (Triple Point Formula). Let X be a good Zappatic surface
with global normal crossings, which is the central fibre of a good Zappatic de-
generation with smooth total space X . Let γ = X1 ∩X2, where X1 and X2 are
irreducible components of X. Then:

Nγ|X1
⊗Nγ|X2

⊗Oγ(Fγ) ∼= Oγ .(7.8)

In particular,

deg(Nγ|X1
) + deg(Nγ|X2

) + f3(γ) = 0.(7.9)

Proof. By Definition 4.2, since the total space X is assumed to be smooth,
the Zappatic degeneration X → ∆ is semistable. Let X =

⋃v
i=1 Xi. Since X

is a Cartier divisor in X which is a fibre of the morphism X → ∆, then
OX(X) ∼= OX . Tensoring by Oγ gives Oγ(X) ∼= Oγ . Thus,

Oγ
∼= Oγ(X1) ⊗Oγ(X2) ⊗Oγ(Y ),(7.10)

where Y = ∪v
i=3Xi. One concludes by observing that in (7.10) one has

Oγ(Xi) ∼= Nγ|X3−i
, 1 � i � 2, and Oγ(Y ) ∼= Oγ(Fγ).

It is useful to consider the following slightly more general situation. Let
X be a union of surfaces such that its reduced part Xred is a good Zappatic
surface with global normal crossings. Then Xred = ∪v

i=1Xi and we let mi be
the multiplicity of Xi in X, i = 1, . . . , v. Let γ = X1∩X2 be the intersection of
two irreducible components of X. For every point p of γ, we define the weight
w(p) of p as the multiplicity mi of the component Xi such that p ∈ γ ∩ Xi.

Of course w(p) �= 0 only for E3-points of Xred on γ. Then we define the
divisor Fγ on γ as

Fγ :=
∑

p

w(p)p.

By the proof of Lemma 7.7, we have the following:

Lemma 7.11 (Generalized Triple Point Formula). Let X be a surface
such that Xred = ∪iXi is a good Zappatic surface, with global normal crossings.
Let mi be the multiplicity of Xi in X. Assume that X is the central fibre of a
degeneration X → ∆ with smooth total space X . Let γ = X1 ∩ X2, where X1

and X2 are irreducible components of Xred. Then:

N⊗m2

γ|X1
⊗N⊗m1

γ|X2
⊗Oγ(Fγ) ∼= Oγ .(7.12)

In particular,

m2 deg(Nγ|X1
) + m1 deg(Nγ|X2

) + deg(Fγ) = 0.(7.13)
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The second step is given by the following result:

Proposition 7.14. Let X be a good Zappatic surface, with global normal
crossings, which is the central fibre of a good Zappatic degeneration X → ∆.
Let γ = X1 ∩ X2, where X1 and X2 are irreducible components of X. Then:

Nγ|X1
⊗Nγ|X2

⊗Oγ(Fγ) ∼= Oγ(Dγ).(7.15)

In particular,

deg(Nγ|X1
) + deg(Nγ|X2

) + f3(γ) = dγ .(7.16)

Proof. By the very definition of good Zappatic degeneration, the total
space X is smooth except for ordinary double points along the double locus of
X, which are not the E3-points of X. We can modify the total space X and
make it smooth by blowing-up its double points.

Since the computations are of a local nature, we can focus on the case of
X having only one double point p on γ. We blow-up the point p in X to get a
new total space X ′, which is smooth. Notice that, according to our hypotheses,
the exceptional divisor E := EX ,p = P(TX ,p) is isomorphic to a smooth quadric
in P3 (see Figure 18).

•

γ

p
X1 X2 Y

blow-up p←−−−−−− 


0
−1

������
0−

1

 ��
��

��

γ′

E

X ′
1 X ′

2
Y

Figure 18: Blowing-up an ordinary double point of X

The proper transform of X is:

X ′ = X ′
1 + X ′

2 + Y

where X ′
1, X ′

2 are the proper transforms of X1, X2, respectively. Let γ′ be
the intersection of X ′

1 and X ′
2, which is clearly isomorphic to γ. Let p1 be the

intersection of γ′ with E.
Since X ′ is smooth, we can apply Lemma 7.11 to γ′. Therefore, by (7.8),

we get
Oγ′ ∼= Nγ′|X′

1
⊗Nγ′|X′

2
⊗Oγ′(Fγ′).

In the isomorphism between γ′ and γ, one has:

Oγ′(Fγ′ − p1) ∼= Oγ(Fγ), Nγ′|X′
i

∼= Nγ|Xi
⊗Oγ(−p), 1 � i � 2.

Putting all this together, one has the result.



THE K2 OF DEGENERATIONS OF SURFACES 383

Taking into account Lemma 7.11, the same proof of Proposition 7.14 gives
the following result:

Corollary 7.17. Let X be a surface such that Xred = ∪iXi is a good
Zappatic surface with global normal crossings. Let mi be the multiplicity of Xi

in X. Assume that X is the central fibre of a degeneration X → ∆ with total
space X having at most ordinary double points outside the Zappatic singulari-
ties of Xred.

Let γ = X1 ∩ X2, where X1 and X2 are irreducible components of Xred.
Then:

N⊗m2

γ|X1
⊗N⊗m1

γ|X2
⊗Oγ(Fγ) ∼= Oγ(Dγ)⊗(m1+m2).(7.18)

In particular,

m2 deg(Nγ|X1
) + m1 deg(Nγ|X2

) + deg(Fγ) = (m1 + m2)dγ .(7.19)

Now we can come to the:

Proof of Theorem 7.2. Recall that, by Definition 4.2 of Zappatic degen-
erations, the total space X has only isolated singularities. We want to apply
Corollary 7.17 after having resolved the singularities of the total space X at
the Zappatic singularities of the central fibre X, i.e. at the Rn-points of X, for
n � 3, and at the En- and Sn-points of X, for n � 4.

Now we briefly describe the resolution process, which will become even
clearer in the second part of the proof, when we will enter into the details of
the proof of formula (7.3).

Following the blowing-up process at the Rn- and Sn-points of the central
fibre X, as described in Section 6, one gets a degeneration such that the to-
tal space is Gorenstein, with isolated singularities, and the central fibre is a
Zappatic surface with only En-points.

The degeneration will not be Zappatic, if the double points of the total
space occurring along the double curves, off the Zappatic singularities, are
not ordinary. According to our hypotheses, this cannot happen along the
proper transform of the double curves of the original central fibre. All these
nonordinary double points can be resolved with finitely many subsequent blow-
ups and they will play no role in the computation of formula (7.3) (cf. [5]).

Recall that the total space X is smooth at the E3-points of the central
fibre, whereas X has multiplicity either 2 or 4 at an E4-point of X. Thus, we
can consider only En-points p ∈ X, for n � 4.

By Proposition 5.17, p is a quasi-minimal singularity for X , unless n = 4
and multp(X ) = 2. In the latter case, this singularity is resolved by a sequence
of blowing-ups at isolated double points.
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Assume now that p is a quasi-minimal singularity for X . Let us blow-up
X at p and let E′ be the exceptional divisor. Since a hyperplane section of E′

is CEn
, the possible configurations of E′ are as described in Proposition 5.23,

(iii).
If E′ is irreducible, that is case (iii.a) of Proposition 5.23, then E′ has at

most isolated rational double points, where the new total space is either smooth
or it has a double point. This can be resolved by finitely many blowing-ups at
analogous double points.

Suppose we are in case (iii.b) of Proposition 5.23. If E′ has global normal
crossings, then the desingularization process proceeds exactly as before.

If E′ does not have global normal crossings then, either E′ has a compo-
nent which is a quadric cone or the two components of E′ meet along a singular
conic. In the former case, the new total space has a double point at the vertex
of the cone. In the latter case, the total space is either smooth or it has an
isolated double point at the singular point of the conic. In either case, one
resolves the singularities by a sequence of blowing-ups as before.

Suppose finally we are in case (iii.c) of Proposition 5.23, i.e. the new
central fibre is a Zappatic surface with one point p′ of type Em, with m � n.
Then we can proceed by induction on n. Note that if an exceptional divisor
has an E3-point p′′, then p′′ is either a smooth, or a double, or a triple point
for the total space. In the latter two cases, we go on by blowing-up p′′. After
finitely many blow-ups (by Definition 4.2, cf. Proposition 3.4.13 in [23]), we
get a central fibre which might be nonreduced, but its support has only global
normal crossings, and the total space has at most ordinary double points off
the E3-points of the reduced part of the central fibre.

Now we are in position to apply Corollary 7.17. In order to do this, we
have to understand the relations between the invariants of a double curve of
the original Zappatic surface X and the invariants appearing in formula (7.19)
for the double curve of the strict transform of X.

Since all the computations are of local nature, we may assume that X

has a single Zappatic singularity p, which is not an E3-point. We will prove
the theorem in this case. The general formula will follow by iterating these
considerations for each Zappatic singularity of X .

Let X1, X2 be irreducible components of X containing p and let γ be their
intersection. As we saw in the above resolution process, we blow-up X at p. We
obtain a new total space X ′, with the exceptional divisor E′ := EX ,p = P(TX ,p)
and the proper transform X ′

1, X ′
2 of X1, X2. Let γ′ be the intersection of

X ′
1, X ′

2. We remark that γ′ ∼= γ (see Figure 19).
Notice that X ′ might have Zappatic singularities off γ′. These will not

affect our considerations. Therefore, we can assume that there are no singu-
larities of X ′ of this sort. Thus, the only point of X ′ we have to take care of is
p1 := E′ ∩ γ′.
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Figure 19: Blowing-up X at p

If p1 is smooth for E′, then it must be smooth also for X ′. Moreover, if p1

is singular for E′, then p1 is a double point of E′ as it follows from the above
resolution process and from Proposition 5.23. Therefore, p1 is at most double
also for X ′; since p1 is a quasi-minimal, Gorenstein singularity of multiplicity 4
for the central fibre of X ′, then p1 is a double point of X ′ by Proposition 5.14.

Thus there are two cases to be considered: either

(i) p1 is smooth for both E′ and X ′, or

(ii) p1 is a double point for both E′ and X ′.

In case (i), the central fibre of X ′ is X ′
0 = X ′

1 ∪ X ′
2 ∪ Y ′ ∪ E′ and we are

in position to use the enumerative information (7.16) from Proposition 7.14
which reads:

deg(Nγ′|X′
1
) + deg(Nγ′|X′

2
) + f3(γ′) = dγ′ .

Observe that f3(γ′) is the number of E3-points of the central fibre X ′
0 of X ′

along γ′; therefore
f3(γ′) = f3(γ) + 1.

On the other hand:

deg(Nγ′|X′
i
) = deg(Nγ|Xi

) − 1, 1 � i � 2.

Finally,
dγ = dγ′

and therefore we have

deg(Nγ|X1
) + deg(Nγ|X2

) + f3(γ) − 1 = dγ(7.20)

which proves the theorem in this case (i).

Consider now case (ii), i.e. p1 is a double point for both E′ and X ′.
If p1 is an ordinary double point for X ′, we blow-up X ′ at p1 and we

get a new total space X ′′. Let X ′′
1 , X ′′

2 be the proper transforms of X ′
1, X ′

2,
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respectively, and let γ′′ be the intersection of X ′′
1 and X ′′

2 , which is isomorphic
to γ. Notice that X ′′ is smooth and the exceptional divisor E′′ is a smooth
quadric (see Figure 20).

E′′

γ′′

��
��

��








������

X ′′
1 X ′′

2 Y ′
•p2

Figure 20: Blowing-up X ′ at p1 when p1 is ordinary for both X ′ and E′

We remark that the central fibre of X ′′ is now nonreduced, since it contains
E′′ with multiplicity 2. Thus we apply Corollary 7.17 and we get

Oγ′′ ∼= Nγ′′|X′′
1
⊗Nγ′′|X′′

2
⊗Oγ′′(Fγ′′).

Since

deg(Nγ′′|X′′
1
) = deg(Nγ|Xi

) − 2, i = 1, 2, deg Fγ′′ = f3(γ) + 2,

then

deg(Nγ|X1
) + deg(Nγ|X2

) + f3(γ) − 1 = dγ + 1 > dγ .(7.21)

If the point p1 is not an ordinary double point, we again blow-up p1 as
above. Now the exceptional divisor E′′ of X ′′ is a singular quadric in P3, which
can only be either a quadric cone or it has to consist of two distinct planes E′′

1 ,
E′′

2 . Note that if p1 lies on a double line of E′ (i.e. p1 is in the intersection of
two irreducible components of E′), then only the latter case occurs since E′′

has to contain a curve CE4 .
Let p2 = E′′∩γ′′. In the former case, if p2 is not the vertex of the quadric

cone, then the total space X ′′ is smooth at p2 and we can apply Corollary 7.17
and get (7.21) as before.

If p2 is the vertex of the quadric cone, then p2 is a double point of X ′′ and
we can go on blowing-up X ′′ at p2. This blow-up procedure stops after finitely
many, say h, steps and one sees that formula (7.21) has to be replaced by

deg(Nγ|X1
) + deg(Nγ|X2

) + f3(γ) − 1 = dγ + h > dγ .(7.22)

In the latter case, i.e. if E′′ consists of two planes E′′
1 and E′′

2 , let λ be the
intersection line of E′′

1 and E′′
2 . If p2 does not belong to λ (see Figure 21), then

p2 is a smooth point of the total space X ′′; therefore we can apply Corollary
7.17 and get again formula (7.21).
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Figure 21: E′′ splits in two planes E′′
1 , E′′

2 and p2 �∈ E′′
1 ∩ E′′

2

If p2 lies on λ, then p2 is a double point for the total space X ′′ (see Fig-
ure 22). We can thus iterate the above procedure until the process terminates
after finitely many, say h, steps by getting rid of the singularities which are
infinitely near to p along γ. At the end, one again gets formula (7.22).

Remark 7.23. We observe that the proof of Theorem 7.2 proves a stronger
result than what we stated in (7.3). Indeed, the idea of the proof is that we
blow-up the total space X at each Zappatic singularity p in a sequence of sin-
gular points p, p1, p2, . . . , php

, each infinitely near one to the other along γ.
Note that pi, i = 1, . . . , hp, is a double point for the total space.

The above proof shows that the first inequality in (7.3) is an equality if
and only if each Zappatic singularity of X has no infinitely near singular point.
Moreover (7.22) implies that

deg(Nγ|X1
) + deg(Nγ|X2

) + f3(γ) − r3(γ) −
∑
n�4

(ρn(γ) + fn(γ)) = dγ +
∑
p∈γ

hp.

In other words, as is natural, every infinitely near double point along γ counts
as a double point of the original total space along γ.

8. On some results of Zappa

In [39]–[45], Zappa considered degenerations of projective surfaces to a
planar Zappatic surface with only R3-, S4- and E3-points. One of the results
of Zappa’s analysis is that the invariants of a surface admitting a good planar
Zappatic degeneration with mild singularities are severely restricted. In fact,
translated in modern terms, his main result in [44] can be read as follows:

Theorem 8.1 (Zappa). Let X → ∆ be a good, planar Zappatic degener-
ation, where the central fibre X0 = X has at most R3- and E3-points. Then,
for t �= 0,

K2 := K2
Xt

� 8χ + 1 − g,(8.2)
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Figure 22: E′′′ splits in two planes E′′′
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2 and p3 ∈ E′′′
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where χ = χ(OXt
) and g is the sectional genus of Xt.

Theorem 8.1 has the following interesting consequence:

Corollary 8.3 (Zappa). If X is a good, planar Zappatic degeneration
of a scroll Xt of sectional genus g � 2 to X0 = X, then X has worse singular-
ities than R3- and E3-points.

Proof. For a scroll of genus g one has 8χ + 1 − g − K2 = 1 − g.

Actually Zappa conjectured that for most of the surfaces the inequality
K2 � 8χ + 1 should hold and even proposed a plausibility argument for this.
As is well-known, the correct bound for all the surfaces is K2 � 9χ, proved by
Miyaoka and Yau (see [28], [38]) several decades after Zappa.

We will see in a moment that Theorem 8.1 can be proved as a consequence
of the computation of K2 (see Theorem 6.1) and the Multiple Point Formula
(see Theorem 7.2).

Actually, Theorems 6.1 and 7.2 can be used to prove a stronger result
than Theorem 8.1; indeed:

Theorem 8.4. Let X → ∆ be a good, planar Zappatic degeneration,
where the central fibre X0 = X has at most R3-, E3-, E4- and E5-points.
Then

K2 � 8χ + 1 − g.(8.5)

Moreover, the equality holds in (8.5) if and only if Xt is either the Veronese
surface in P5 degenerating to four planes with associated graph S4 (i.e. with
three R3-points, see Figure 23.a), or an elliptic scroll of degree n � 5 in Pn−1

degenerating to n planes with associated graph a cycle En (see Figure 23.b).
Furthermore, if Xt is a surface of general type, then

K2 < 8χ − g.(8.6)
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Figure 23:

Proof. Notice that if X has at most R3-, E3-, E4- and E5-points, then
formulas (6.3) and (6.5) give K2 = 9v − 10e + 6f3 + 8f4 + 10f5 + r3. Thus, by
(3.13) and (3.15), one gets

8χ + 1 − g − K2 = 8v − 8e + 8f3 + 8f4 + 8f5 + 1 − (e − v + 1) − K2

= e − r3 + 2f3 − 2f5 =
1
2

(2e − 2r3 + 3f3 − 4f4 − 5f5)

+
1
2

f3 + 2f4 +
1
2

f5

(∗)
� 1

2
f3 + 2f4 +

1
2

f5 � 0

where the inequality (∗) follows from (7.6). This proves formula (8.5) (and
Theorem 8.1).

If K2 = 8χ + 1 − g, then (∗) is an equality, hence f3 = f4 = f5 = 0 and
e = r3. Therefore, by formula (3.17), we get∑

i

wi(wi − 1) = 2r3 = 2e,(8.7)

where wi denotes the valence of the vertex vi in the graph GX . By definition
of valence, the right-hand side of (8.7) equals

∑
i wi. Therefore, we get∑

i

wi(wi − 2) = 0.(8.8)

If wi � 2, for each 1 � i � v, one easily shows that only the cycle as in
Figure 23 (b) is possible. This gives

χ = 0, K2 = 0, g = 1,

which implies that Xt is an elliptic scroll.
Easy combinatorial computations show that, if there is a vertex with va-

lence wi �= 2, then there is exactly one vertex with valence 3 and three vertices
of valence 1. Such a graph, with v vertices, is associated to a planar Zappatic
surface of degree v in Pv+1 with

χ = 0, pg = 0, g = 0.
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Thus, by hypothesis, K2 = 9 and, by properties of projective surfaces, the
only possibility is that v = 4, GX is as in Figure 23 (a) and Xt is the Veronese
surface in P5.

Suppose now that Xt is of general type. Then χ � 1 and v = deg(Xt) <

2g − 2. Formulas (3.13) and (3.15) imply that χ = f − g + 1 � 1, thus
f � g > v/2 + 1. Clearly v � 4, hence f � 3. Proceeding as at the beginning
of the proof, we have that:

8χ − g − K2 � 1
2

f3 + 2f4 +
1
2

f5 − 1 � 1
2

f − 1 > 0,

or equivalently K2 < 8χ − g.

Remark 8.9. By following the same argument as in the proof of Theo-
rem 8.4, one can list all the graphs and the corresponding smooth projective
surfaces in the degeneration, for which K2 = 8χ − g. For example, one can
find Xt as a rational normal scroll of degree n in Pn+1 degenerating to n planes
with associated graph a chain Rn. On the other hand, one can also have a del
Pezzo surface of degree 7 in P7.

Let us state some applications of Theorem 8.4.

Corollary 8.10. If X is a good, planar Zappatic degeneration of a scroll
Xt of sectional genus g � 2 to X0 = X, then X has worse singularities than
R3-, E3-, E4- and E5-points.

Corollary 8.11. If X is a good, planar Zappatic degeneration of a del
Pezzo surface Xt of degree 8 in P8 to X0 = X, then X has worse singularities
than R3-, E3-, E4- and E5-points.

Proof. Just note that K2 = 8 and χ = g = 1, thus Xt satisfies the equality
in (8.5).

Corollary 8.12. If X is a good, planar Zappatic degeneration of a min-
imal surface of general type Xt to X0 = X with at most R3-, E3-, E4- and
E5-points, then

g � 6χ + 5.

Proof. It directly follows from (8.6) and Noether’s inequality, i.e. K2 �
2χ − 6.

Corollary 8.13. If X is a good planar Zappatic degeneration of an
m-canonical surface of general type Xt to X0 = X with at most R3-, E3-,
E4- and E5-points, then

(i) m � 6;
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(ii) if m = 5, 6, then χ = 3, K2 = 1;

(iii) if m = 4, then χ � 4, 8χ � 11K2 + 2;

(iv) if m = 3, then χ � 6, 8χ � 7K2 + 2;

(v) if m = 2, then K2 � 2χ − 1;

(vi) if m = 1, then K2 � 4χ − 1.

Proof. Take Xt = S to be m-canonical. First of all, by Corollary 8.12, we
immediately get (i). Then, by formula (8.6),

8χ − 2 � (m2 + m + 2)
2

K2.

Thus, if m equals either 1 or 2, we find statements (v) and (vi).
Since S is of general type, by Noether’s inequality,

8χ − 2 � (2χ − 6)
(m2 + m + 2)

2
.

This gives, for m � 3,

χ � 3 +
22

(m2 + m − 6)

which, together with the above inequality, gives the other cases of the state-
ment.

It would be interesting to see whether the numerical cases listed in the
above corollary can actually occur.

Note that Corollary 8.10 implies in particular that one cannot hope to
Zappatically degenerate all surfaces to unions of planes with only global nor-
mal crossings, namely double lines and E3-points; indeed, one needs at least
En-points, for n � 6, or Rm-, Sm-points, for m � 4.

From this point of view, another important result of Zappa is the following
(cf. [6]):

Theorem 8.14 (Zappa). For every g � 2 there are families of scrolls of
sectional genus g with general moduli having a planar Zappatic degeneration
with at most R3-, S4- and E3-points.

One of the key steps in Zappa’s argument for the proof of Theorem 8.14
is the following nice result:

Proposition 8.15 (Zappa). Let C ⊂ P2 be a general element of the
Severi variety Vd,g of irreducible curves of degree d and geometric genus g,
with d � 2g + 2. Then C is the plane section of a scroll S ⊂ P3 which is not a
cone.
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It is a natural question to ask which Zappatic singularities are needed
in order to Zappatically degenerate as many smooth, projective surfaces as
possible. Note that there are some examples (cf. [4]) of smooth projective
surfaces S which certainly cannot be degenerated to Zappatic surfaces with
En-, Rn-, or Sn-points, unless n is large enough.

However, given such an S, the next result — i.e. Proposition 8.16 —
suggests that there might be a birational model of S which can be Zappatically
degenerated to a surface with only R3- and En-points, for n � 6.

Proposition 8.16. Let X → ∆ be a good planar Zappatic degeneration
and assume that the central fibre X has at most R3- and Em-points, for m � 6.
Then

K2 � 9χ.

Proof. The bounds for K2 in Theorem 6.1 give 9χ − K2 = 9v − 9e +∑6
m=3 9fm − K2. Therefore, we get:

2(9χ − K2) � 2e + 6f3 + 2f4 − 2f5 − 6f6 − 2r3(8.17)

If we plug (7.6) in (8.17), we get

2(9χ − K2) � (2e + 3f3 − 4f4 − 5f5 − 6f6 − 2r3) + (3f3 + 6f4 + 3f5),

where both summands on the right-hand side are nonnegative.

In other words, Proposition 8.16 states that the Miyaoka-Yau inequality
holds for a smooth projective surface S which can Zappatically degenerate to
a good planar Zappatic surface with at most R3- and En-points, 3 � n � 6.

Another interesting application of the Multiple Point Formula is given by
the following remark.

Remark 8.18. Let X → ∆ be a good, planar Zappatic degeneration.
Denote by δ the class of the general fibre Xt of X , t �= 0. By definition, δ is
the degree of the dual variety of Xt, t �= 0. From Zeuthen-Segre (cf. [12] and
[21]) and Noether’s formula (cf. [18], page 600), it follows that:

δ = χtop + deg(Xt) + 4(g − 1) = (9χ − K2) + 3f + e.(8.19)

Therefore, (7.6) implies that:

δ � 3f3 + r3 +
∑
n�4

(12 − n)fn +
∑
n�4

(n − 1)ρn − k.

In particular, if X is assumed to have at most R3- and E3-points, then (8.19)
becomes

δ = (2e + 3f3 − 2r3) + (3f3 + r3),
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where the first summand on the right-hand side is nonnegative by the Multiple
Point Formula; therefore, one gets

δ � 3f3 + r3.

Zappa’s original approach, indeed, was to compute δ and then to deduce for-
mula (8.2) and Theorem 8.1 from this (cf. [39]).

In [4], we collect several examples of degenerations of smooth surfaces to
planar Zappatic surfaces, namely:

(i) rational and ruled surfaces as well as abelian surfaces given by the prod-
uct of curves (cf. also [6]);

(ii) del Pezzo surfaces, rational normal scrolls and Veronese surfaces, by some
results from [30], [32], [33];

(iii) K3 surfaces, as in [7] and in [8];

(iv) complete intersections, giving a generalization of the approach of Cohen-
Macaulay surfaces in P4 as in [15].

We also discuss some examples of nonsmoothable Zappatic surfaces and
we pose open questions on the existence of degenerations to planar Zappatic
surfaces for other classes of surfaces like, e.g., Enriques’ surfaces. For more
details, the reader is referred to [4].
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