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§1. Introduction to the problem and historical background.

In 1889, Castelnuovo [Ca1] showed that if P1, . . . , P2r+2 are 2r + 2 self-associated
points in linearly general position in IP r, not lying on a rational normal curve of degree
r, then the (r − 2)-plane of IP r, spanned by any r − 1 of them and denoted by Λ, is an
(r− 1)-secant plane to the unique rational normal curve of degree r, say Cr , through the
remaining r + 3 points. Moreover, the intersections of the (r − 2)-plane and Cr together
with the other points on Λ form a set of 2r − 2 = 2(r − 2) + 2 self-associated points in
Λ ∼= IP r−2. Therefore, if we denote by Γ the set of self-associated points, we can divide it
in two subsets Γ1 and Γ2 such that | Γ1 |= r+3 and | Γ2 |= r−1, respectively, where Γ1 is
the point set on the rational normal curve and Γ2 spans Λ in such a way that (Λ∩Cr)∪Γ2

is self-associated in Λ.

Castelnuovo defines two sets, each of 2r + 2 points, as associated if there exist two
(r + 1)− gons (which are the configurations determined by linearly general r + 1 points in
IP r) such that the points of one set projectively correspond to the 2r+2 vertices of the two
(r+1)- gons and the points of the other set to the 2r+2 faces of the two (r+1)-gons. This
means that the two sets of points are the set of vertices and face-baricenters of the two
(r + 1)-gons, in a suitable order. The particular case occurs when these two sets coincide,
i.e. each point is homologous to itself, so that the points are called self-associated.

In a modern language, this is a particular case of the Gale-Coble transform (see,
for example, [EP]).

Definition (Naive)
Let k be a field and Γ ⊂ IP r

k = IP (V ) a set of γ labelled points, where γ = r + s + 2,
such that each γ− 1 points span IP r

k . If we consider the homogeneous coordinates of these
γ points, we get a matrix G ∈ M(γ × (r + 1); k) of rank r + 1. If we dualize this matrix
and take the kernel, we obtain a matrix

G′ : ks+1 −→ (kγ)∗.

An identification of (kγ)∗ and kγ allows us to see G′ as a linear map

G′ : ks+1 −→ kγ .
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The rows of this matrix determine a set, Γ′, of γ points in IP s
k , which is called the Gale-

Coble transform of Γ. If r = s, then Γ has 2r + 2 points in IP r
k and Γ′ has 2r + 2 points

in the same projective space; up to the action of PGL(r + 1; k), we have Γ′ = Γ.

The aim of this paper is to find conditions leading to a converse of Castelnuovo’s
result. From now on, we consider the projective space IP r over the complex field IC. For
all the notation used and not explained the reader is referred to [H].

§2. Basic definitions and properties.

A fundamental property of a set of self-associated points, already explained by Castel-
nuovo [Ca1], is the following:

Each (hyper)quadric of IP r, which passes through 2r + 1 points of a set of 2r + 2
self-associated points, passes also through the remaining one.

This is a characterization of self-associated points (see also [DO]).

Definition.

A linearly general point set is called self-associated if and only if its points impose
one condition less on the quadrics of the space.

We can translate this situation by using the cohomological language. Let Γ be a 0-
dimensional closed subscheme of IP r, r > 1, with IΓ its ideal sheaf. The exact sequence of
sheaves

0 → IΓ → OIP r → OΓ → 0

defines, after twisting by OIP r (2), a cohomological exact sequence

0 → H0(IP r, IΓ(2)) → H0(IP r, OIP r (2)) → H0(Γ, OΓ(2)) → H1(IP r, IΓ(2)) → 0.

Denote by ϕ2 the map H0(IP r, OIP r (2)) → H0(Γ, OΓ(2)), then its kernel consists of
all the quadrics which vanish at Γ. Consider

Coker(ϕ2) ∼= H0(Γ, OΓ(2))/Im(ϕ2) ∼= H1(IP r, IΓ(2))

and put δ(Γ, 2) = dim(Coker(ϕ2)) = h1(IP r, IΓ(2)).
By the exact sequence, we get

h0(IP r, IΓ(2)) = h0(IP r, OIP r (2)) + δ(Γ, 2)− h0(Γ, OΓ(2)).
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If the subscheme Γ is a reduced scheme, then h0(Γ, OΓ(2)) =| supp(Γ) |. We expect
that each point from Γ imposes one condition on the hypersurfaces of degree 2 in order
they pass through it. Therefore, δ(Γ, 2) is the number of the extra linearly independent
quadrics passing through Γ.

We can restate the definition of self-associated points by saying:

A point set Γ, such that | supp(Γ) |= 2r + 2 and Pi 6= Pj , for i 6= j, is self-associated
in IP r if and only if δ(Γ, 2) = 1.

A very familiar example of this situation is given by the case when the 2r+2 points lie
on a rational normal curve of IP r which is contained in

(
r
2

)
quadrics of the space; indeed,(

r

2

)
=

(
r + 2

2

)
+ δ(Γ, 2)− (2r + 2) ⇒ δ(Γ, 2) = 1.

Another example is the set determined by the 2r+2 intersections of a general quadric
in IP r and an elliptic curve of degree r + 1 in the same projective space. To see a simple
case of this fact, consider C ⊂ IP 3, an elliptic quartic curve, which is a smooth normal
quartic, set theoretical complete intersection of two quadrics. The intersection with a
general quadric, linearly independent from those determining the elliptic quartic, gives us
a set of 8 points which belongs to a net of 3 quadrics in IP 3 and which is a self-associated
point set, since

3 = 10 + δ(Γ, 2)− 8 ⇒ δ(Γ, 2) = 1.

We can completely generalize this remark, by using a fundamental result of Casteln-
uovo [Ca2] and Mumford [Mum], which states that if deg(D) ≥ 2g + 1 then the natural
maps

ρm : Symm(H0(OC(D)) → H0(OC(mD))

are surjective for all m ≥ 0. In other words, if L = OC(D), ΦL embeds C as a projectively
normal curve. This reduces the computation of the number of hypersurfaces of degree
m passing through C, that is the dimension of ker(ρm), to Riemann-Roch.

In our case, we are considering an elliptic smooth curve in IP r such that deg(D) = r+1,
then h0(OC(D)) = r + 1 and h1(OC(D)) = 0. It is an elliptic curve of degree r + 1
in IP r, called the normal elliptic curve. By using the above mentioned result, since
deg(D) = r + 1 ≥ 3(⇔ r ≥ 2), the map ρ2 is surjective. It follows that

h0(IC(2)) =
(

r + 2
2

)
− 2(r + 1) =

(r + 1)(r − 2)
2

,

i.e. the elliptic (r+1)-curve of IP r lies on exactly (r+1)(r−2)
2 quadrics. If we consider the

intersection of this curve with a general quadric of IP r, the 2r+2 points lie on (r+1)(r−2)
2 +
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1 =
(
r
2

)
quadrics of the space, then δ(Γ, 2) = 1; therefore, Γ is a set of self-associated points

in IP r.

In low dimensions we have a complete characterization of sets of self-associated points
(see [Ba]).

In IP 1 any 4 points are self-associated, since two sets of 4 points are associated, in
the sense of Castelnuovo, if and only if they are projectively equivalent, i.e. they have the
same cross-ratio.

In IP 2 six points are self-associated if and only if they lie on a conic, whereas in IP 3

the general case of 8 self-associated points is determined by the base locus of a net of 3
quadrics.

In IP 4, apart from any 10 points on a rational normal quartic, Bath [Bat] has shown
that the general case of 10 self-associated points occurs when they lie on a normal elliptic
quintic, being the intesections of this curve with a general quadric. Always in this general
case, the rational normal quartic through any 7 of the 10 points meets the 2-plane, spanned
by the remaining 3, in further 3 points such that the 6 points on the plane lie on a conic;
this is Castelnuovo’s statement.

§3. First examples for a converse.

The very first example is the trivial case of a point p, viewed as a projective space
of dimension 0, i.e. IP 0. Consider it as a point of the projective plane IP 2 and choose 4
general points of the plane, say {p1, . . . , p4}. We denote by C2 the unique conic of the
plane through the 5 points {p, p1, . . . , p4}. A general point on C2, together with the
other 5 points, determines a set of 6 self-associated points of the plane. Therefore, also in
this trivial case, by starting from a point, the set of 6 self-associated points is not uniquely
determined.

We now start with a set of 4 distinct points in IP 1, which are always self-associated.
Consider this IP 1 embedded as a line L in the projective space and denote the 4 points
by {s1, s2, p7, p8}. Consider 4 general points in IP 3, none belonging to the line L, say
{p1, p2, p3, p4}. The unique twisted cubic C3, passing through {p1, p2, p3, p4, s1, s2}
has the line L as its chord through s1 and s2. This configuration is the intersection of 2
quadrics of the space, say Q1 and Q2, containing the twisted cubic, since this intersection
is the union of a divisor of type (1,2) and one of type (1,0). Take Q3 the general quadric
through the 6 points {p1, p2, p3, p4, p7, p8}, which does not contain the line L or the
twisted cubic. Therefore,

Q1 ∩Q2 ∩Q3 = (C3 ∪ L) ∩Q3 = 8 points.

Among these 8 points we have:
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a. 4 points on C3, {p1, p2, p3, p4};
b. 2 points on L, {p7, p8};
the other 2 points must lie on the twisted cubic. Denote these points by {p5, p6}.

The set Γ1 = {p1, . . . , p6} lies on C3, whereas Γ2 = {p7, p8} lies on L; Γ2 ∪ {s1, s2} are
self-associated in L and such that L ∩C3 = {s1, s2}. Finally, Γ = Γ1 ∪ Γ2 lies on a net of
3 quadrics or, more precisely, it is the base locus of the net

{λ1Q1 + λ2Q2 + λ3Q3 | λi ∈ k};

by definition, this means that Γ is a set of 8 self-associated points in IP 3.

§4. Case in IP 4.

Here the case is the one with 10 self-associated points in linearly general position in
IP 4, which was considered by Bath [Bat]. From the discussion in section 2, we know that
simple examples of this configuration are given by the intersection of a normal elliptic
quintic with a general quadric not containing the curve or by any set of 10 points on a
rational normal quartic of IP 4 (which lies on

(
4
2

)
= 6 quadrics).

Bath proved that the first of these examples is the general case of IP 4, and, always
in this general case, the unique rational normal quartic through any 7 points out of that
set meets the 2-plane spanned by the remaining 3 in 3 further points (so the 2-plane is a
3-secant plane to the rational quartic). These 6 points on the 2-plane lie on a conic so that
this set is self-associated in IP 2.

This was the statement of Castelnuovo, but the arguments he used to prove it are very
different from the ones of Bath. He also pointed out that the method of the proof of this
second result only can be used to generalize the situation to 2r+2 self-associated points
in IP r. In fact, the first result of Bath does not extend to the general case of IP r. This
is because, for example, Babbage [Ba] proved that the most general configuration of 12
points, which are self-associated in IP 5, is determined by the fact that the normal elliptic
sextic, through any 9 of the 12 points, meets the 2-plane, spanned by the other 3 points,
in 3 further points and these 6 lie on a conic. This means that in the general case of IP 5,
12 self-associated points do not lie on a normal elliptic sextic. So, in dimension r ≥ 5, we
do not have a characterization of the most general configuration of such points.

We want to use Bath result for a construction of a Castelnuovo converse in IP 4; to do
this, we start by analyzing a rational normal scroll of degree 3 in IP 4.

Let IP 2(x0) be the blowing-up of the projective plane at a point and consider the
linear system given by the divisor

H = 2l − E0, such that l2 = 1, E2
0 = −1, E0 · l = 0,
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which is the linear system of the conics through x0. This is very ample of projective
dimension 4, so it defines an embedding ΦH in IP 4 whose image is a smooth surface S of
degree H · H = 3 not contained in any hyperplane; therefore, it is a surface of minimal
degree. The image of a line l not passing through x0 is a conic on S, since l · H = 2;
on the other hand, if l′ is a line through the point x0, its image is a line contained in S,
whereas x0 becomes the exceptional divisor E0, which is skew with respect to the 2-plane
that contains the conic coming from the line l. Therefore, by Del Pezzo theorem (see
[GH]), this surface is a rational normal scroll of type S1,2. Let F ∈| 3l− 2E0 | be a divisor
belonging to the linear series defined by the plane cubics with a double points in x0; we
get

dim | 3l − 2E0 |= 6

and deg(ΦH(F )) = (3l− 2E0) · (2l−E0) = 4, i.e. the image of a divisor in the given linear
series is a quartic contained in the scroll. This quartic is not contained in any hyperplane,
since | H − F |= ∅; therefore this is a rational normal quartic.

In the same way, we consider a divisor D in the linear system | 3l − E0 |; then
dim | 3l−E0 |= 8, and the image of D is an elliptic quintic not contained in a hyperplane
of IP 4. On the other hand, a divisor G ∈| l | (the linear series of the lines not through x0),
maps to a conic on the scroll and dim | l |= 2.

An easy calculation shows

F ·D = (3l − 2E0) · (3l − E0) = 9− 2 = 7 points;

G · F = (3l − 2E0) · (l) = 3 points;

G ·D = (l) · (3l − E0) = 3 points;

this suggests us a way to find a possible converse of the Castelnuovo statement in IP 4.

We start, as in the cases above, with a IP 2 and 6 self-associated points on this plane,
say {s1, s2, s3, p8, p9, p10}, so they lie on a conic C2. We can see this IP 2 as a 2-plane
in IP 4; take a line (IP 1), which is skew to this 2-plane and then construct a scroll S1,2 of
degree 3 in IP 4. By the calculations above, we know that on this scroll a linear system of
rational normal quartics ”lives” of (projective) dimension 6; therefore, we can impose to
the quartics of this linear system to pass through the points {s1, s2, s3}. In the same way,
we know that on the scroll there are ∞8 normal elliptic quintics and we can impose the 3
independent conditions of passing through the other 3 points on the conic, {p8, p9, p10}.
The 0-dimensional scheme Γ, obtained by

D · (F + G)
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is a set of 10 points on an elliptic quintic. We only have to prove that this divisor on D is
equivalent to a divisor cut by a quadric of the space. If we consider F + G as a divisor on
the scroll S, we get

F + G ∼ 3l − 2E0 + l = 4l − 2E0 = 2H,

i.e. the divisor F + G belongs to the linear series | 2H | on the scroll. Since the rational
normal scroll is arithmetically Cohen-Macaulay, i.e.

(i) H0(OIP 4(h)) → H0(OS(h)) → 0, ∀ h ∈ Z;

(ii) H1(OS(h)) = 0, ∀ h ∈ Z,

the linear series cut, on the scroll, by the quadrics of IP 4 are complete linear series; there-
fore, 2 | H |=| 2H | (in general, we denote by d | H | the linear system Ed cut out on S

by the hypersurfaces of degree d, see [ACGH]). This means that the subscheme Γ is the
intersection of a normal elliptic quintic and a quadric of IP 4; moreover, since each nor-
mal elliptic quintic is contained in 5 quadrics of the space, the 10 points lie on 6 linearly
independent quadrics, that is δ(Γ, 2) = 1.

§5. Conjecture in higher dimensions.

As mentioned above, the situation in IP r, for r > 4, is much more complicated,
because the case of the intersection of a normal elliptic curve of degree r+1 with a general
quadric not containing it is not the general case in this dimension. The situation now is,
as always, the projective space IP r−2, viewed as an (r − 2)-plane Λ in IP r, with a set of
2r − 2 self-associated points. We can divide this set of points in two subsets, say ∆1 and
∆2, each of cardinality r − 1 and then consider 4 general points in IP r and the unique
rational normal curve of degree r passing through these 4 points and those of one of these
sets, for example ∆1.

This set will play the role of the r − 1 point set of intersection of the (r − 2)-plane
spanned by the others in ∆2, i.e. ∆2 coincides with the set Γ2 of §1. We would like to find
further r − 1 points on this rational normal curve in such a way they form, together with
the 4 general chosen points, the set Γ1.

A useful observation is the fact that in IP r there are r−1 linearly independent quadrics
which contain the rational normal curve and the (r−2)-plane. Suppose, in fact, coordinates
are chosen in the projective space in such a way that the (r − 2)-plane has equations

x0 = x1 = 0,
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then the quadrics of the space containing this (r − 2)-plane are of the form

Fr := {x0l0 + x1l1 | lo, l1 ∈ (IC[x0, . . . , xr])1},

whose linear dimension is 2r+1. In order to contain the rational normal curve, we have to
impose they pass through further r−2 points on it, since Γ2 already lies on the r−2-plane.
Therefore, we get 2r + 1− (r − 2) = r − 1 linearly independent such quadrics.

We think that, by using the fact that the 2r − 2 points in IP r−2 lie on exactly
(
r−2
2

)
quadrics, the fundamental step is to find a suitable rational normal scroll of degree r − 1
in IP r such that it passes through the 4 points on Cr, the points on the (r − 2)-plane of
Γ2 and cuts on Cr further r − 1 points; moreover, since each scroll is the intersection of(
r−1
2

)
quadrics, we have to find this scroll in such a way that the quadrics determining it

are linearly independent from those containing Cr ∪Λ. This would imply that these 2r+2
points form a set Γ which lies on (r − 1) +

(
r−1
2

)
=

(
r
2

)
quadrics, then δ(Γ, 2) = 1.

There is a result of Fano [Fa] about the rational normal scrolls in a projective space
IP r. He proved that there are ∞r−1 scrolls of degree r − 1 which contain a fixed rational
normal curve of degree r. This fact suggests to consider also the other rational normal
curve in our configuration; more precisely, the one containing the set Γ1 and the 4 general
points. Denote it by Dr. Therefore, these rational normal curves share the 4 general points
and are such that one passes through Γ1 and the other through Γ2. We know that in the
ideal ICr we can find r−1 quadrics containing Λ and by Fano result there are ∞r−1 scrolls
of degree r − 1 containing Dr. We would like to find a way to impose a suitable number
of conditions on these scrolls in such a way we can find the desired numbers of points and
of independent quadrics, as explained before.

Further investigations in dimension r > 4 might lead to a general construction in IP r.
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