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ABSTRACT. In this paper we focus on the problem of computing tivenber of modulof the so called

Severi varietiegdenoted byV| p, 5), which parametrize universal families of irreducibdenodal curves in

a complete linear systef|, on a smooth projective surfaceof general type. We determine geometrical

and numerical conditions o and numerical conditions of ensuring that such number coincides with
dim(V|p),s). As related facts, we also determine some sharp results concerning the geometry of some
Severi varieties.

INTRODUCTION

Let S be a smooth, projective surface and|et denote a complete linear system.$nwhose general
element is assumed to be a smooth, irreducible curve. By the hypothesis on its general element, it makes
sense to consider the subschemggfwhich parametrizes a universal family of irreducible curves having
only § nodes as singular points. Such a subscheme is functorially defined, locally clggédsee [34]
for S = IP? but the proof extends to ar) and denoted by p|,s- Itis usually called thé&everi variety
of irreducibled-nodal curves inD|, since Severi was the first who studied some properties of families of
plane curves of given degree and given geometric genus (see [30]).

One can be interested in studying the moduli behaviour of the elements that a Severi variety parametrizes.
This means to understand how the natural functorial morphism

Tp|, s : Vipl,s — My

behaves, for each > 0, whereg = p,(D) — §, po(D) the arithmetic genus ab and. M, the moduli
space of smooth curves of (geometric) gepuprecisely, the problem is to determine the dimension of
the image ofr|p|, 5.

In [29], Sernesi considered the ca$e- 2. Denote by

Tn, s - ‘/n,é - Mg

the functorial morphism from the Severi variety of plane irreduciblec&nddal curves of degreeto the

moduli space of smooth curves of genus: % — ¢. Recall thatl/,, 5 is irreducible (see [14]).

Definition 0.1. (see[29]) Thenumber of moduliof V;, s is dim(m,,, s(Vs.6)). Va,s IS said to have the
expected number of moddfisuch dimension equals

mm(?)g - 31 39 -3+ p(g, 27”))?
wherep(g, 2, n) is theBrill-Noether number

Of course, whem(g,2,n) > 0, V, s has the expected number of modygi— 3 = dim(M,) when every
sufficiently general curve of genygsbelongs to it; in such a case, this family of plane curvesges®ral
moduli Whenp(g, 2,n) < 0, the familyV,, 5 does not have general moduli, i.e. it Isgecial moduland
the number-p(g, 2, n) determines the expected codimensiomf(V,, 5) in M,,.

With this set-up, Sernesi proved the following result:

Theorem 0.1. For all n, g such that
n >>5 and n—QSgSW’
V,..s has the expected number of moduli.
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Remark 0.1. Since3g—3+p(g,2,n) = 3n+g—9 = dim(V,, 5) — dim(Aut(P?)), whenp(g,2,n) < 0

the fact thatV,, ; exactly has the expected number of moduli means that its general point parametrizes a
curve X which is birationally - but not projectively - equivalent to finitely many curves of the family, i.e.
the normalizatiorC' of X has only finitely many linear systems of degreand dimensior.

In this paper, we are interested in the casé af smooth, projective surface of general type. In such a
case, the expected number of moduli equiais (V| p) 5) (see Definition 2.3).
We determine some general conditionsond and, sometimes, on the geometry$fjuaranteeing
that such expected number of moduli is achieved (see Theorems 3.2, 3.3, 5.4, 6.1 and 6.3). As a particular
case of our more general results, we get the following:
Proposition. Let.S C P" be a smooth, non-degenerate complete intersection of general type whose
canonical divisor isKs ~ aH, whereH denotes its hyperplane sectiana positive integer and- the
linear equivalence of divisors o$l. Letm be a positive integer and 16 ~ mH be an irreducible curve,
with only ¢ nodes as singular points, of geometric gegus p,(X) — d, § > 0. Suppose thatX] is a
regular point of the Severi variety|,,, ;| s (in the sense of Definition 1.4).
Assume that:
1) 6 < dim(|mH]) if
aa>2,m>a+6,0>1o0r
b)a>1,m>a+6,6=0;
2 < m(m— 4)deg(S) fa>1lands5<m<a+5;
3)
a) § < mim= 2)deg(S) ifa >2andm =3, 40r
b) 5:0|fa:1andm:3, 4;

(r+3—4deg(S)) r—1 . . . .
4) 0 < deg(S)(2 + a) + D G ( 5 )XQ if « > 1 andm = 2, wherey is a non-negative

integer in[24ealS)=1 - 2deg(S)—1 .

(5) 6 < 295N (1 4 o) 4 r=20e0(SH2)y | =232 o > 1 andm = 1, wherey is a non-negative
integer m[deg(s) L _q, deg(S)=1y.

’ r—2

Then the morphism

TmH|s * VimH|,s = My
has injective differential atX]. In particular, it has finite fibres on each generically regular component
of V|, 1,5, SO €ach such component parametrizes a family having the expected number of moduli.

In particular, we have the following:
Corollary. LetS C P? be a smooth surface of degrée> 5 and let[X] € Vimm|,s b€ @ regular point.
Assume that:

1) < dim(jmH)|) if
ayd>6,m>d+2,6>1or
b) d>5m>d+2,§ =0;
()8 < ™M gif g >5and5 <m < d+ 1;
3)
a) § < ™m=2)4if ¢ > 6 andm = 3, 4 or
b) 6_0|fd_5andm_3, 4;
@o<d—2ifd>5andm = 2;
B)d<d—-3ifd>5andm = 1.
Then the morphism

TimH|,5 * ‘/|mH|,5 - Mg

has injective differential atX]. In particular, it has finite fibres on each generically regular component
of V|, 1,5, SO €ach such component parametrizes a family having the expected number of moduli.
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The paper consists of seven sections. In Section 1, we recall some terminology and notation. Section
2 contains fundamental definitions and technical details which are used for our proofs. Section 3 contains
the main results of the paper (Theorems 3.2, 3.3). In Section 4 we consider a fundamental proposition,
which is the key point to determine the results of Sections 5 and 6. Such theorems focus on cases to which
the results of Section 3 cannot apply. For simplicity, in Section 7 we sum up our results in the particular
cases of Severi varieties of the foif,, ;| s on smooth complete intersection surfaces of general type or
on smooth surfaces i® of degreed > 5.

Acknowledgment$art of this paper is contained in my Ph.D. thesis, defended on January 2000 at the
Doctoral Consortium of Universities of Rome "La Sapienza" and "Roma Tre". My special thanks go to
my advisor E. Sernesi for his constant guide and for having introduced me in such an interesting research
area. | am greatful to F. Catanese, for having pointed out some crucial examples on the subject, and to
C. Ciliberto, for some fundamental remarks related to the proof of Proposition 4.1. | am indebted to L.
Chiantini, L. Ein, A. F. Lopez and A. Verra for fundamental discussions which allowed me to focus on
key examples. | would also like to thank the referee who suggested to use Lemma 3.1 and projective
bundle arguments in order to improve condition (ii) in Theorem 3.2 witméf divisor” instead of the
previous 'L ample divisor”.

1. NOTATION AND PRELIMINARIES

We work in the category df-schemesY is am- fold if it is a reduced, irreducible and non-singular
scheme of finite type ovet and of dimensionn. If m = 1, thenY is a (smoothurve m = 2 is the
case of a (non-singulasurface If Z is a closed subscheme of a schemel /- (or Jz) denotes the
ideal sheafof Z inY Whereas/\/z/y is thenormal sheabf Z in Y. WhenY is a smooth varietyiy
denotes a canonical divisor wherégs denotes its tangent bundle.

Let Y be am-fold and let€ be a rankr vector bundle ont’; ¢;(£) denotes the?"-Chern class
of £, 1 < i < r. The symbol~ will always denote linear equivalence of divisors Bn As usual,
Ri(Y, =) :=dim H (Y, —).

If D is areduced curvey,(D) = h'(Op) denotes itaarithmetic genuswhereasy(D) = p,(D)
denotes itgeometric genyghe arithmetic genus of its normalization. For a smooth cilitye , denotes
its canonical sheaf, i.eup = Op(Kp).

Definition 1.1. Let.S be a smooth, projective surface afdv(.S) be the set of divisors ofi. An element
B € Div(S) is said to benef, if B- D > 0 for each irreducible curveD on S (where- denotes the
intersection form or$; in the sequel we will omi). A nef divisorB is said to bebig if B2 > 0.

Remark 1.1. We recall that, given a smooth surfageN (S)* is the set of divisor classes with positive
intersection numbers with itself and with an ample class. By Kleiman'’s criterion (see, for example, [16]),
a nef divisorB is in the closure ofV(S)*.

Definition 1.2. Let S C P" be a smooth surfacé] its hyperplane section and € Div(S). We denote
by v(D, H) theHodge numbeof D andH,

v(D,H) := (DH)?> — D*H?.
By the Index Theorem (see, for example, [3] or [12]) this is non-negative ginisea very ample divisor.

Definition 1.3. Let S be a smooth, projective surface. A rank 2 vector burtlien S is said to be
Bogomolov-unstablé there existM, B € Div(S) and a 0-dimensional schernig (possibly empty)
fitting in the exact sequence

1) 0—0s(M)—&—Jz(B)—0
suchtha{M — B) € N(S)*.

Remark 1.2. Recall thatt is Bogomolov- unstable when (€)% — 4¢2(€) > 0 (see [4] or [26]).
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It is also useful to remind some standard terminology and techniques on Severi varieties. C®nsider
a smooth, projective surface and assume that, for given Div(S) andd positive integerV|p,, 5 # 0.
If [X] € V|p), s, N will always denote the scheme of nodesXf which is a closed zero-dimensional
subscheme aof of degreej. From now on, denote by

(2) p:C—=XCS

the normalization map aX. Thus, onC' we have the exact sequence of vector bundles

() 0—Tc — ¢"(Ts) = Ny, — 0,

where,, is thenormal bundleof . Observe that, ifV denotes the pull-back d¥ to C, by (3) we get

that\V,, = O¢(¢*(D) — N), so we have
4 HY(N,) = H (Oc(p*(D) — N)), i > 0.
From Horikawa's theory (see [18]H°(N,,) parametrizes all first-order equisingular deformationXof
in S. Therefore, one gets
) Tix)(Vipy, 5) = H(Inys(D))/ < X >,
which is the subspace @f°(\,,) contained inf(x (| D|) = H°(0s(D))/ < X >.
Remark 1.3. WhensS is assumed to be a regular surface, then
(H(S,9n/5(D))/ < X >) = H°(C,0c(¢"(D) - N)),
which means that all first-order equisingular deformationX'of S are in|D|, i.e.
(6) Tix)(Vip), s) = HO(C, N)
Remark 1.4. From the exact sequence
) 0 —In/s(D) — O0s(D) — On(D) — 0
and from (5), we get
dim(Tix)(Vipy, 5)) = h°(0s(D)) — & — 1 = dim(| D) — 6;
the above inequality is an equality if and only if the surjecthﬁ(JN/s(D)) — HY(0g(D)) is an

isomorphism, i.e. if and only ifV imposes independent conditions to the linear system In such a
casel|p), 5 is smooth af.X] of codimension$ in |D|.

We recall the following:

Definition 1.4. V|p|, s is said to beregularat the poin{ X | if it is smooth af X| of dimensionlim(|D|) —
6. Otherwise, the component dfp s containing[X] is said to be asuperabundant componen
component of a Severi variety is said toregularif it is regular at each pointgenerically regulaif it is
regular at its general point.

We recall that the regularity is a very strong condition, indeed it implies that the nod€scah be
independently smoothed 1 (see, for example, [7] and [29]).

2. BASIC DEFINITIONS AND TECHNICAL TOOLS

In this section we introduce fundamental definitions and remarks which are used to compute the num-
ber of moduli of some Severi varieties.

From now on,S will denote a smooth, projective surface of general type, unless otherwise specified.
Let |D| be a complete linear system dhwhose general element is supposed to be a smooth, irreducible
curve. Denote byX an irreducible curve inD| having onlyé > 0 nodes as singularities. As in (2),
the mapy : C — X C S denotes its normalization, whet@ is a smooth curve of geometric genus
9 =pa(D) = 6.

We shall always assume that> 2, for eachy > 0. This assumption is not so restrictive for the problems
we are interested in.
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With this setup, for eachi > 0 one can consider the morphisms:
8 mp|, s Vipls — My,

where M, denotes the moduli space of smooth curves of (geometric) genusleed, ifFs : X5 —
V|p|,s denotes the universal family éfnodal curves it parametrized by p, 5, the fibres offs can be
simultaneously desingularized, so there exists a diagram of proper morphisms

Cs 2N Xs CSx V‘D"g
\f& lFé

Vip|,s

whered; is fibrewise the normalization map. In other wotklsis the blow-up ofYts along its codimension-
one singular locus and, for eaéh> 1, the morphism

mpls ¢ Viple = Mg

is functorially defined byfs;. Whené = 0, V|p) o is the open dense subscheme of smooth curvgB|in
so®, is the identity map and we havep, o : Vipj,o — My, (p)-
The problem is to determine, for each morphigp, s, the dimension of its image.

Different from the case of = P?, Severi varieties on surfaces of general type are, in general, re-
ducible; for example, Chiantini and Ciliberto ([6]) showed that even in the most natural case of a general
surfaceS = Sy C IP? of degreel > 5, Severi varieties o of the formV},,m1,5, m > d andH the plane
section ofS, always admit at least one (generically) regular component but, sometimes, also some other
superabundant components with a dimension bigger than the expected one. On the other hand, there are
also some results which give upper-boundsoandd ensuring that all the components of such a Severi
variety are regular (see [7] and [9]). Thus, to precisely approach the problem, we make the following:

Definition 2.1. Let.S be a smooth, projective surface of general type andldte a smooth, irreducible
curve onsS. Letd > 0 be such thal/jp 5 # 0. If V. C Vp, 5 is an irreducible component, then the
number of modulbf the family of curves parametrized byis

vpslv = dim(mp)s(V)).

Since the behaviour of superabundant components is difficult to predict, we focus on generically reg-
ular components of| |, 5. For this reason, we have to introduce the following condition:

) § < dim(|D|).

Indeed on such a surface, in general, we héive(|D|) < p.(D) (e.g. if D is a very ample divisor,
it directly follows from the fact that the characteristic linear system/bis special); thereford|p,, s
cannot have the expected dimensiod it > 0, i.e. if § is nearp, (D).

Definition 2.2. The integew will be calledadmissibléf ¢ is as in (9) and such that = p,(D) — § > 2.
From Theorem 0.1 and Remark 0.1 one can eurhystically give the following:

Definition 2.3. LetV C V|p), 5 be an irreducible and generically regular component, withdmissible.
Then, theexpected number of modwi V' is

expmod(V) := dim(V).

Thus, what is expected is th&t parametrizes a family having special moduli and, moreover, that its
number of moduli is the biggest possible; in other words, a regular p8ihe V' C V|p, 5 is expected
to be birationally isomorphic to finitely many curvesiin

By using vector bundle theory on regular surfadewith effective canonical divisor, one can easily
determine some examples of regular components of Severi varieties of thé/fepm; having the ex-
pected number of moduli (see [9] for details). On the other hand, there are also some examples which
show that such expected number of moduli is not always achieved. Indeed, one can consider particular
smooth, projective and regular surfaces of general type which belong to a class of surfaces that Catanese
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has recently studied (see [5]), callBeauville’s surfacesr fake quadricysee [31], page 195). Such a
surface is of the fornb := (C x C)/G, whereC is a smooth curve of genus> 2, GG is a finite group
acting on each factaf’ and freely acting on the produ€t x C' so that the quotient is a smooth surface
and the projectiop : C x C — S is a topological covering. Moreover, 7| = (g — 1)? and if the
action ofG onC is such that” /G = P!, then one determines ifian isotrivial rational pencil of smooth
curvesC of genusg, parametrized by an open dense subsét'ofFrom the exact sequence

0— 05— 0g(C) — 05(6) — 0,

the regularity ofS and the fact thatleg(0=(C)) = 0, we get thatlim(|0s(C)|) = 1, so the complete
linear system coincides with the isotrivial family. Therefore, the morphism

g0 * Vieno = M.

is constant.
Remark. The previous example shows that we cannot expect to have, "tout court", the expected number
of moduli, even in the case of families of smooth curves on smooth, projective, minimal and regular
surfaces of general type.

From what observed, it is natural to give the following:

Definition 2.4. With the same conditions as in Definition 2.3, theduli problemconsists in determining
for which kind of divisor classe® € Div(.S), the number of moduli of generically regular components
V' C V|p,,s coincides with the expected one, i.e. when

vpslv = expmod(V)
holds.

Our approach to the moduli problem is analogous to that of Sernesi in [29], where he applied infini-
tesimal deformation theory to families of plane nodal curves. This uses the exact sequence (3).
When, in particulary|p| o is considered, if we denote always Bythe general (smooth) element|d?|,
thenN = ) and the Zariski tangent spaceltg, , at[X] coincides withH®(0s(D))/ < X >, reflecting
the fact thatl| | o is an open dense subscheme0f. Moreover, the exact sequence (3) reduces to the
standard normal sequenceXfin S. Therefore, ifX is a smooth element ifD|, we get

(10) 0— H(Ts|x) — H'(Nx/s) = H (Tx) — -+,

whereh!(Tx) = 3p,(X) — 3 = dim(M,, (x)), by assumption op, (X) = py(X).
On the other hand, ifX] € V|p) 5, 0 > 1, from (3) we get

(11) 0 — HO(¢"(Ts)) — HOW,) 5 H'(Te) — -,
whereh!(7¢) = 3g — 3 = 3(po(X) — 0 — 1) = dim(M,), with g > 2 by assumption.
Therefore, wheX] € Vip 5,0 > 0, is aregular point, the compositions
Tix)(Vipjo) = HO(Wxys) ~ H'(Tx)
and
Tix)(Vipjs) = HYW) == HY(Te), 6> 1,

can be identified with the differentials of the morphisms, 5, 6 > 0, at the pointgX] and[C — X C
S], respectively.

Remark 2.1. If [X] € V|p 5,0 > 0, is aregular point and if we further assume th¥t is a general point
of anirreducible componeiit of V| 5, to give positive answers to the moduli problem of Definition 2.4
we need to show that the differential, p| 5) ., x] is injective. From(10) and(11) this reduces to finding,
for which divisor classe®, h°(D, Zs|p) = 0 andh®(C, »*(7s)) = 0 hold, respectively.
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3. THE MAIN RESULT
From what observed in Remark 2.1, we start by proving the following general result.

Theorem 3.1. Let S be a smooth, projective surface of general type. Xet- D be an irreducible,
d-nodal curveg > 0, whose set of nodes is denoted¥y Then,

(12) hl(S, JN/S & Q}g(D +Kg)=0= hO(C, ©*(7g)) = 0.

In particular, whens = 0,

(13) R (S, Q5(D + Kg)) =0 = h°(D, Zs|p) =0

Proof. If N = (), denote by : S — S the blow-up ofS along N, so that one can consider the following
diagram of morphisms:
C

o= Q
A
Un «—
S

C

Thus,

H°(¢*(Ts)) = H (1" (Ts)|c).
If we tensor the exact sequence defin@iign S with .*(7s), we get
(14) 0 — p*(Zs)(=C) — p*(Ts) — 1 (Is)lc — 0.
Observe that

H° (" (Ts)) = H'(Ts) = (0),
sinceH(7Ts) is isomorphic to the Lie algebra of the Lie grodmt(S), which is finite by assumption on
S (see [21]); thus, the cohomology sequence associated to (14) reduces to

0— H(u*(Ts)lc) — H' (0 (Ts)(=C)) — -+

A sufficient condition for® (¢* (7s)) = 0 is thereforeh! (u*(75)(—C)) = 0. By Serre duality orf, we
have

(15) W (Ts) (—C)) = B (4" (Ts))Y © Og(Ks + C)).
SinceTs is locally free, thenu*(75)" = p*(74') = p* (22, so(15) becomes
(16) W (@ (Ts)(=C)) = h' (1" (Q5) (K5 + C)).

Denote byB the p-exceptional divisor inS such thatB = »9_,E;. From standard computations
with blow-ups, we gefs + C' = u*(Ks + X) — B. Therefore, the right-hand side ¢f6) becomes
R (p* (4 (Ks + X)) @ O5(—B)). Since we have

H' (1" (Qs(Ks + X)) ® 04(—B)) = H' (In/s(X + Kg) @ Qg),

from the fact thatX ~ D on S, we get(12).
For (13), i.e.0 = 0, one can directly use the exact sequence

0— 7s(—D) —Ts — Tg|p — 0.
O

As an application of Remark 2.1 and Theorem 3.1, the moduli problem of Definition 2.4 reduces to
finding for which divisorsD on .S C P" the conditions

(17) H'(S, Qs(Ks + D)) = (0)
and

(18) HY(S, In/s ® Q5(Ks + D)) = (0)
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hold. The main results of this section (Theorems 3.2 and 3.3) determine sufficient conditidns on
implying (17) and (18).

Remark To prove the basic Lemma 3.1 and Theorem 3.2, we shall use some projective-bundle argu-
ments by following the approach of [17], Sect. 1I.7. Thus, in the following two result,sfa vector
bundle on a smooth, projective variety, Py (£) denotes thgrojective space bundlen Y, defined as
Proj(Sym(€)). We have a surjection™(£) — Op, (¢)(1), whereOp, (£)(1) is thetautological line
bundleonPy (£) and wherer : Py (£) — Y is the natural projection morphism.

Lemma 3.1. Let S C P" be a smooth surface and I&tbe a rank 2 vector bundle asl. Assume thaf
is big and nef or (i.e. the tautological line bundi@p (¢ (1) is big and nef orP5(£)). Then

H(S,ws ® £ @ det(E) ® Os(L)) = (0),
for < > 0 and for each nef divisof..

Proof. By definition,Ps(€) is a smooth projective variety. From the assumptiong @md L and from
the Kawamata-Viehweg vanishing theorem (see, for example, [22], page 146), it follows that

(19) H'(Ps(E),wpy(e) ® Opyey(m) @ 7 (0s(L))) = (0), fori, m > 0.
Consider the natural projection morphism Pg(€) — S and recall that
T+ (Opg(g)(m)) = Sym™(€), m > 1, and m,(Opg(e)) = Os,
(see [17], Prop. 11.7.11). From the relative Euler sequence
0= Opg(e) = 7 (€7) ® Opg(e)(1) = Tps(e)/s — 0

and from the exact sequence

0 — Tpg(ey/s — Tpse) — 7 (Ts) — 0,
we get that

wpg(g) = Opg(e)(—2) @ 1" (ws @ det(E)).
Therefore, if we consider, = 3 in (19), we get
(20) H'(Pg(&), " (ws ® det(€) ® O5(L)) ® Opg(g)(1)) = (0), for i > 0.
By projection formula,
(1) Ri'm(n"(ws @ det(€) @ 05(L)) ® O, 5)(1)) = ws © det(€) ® O5(L) ® R'me(Op e (1)),

for eachi > 0. Since the fibres of are isomorphic t@! and sincedp (¢(1) is relatively ample, all
the higher direct image sheaves in (21) are zero; thus, by Leray spectral sequence and by (20), we get the
statement. O

Now, we can prove our main result.

Theorem 3.2. Let.S C P" be a smooth surface of general type with hyperplane divisoBuppose that
the linear systemD| on S has general element which is a smooth, irreducible curve XL.et D be an
irreducible, §-nodal curve of geometric genys= p, (D) — §, whered > 0 admissible (as in Definition
2.2). Assume that:
(i) QL(Ks)is globally generated;

(i) D~ Ks+6H + L, whereL is a nef divisor;

(iii) the Severi variety|p, s is regular at[X] (in the sense of Definition 1.4).
Then, the morphism

pls + Vipl.s — My

has injective differential atX]. In particular, 7| s has finite fibres on each generically regular compo-
nent ofV| | 5, S0 each such component parametrizes a family having the expected number of moduli.



MODULI OF NODAL CURVES ON SMOOTH SURFACES OF GENERAL TYPE 9

Proof. First of all, we want to show that hypothesis (ii) implies (17). To prove this, we will use Lemma
3.1. Therefore, the first step of our analysis is to apply such vanishing result to the vector bundle

£ =0k (aH),
wherea is a positive integer. The problem reduces to finding which "twists2pfare big and nef on
S c P". In the sequel we shall write for shdet; (a) instead of2} (a H). From the exact sequence
0 — Congpr(a) — Qb (a)|s — Q};(a) — 0,

it is useful compute for which positive integershe vector bundl€, (a) is ample or globally generated
(see [16]). From the Euler sequencdfbfone deduces the exact sequence
IS (r+1)
0— 02, — O;?T (=2) — Qf. — 0
(see [24], page 6, and [32], page 73); therefore, one trivially has

r(rt1)
0—03.(2) = O 2 — Q}(2) =0,

i.e. Q}.(2) and, sof2(2) are globally generated where@s, (a) and2}(a) are ample, forn > 3.

Recall now thafp- (21, (1)) is the universal line over the Grassmann@xﬁ,r) of lines inP" (see,
for example, [19], app. B and C, or [20], page 369). By standard properties of projective bundles,
Pp- (24 (1)) = Ppr(24.(2)), thus we have

F = Pp- (1. (2)) C G(1,7) x P"

with the natural projectiop; on thei-th factor,1 < ¢ < 2. If v denotes the Pliicker embedding®(l, r)
in P2~ ~1, one determines the map

f=70p1:F— poE -1,

On the other hand, we can consider the complete tautological linear syStéi)|, which is free since

QL. (2) is globally generated. From the Leray spectral sequence, the Euler sequence and the Bott formula
(see [24], page 8), we get that

HO(F,05(1)) = HO(P", Q3. (2 /\V

where herdP” = P(V) = Proj(Sym(V)). Therefore, the complete linear systefix(1)| defines a
morphism

7‘(7‘+1) 1

2

o:F->P(A\V)=P® >
One easily sees th@tand f coincide, so the global sections©f(1) contract thep; -fibres of G(1, r) in
F, which are lines irP".
From the fact thaPs(Q4(2)) C Ps(Q4.]5(2)), the restriction ofb to Ps(Q%(2)) is generically finite
since S, being of general type, is not filled by lines. Thus the rank 2 vector buidig) is globally
generated and big and nef. By Lemma LS, ws ® Q4(2) @ det(Q%(2)) ® Og(L)) = (0), for each
nef divisorL. Sincedet(Q%(2)) = Os(Ks +4H ), we have that{ ! (S, QL (2Ks +6H + L)) = (0), for
each nef divisor_.

Therefore, ifD ~ Kg + 6H + L, with L nef, then

(x) H'(S, Qg(Ks + D)) = (0)."

The vanishing result«) is a fundamental tool for the following second part of the proof.SOme can
consider the exact sequence

(22) 0 — In/s(D) — 0s(D) — On(D) — 0

*Observe that if one directly applies Griffiths vanishing results, i.e. Theorem (5.52), Theorem (5.64) and Corollary (5.65) in
[32], to the vector bundl@}g(a), a > 2, one determines stronger conditions bn Precisely,. must be ample instead of nef.
Therefore, the approach above determines more general conditidis on
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which determines the restriction map:
0— H°(In;s(D)) — H°(0s(D)) B H*(On(D)) — H'(Inss(D)) — -~ .

By hypothesis (iii),op is surjective. Next, by tensoring the exact sequeReg with Q% (K s), we get

Pal(kg+D)
—_—

0— H°(In/s(D) ® Q5(Ks)) — HY(Q5(Ks + D))

Pak(Kg+D)
—

HO(On(Q5(Ks + D)) = C* — H' (Iy/s(D) ® Q4(Ks)) —
— HY(QL(Ks + D)) — 0.

Thus, the mapq: (k4 p) is surjective if and only ifff ' (Ty/s(D) ® Q5(Ks))
From the first part of this proof, hypothesis (ii) implies titat (QL (Ks + D)) =

~ HY(Q4(Ks + D)).
(0), so we have
h'(In/s(D) ® Qg(Ks)) =0 < POl (Ks+D) Surjective.

By (12) of Theorem 3.1, the surjectivity @fy1 (k. | p) implies therefore that’(o*(7s)) = 0 and so the
statement.

The last step is to determine if, with the given hypotheses, theﬁ@g@{ﬁm is surjective. Consider
the map

Pal (kK g+D)
S_) HO

4
(23) HY(QL(Ks + D)) (ON(QL(Kg + D)) = C* =~ @ Cl-
=1

By hypothesis (i), for each € S, the sheaf morphism
H°(Q4(Ks)) ® 05, — Q5(Ks), = 05,

is surjective; thus, for eaghe S there exist two global section§, s € H°(Q2}(Ks)) which generate
the stalkQ§ (Ks)|, as anOs-module, i.e.

st(p) = (1,0) and sh(p) = (0,1) € 05 .
If N ={p1, po, ..., ps}isthe setof nodes of, thenH° (O (D)) = C° 2 C(;) & Crgy & - - - & Cys).
The surjectivity ofp, implies there exist global sections € H°(Og(D)) such that
oi(pj) =(0,0, ..., 0), if 1 <i#j<§,
oi(pi)=(0, ..., 0,1,0,...,0), 1€Cpy, 1<i<d.
Therefores)* ® o;, sh' ® 0; € H*(Q4(D + Kg)) and
st @ oi(pj) = s @oi(p;) = (0, ..., 0) €CYy &+ B CPyy = C*, 1 <i#j <6,
s @ oy(pi) = ((0,0), ..., (1,0), ..., (0,0))=(0, ..., 1,0, ..., 0) € C%,
where(1,0) € Cf; and
s @ a;(pi) = ((0,0), ..., (0,1), ..., (0,0))=(0, ..., 0, 1, ..., 0) € C*,

where(0, 1) € (Cfi), for 1 <4 < 4. This means that the map3) is surjective. Moreover, since the
condition for a poinfX] € V|p, ; to be regular is an open condition in the family, it follows that the
component ol | s containing[ X ] has the expected number of moduli. |

From the first part of the proof of Theorem 3.2 we observe that in the case of familes of smooth curves
one can eliminate hypotheses (i) and (iii). Indeed, we have the following result.

Theorem 3.3. Let.S C P" be a smooth surface of general type andllebe an effective divisor of.
Denote byH the hyperplane section &f. Assume that

D~ Kg+6H+1L,

whereL is a nef divisor onS. Then,H!(S, Q4 (Ks + D)) = (0).
If, moreover,| D| contains smooth, irreducible elements, the family of smooth curygsg has the ex-
pected number of moduli.
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Proof. For the first part of the statement, one can repeat the procedure at the beginning of the proof of
Theorem 3.2. Froni13) we get the second part of the statement. O

Let S = S; C P3 be a smooth surface of degrégin view of the fact thatks ~ (d — 4)H, as a
corollary of Theorems 3.2 and 3.3 we get:

Corollary 3.1. If S; c P3 is a smooth surface of degrele> 6, the generically regular components
of Vi,,x|,s have the expected number of moduli, wmen> d + 2 andé > 1 admissible. The same
conclusion holds for the family of smooth cur¥@s | o, whend > 5 andm > d + 2.

Remark 3.1. More generally, ifS C P is of general type witts ~ aH, then we have positive answers
to the moduli problem for all generically regular component¥ofy 5, with m > a + 6, whena > 2
andd > 1 admissible, and withn > o + 6, whend = 0 anda > 1.

Remark 3.2. The conditions2}(2) globally generated and big and nef Srplay a crucial role in the

proof of Theorem 3.2. Thus with this approach this result is, in a certain sense, sharp. For example, if we
focus on regular surface€}, cannot be globally generated, sinté-(S) = H%!(S) and H9(S) =

HOY(S, QL) whereas{ %! (S) = H'(S, 0g) = (0). If Sis also a non-degenerate complete intersection in

Pr, thenQ2},(1) cannot be globally generated. Furthermore, we have some results of Schneider (see [27])
which state that, even in the most natural case of smooth surfacesP*? of degreed > 5, Oy and

Qg (1) are not ample.

4. A FUNDAMENTAL PROPOSITION

The aim of this and the following two sections is to find other results giving positive answers to the
moduli problem, posed in Definition 2.4, for some other classes of divisoswhich are not covered
by Theorems 3.2 and 3.3.

From now on we shall focus on the case of regular surfaces; thergfaii always denote a smooth,
regular surface of general type, unless otherwise specified. In such a case, we are able, in particular, to
complete Remark 3.1 by also including divisdps~ mH with 1 < m < « + 5 and with some further
conditions ory.

The first step of our analysis is based on a key proposition concerning first-order deformations of the
normalization morphisnp : C' — X C S. Then we conclude, in some cases, by using a detailed analysis
of the Brill-Noether map of the line bundi&- (¢*(H)), in some other cases, by using unigueness results
of certain linear systems afi.

The core of this section is to prove such a fundamental proposition. Before doing this, we need to
remind some general facts.

Let S c P" be a smooth, non-degenerate surface (not necessarily regular and of general type). As in
(2), the normalization morphism is a map fromC to S such thatim () = X C S. If i : S — P"is
the natural embedding, we have the following diagram of morphisms:

c
12N\
s &P

wherey = io0 ¢ : C — P". By pulling back toC the normal sequence &f in P", we get the exact
sequence of vector bundles 6h

0 — ¢"(Ts) = ™ (Tpr) — ¢"(Ngypr) — 0.
Thus,
(24) 0 — H(¢"(Ts)) — H (4" (Ter)) — HO(¢* (Nsyer)) — -+

holds, wheref{°(p*(7s)) parametrizes first-order deformations of the gapC' — S, with C and S
both fixed, as well a#f®(y* (7p-)) parametrizes first-order deformations of the mapC — P, with
C andP" both fixed (see [15]).

We also recall the following useful definition (see [7]).
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Definition 4.1. Let X be any reduced, irreducible curve #i'. X is said to begeometrically linearly
normal(g.l.n. for short) if the normalization map : ¢ — X C P”" cannot be factored into a non-
degenerate morphis@ — PV, with N > r, followed by a projection.

In other words, ifH is the hyperplane section &f, |O¢(¢*(H))| must be complete.
We are now able to give the following:

Proposition 4.1. LetS C P" be a smooth, regular, non-degenerate and linearly normal surface of general
type. Lef X] € V|p, ; be a regular point of the Severi varietyp s on S.

(i) Assume thatX is non-degenerate if?” and geometrically linearly normal. 15°(C,y* (Tp+)) =

(r +1)? — 1, then all first-order deformations of the map: C — P, with C fixed, are induced by
first-order projectivities (i.e. by elements B (7-)). Moreover,h’ (p*(7s)) = 0.

(i) Assume thaD ~ H on S and thatX c H = P"~!is non-degenerate and g.l.n. as a curvepiir t.
Suppose also thaf is such thati! (05 (H)) = 0 and |Kg| # 0. If h°(¢*(Tpr)) = r? + r — 1, then all
first-order deformations of the map : C — P", with C fixed, are induced by first-order projectivities
not fixing pointwise the hyperplarié c P". Moreoverh®(p*(7s)) = 0.

Proof. (i) The first part of the statement is a straightforward computation. We shall briefly recall the
fundamental steps of its proof. if: S — S is the blow-up ofS alongN = Sing(X), by the hypotheses
on S and by the pull-back t& of the Euler sequence, we get

s) = HO(u*(Te-)).

Since X is g.l.n. and non-degenerate ¥, by Serre duality and by the pull-back @n of the Euler
sequence we have

H®(Tpr) = H° (T

(+) 0= K — HOW (Tpr)) — (coker(po.c))’ — 0,
whereK = (H°(0o (" (H)))" ® HO(Oc(p* (H))))/H(0c) = HO(T-) and where

po.c + H(Oc(¢™(H)) ® H (we (9" (H))) — H(we)

is the Brill-Noether map ofd¢(p*(H)). Sinceh’(Zp-) = dim(PGL(r + 1,C)) = (r + 1)? — 1,
from (x) it follows that h®(y)*(Zpr)) = (r + 1)* — 1 iff dim(coker(uo.c)) = 0. In this case, by
standard Brill-Noether theory (see [2], Proposition 4.1, page 187), there is no first-order deformation of
¥ : C — P", with C fixed, induced by first-order deformations of the linear syst@m(¢* (H))|; so all
such deformations are induced by element&6f7;-).

To get the second part of statement (i) observe that, by the regulariiyaoid by (6), H°(N,,) =
Tix1(Vip,s). Assume, by contradiction, that’(p*(Zs)) # 0 and letv € H(¢*(7s)) be a non-
zero vector. Suchr corresponds to a tangential directione Tix(V|p,s) since, by (11), we have
HO(p*(Ts)) € HO(N,).

By the regularity assumption ¢X| € V|p| s, all directions inT}x;(V|p,,;) are unobstructed. This
means there exist a one-dimensional base sch&pemooth at the central poinat € A, and a family
X — A such that

X:{Xt}tEA CSxA

where
[Xi] € Vipls, V€A, [X,] = [X], and Ti,)(A) =< v > .

Since< v >C H%(p*(7s)), the familyX — A corresponds to a family of mags: C' x A — S x A,
for which

© = {pihen, o =9, pr =@ : C x {t} — S x {t}, p:(C) =Xy CS.

By composing? with the mapi x ida, wherei : S — P, we geta family of map® : C x A — P"x A
for which

U =A{vitiea, Yo =0, Yy =Vl : O x {t} = P" x {t}, $(C) =X, C SCP".
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From (24), we know that{®(¢*(7s)) C H°(y*(7p-)) and, from the above computations, we have
HO(¢*(Tpr)) = HO(Tpr). Therefore, the elemente H(¢* (7)) is induced by first-order projectivi-
ties, so the family — A is determined by a famil{2 — A, where

QCPGL(r+1,C), Q: X x A =P x A, Q= {whea

such that); = w; o ¢ and[w;(¢¥(C))] = [X;] € V|p, 5, for eacht € A whereagw,(¢(C))] = [X].
SinceS is of general type, theft € PGL(r + 1,C) \ Aut(S). Therefore, if

Xi=w(X)C S, VteA,
then

X CwH(S)=8;, VteA,
whereS; C P" is a smooth surface projectively equivalentSpfor eacht € A, andS, = S. We
therefore obtain a family of map$ : S x A — P" x A such thatA|; = w; !, for eacht € A. By
composing such family of maps wiih x ida, i : S — S, we thus get a family of maps

0:SxA—-P xA
where
Ol =w; b op: & x {t} — P x {t}, ©(S) = w; ' (u(S)) = w; }(S) = 5 C P

Since®|, = idpr o p andT,(A) =< v >, the element € H(p*(7s)) C HO(¢*(Zpr)) is also an
element of H% (1% (7pr) @ O 5(—C)).

This leads to a contradiction; indeed, by tensoring the exact sequence deéfimng with ;.*(Zp-),
we get

0 — 1" (Tor) ® 05(=C) — " (Tor) — " (Tr)|c = " (Ter) — 0.

From the above computations, we know th&t(y* (7p-)) = HO(4*(Tp-)), which impliesh?® (u* (7p-) ®
05(=C)) =0.

(ii) In this caseX ~ H on S andX c H = P"! is non-degenerate & ~!, then

Y (Tpr) =2 P (Tpr—1) & Oc (Y™ (H))
(with abuse of notation, we denote alwaysipthe mapy : C — X C H = P"1). From the hypotheses
on X, we get
WO W™ (Ter)) = WO (" (Tpr-1)) + 1
By using the same computations of (i), we get
0— H%(0¢) — H°(0c(v*(H))" © H(Oc (" (H)) — H°(¢* (Tpr1)) — (coker(po,c))” — 0,
where
(coker(0.6))” % Ty o e 117y (Gateg() (O)):
Thus, asin (i)2°(¢* (Tpr-1)) = 72 — 1if and only if dim(coker (uo.c)) = 0.
Note that
HO(S, p* (Tpr ] .
(25) _AET) 2 oy (7).
HO(S, p*(Tpr) ® 05(=C)))
From the pull-back of the Euler sequence and from the hypothesgswe get

(26) 0= 05(=C) — H*(Og(p" (H)))" ® O5(n*(H) = C) — p*(Tpr) ® 03(=C) — 0.

Observe that:’(05(—C)) = h'(05(—C)) = 0: indeed, the first vanishing trivially holds whereas,
by Leray’s isomorphism and by Serre duality, we havé0s(—C)) = h'(In/s(Ks + H)); from the
regularity of[X] € V| 5, Remark 1.4 and the hypothedi§(Os(H)) = 0, we geth! (Jy/s(H)) = 0.
SinceKs is effective by assumptiory also imposes independent conditionsAd; + H|. By standard
Mumford's vanishing theorem, we haie(0s(Kg + H)) = 0, soh! (Ty/s(Kg + H)) = 0.
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We therefore obtain
HO(p*(Ter) ® 05(=C)) = H°(0g(n*(H)))" @ HO(O5(p*(H) - C))
= H°(0g(p*(H)))” ® H°(05(2B)),

whereB = ¥¢_| E; is thep-exceptional divisor. SinceB is a fixed divisorh?(u* (7p-) ® 05(—C)) =
hO(Og(p*(H)) = r + 1. Moreover, since®(u*(Tpr) ® O5(—C)) € HO(u*(Tpr)) = HO(Tpr), the
elements of such a vector space correspond to first-order projectivities fixing pointwise the hyperplane
H C Pr. Turning back to (25)h°(¢*(7p+)) = r? + r — 1 if and only if 3 is an isomorphism. In
such a case, all first-order deformationsyof C — P", with C fixed, are induced up to first-order by
projectivities not fixing pointwise the cur& C H.

For the second statement in (ii), one can follow the same procedure in (i). By supposing there exists a
non-zero vectoo € H(p*(7s)), one determines a family — A, whereQ) ¢ PGL(r+1,C)\ Aut(S),
such that

Q =Awitten, wi(X) =X C S, and T,(A) =< v > .

As before, one obtains € H°(p*(Tpr) ® O5(—C)), so the familyS2 is contained in the sugroup <
PGL(r + 1,C), whose elements pointwise fix the cur¥e Therefore, we have,(X) = X, for each
t € A, contradicting the existence of the non-trivial, one-dimensional fafiilyg { X; }en. O

From Remark 2.1, in the sequel we will be concerned in finding conditions which imply the hypotheses
of Proposition 4.1. These will give further affirmative answers to the moduli problem posed in Definition
2.4 for Severi varieties on smooth, regular and non-degenerate sufac@ of general type.

5. NUMBER OF MODULI FOR FAMILIES OF NONDEGENERATE, NODAL CURVES ON LINEARLY
NORMAL SURFACES OF GENERAL TYPE

As remarked at the beginning of Section 4, we want to find some other conditions establishing positive
answers to the moduli problem for those Severi varieties which do not satisfy the hypotheses of Theorems
3.2and 3.3.

Here we shall focus on the case ®fC P" a smooth surface of general type which is regular, non-
degenerate, linearly normal and such thatOs(H)) = 0, H the hyperplane section &f. Observe that,
in this case, one can obviously apply the results in Section 3, since they are more generally valid.

The results we obtain here apply, for example, to some cases which are not covered by Corollary 3.1
and Remark 3.1 even though their statement gives some restrictions to the admissible number®f nodes
with respect to (9).

In this section, we considgX | € V|p| s on S such thatX is non-degenerate i#". From Proposition
4.1 (i), we want to find conditions ob in order that:® (v* (7p+)) = (r+1)?—1 = dim(PGL(r+1,C)).

To this aim, put

(27) Oc(y*(H)) = 0c(H),

thenX is geometrically linearly normal (see Definition 4.1) if and onlyd¢- (H )| is complete of dimen-

sionr. In such a case, we consider Bgll-Noether mapof the line bundled(H), i.e.
(28) po.c + H(Oc(H)) ® H(we(—H)) — H®(we).

Remark 5.1. Similarly to Definition 1.1.2 in [25], ifX is g.l.n. and if the map ¢ is surjective, then

|Oc(H)| is called arisolated linear systeran C. The surjectivity ofug ¢ implies the injectivity of the
dual mapuy - so the Euler exact sequence©n

(29) 0— Oc — H(0c(H))Y © Oc(H) — 4" (Ter) — 0,
gives
(30) RO (*(Tpr)) = (r +1)? — 1 = dim(PGL(r + 1,C)).

Therefore, from Remark 2.1 and from Proposition 4.1 (i), we deduce the following:
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Proposition 5.1. Let S C P" be a smooth, non-degenerate and regular surface of general type and let
[X] € V|p),; be aregular point corresponding to a non-degenerate and g.l.n. cur®€ for whichd is
admissible and the Brill-Noether map ¢ of Oc(v*(H)) is surjective. Then, the morphisiy, s has
injective differential afX]. In particular, if [ X] is the general point of an irreducible componéntof
Vip|,s, thenV has the expected number of moduli.

Our next aim is to find conditions guaranteeing thais g.l.n. with Brill-Noether mag, ¢ surjective.
We start by considering the following crucial remark.

Remark 5.2. Suppose thatD| is a complete linear system dfiwhose general element is a smooth,
irreducible and non-degenerate curve (so that- D| # (). Assume thafX] € V|p 5 corresponds to a
g.l.n. curve onS. Denote byu : S — S the blow-up ofS along N = Sing(X), so thatu|c = ¢, and
considerB = Zle E; the u-exceptional divisor.

(a) By the hypotheses afiand X, we have

H(05(p"(H))) = H(Og(H)) = H°(0c(H)).
(b) From the exact sequence
~) (K§+C)—>WC—>O,

we get thatHO(O (Kg+0C)) — ¢) is surjective since, by Serre duality and by hypothesi$on
1

05(K

H(w

h'(04(Kg)) = h'(0g ) h'(0g) = 0. Therefore, by linear equivalence,
H(03(u"(Ks + D) = B)) — H’(wc)

is surjective.
(c) Asiin (b), sinceh! (05(Kg — p*(H))) = h*(0g(p*(H))) = h*(0s(H)) = 0 by hypothesis orf,
we get the surjective map

HO (05" (Ks + D — H) = B)) — H(wo(—H)).

Thus, we can consider the following diagram:

HO(Og(p* (H))) ® H(O3(u*(Ks + D — H) — B)) =5 H(03(u*(Ks + D) - B))
! !
HO(Oc(H)) ® HO(we(— 1)) e HO(we),

where the vertical maps are surjective by (a), (b) and (c). On the other hand, we have

HO(04(p(H))) ® H(05(u*(Ks + D — H) — B)) =3 HY(O4(u*(Ks + D) — B))
! !
HY(05(H)) ® H*(In/s(Ks + D — H)) o8 HIyn/s(Ks + D)),

where the vertical maps are isomorphisms. Thudss is surjective ifyg g is.
Recall that, ifJ y,5(Ks + D — H) is a0-regular coherent sheaf of, the maps
H(Os(H)) @ H'(Ins(Ks + D + (a = 1) H)) — H(Jys(Ks + D + aH))

are surjective, for alle > 0 (for terminology and results om-regularity see, for example, [23]). There-
fore, the0-regularity ofJy,s(Ks + D — H) is a sufficient condition for the surjectivity @fy s (and so
of po,c). By definition, the given sheaf (sregular iff

(31) H'(In/s(Ks + D —2H)) = H*(In/s(Ks + D — 3H)) = (0).

Our next result determines numerical conditions on the divisor diassd an upper-bound on the
number of nodes implying (31).

Theorem 5.1. Let.S C P" be a smooth surface and IgD| be a a complete linear system Snwhose
general element is a smooth, irreducible divisor. Suppose that:

i) (D-3H)H > 0;
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i) (D—4H)?>>0andD(D —4H) > 0;

i) v(D,H) < D(D—4H) — 4, wherev(D, H) is the Hodge number dd and H (see Def. 1.2);

V) 6 < D(D—4H)+ 8D2(D74H)2.

If X ~ D is areduced, irreducible curve with ondynodes as singular points and = Sing(X), then

KW' (In/s(Ks + D —2H)) = h*(In/s(Ks + D — 3H)) = 0;
in other words]J /s(Ks + D — H) is 0-regular onS.
Proof. We start by considering the vanishitd (Jy,s(Ks + D — 2H)) = 0. By contradiction, as-
sume thatV does not impose independent conditiong &y + D — 2H|. Let Ny C N be a mini-
mal 0-dimensional subscheme &f for which this property holds and Ié = |Ny|. This means that
h'(S,In,(D + Ks — 2H)) # 0 and thatN, satisfies the Cayley-Bacharach condition (see, for example

[13]). Therefore, a non-zero elementt (Jy, (D + Ks — 2H)) gives rise to a non-trivial rank 2 vector
bundle€ € Ext!(In, (D — 2H), Os) fitting in the following exact sequence

(32) 0—-0s—&—In,(D—-2H)— 0,
with ¢1(£) = D — 2H andey(€) = §p > 0. Hence
(33) c1(E)? — 4ca(E) = (D — 2H)? — 46.

Since D is effective and irreducible wit? > 4HD > 0, fromii) it follows that D is a big and nef
divisor (see Def. 1.1). By applying the Index theorem to the divisor ([@airD — 4H) and byiv), we get

2D(D —4H) -85 > D(D —4H) + /D?(D — 4H)? — 85 > 0.
Therefore,
c1(€)? —4ca(8) > (D —2H)? — 46 = D(D — 4H) — 46 + 4H? > 0,
which means thaf is Bogomolov-unstable (see Definitiar8 and Remark .2), henceh®(£(—M)) # 0.
Twisting (32) by Og(—M), we obtain

(34) 0— Og(—M) — E(=M) — Ty, (D — 2H — M) — 0.

We claim thath®(Og(—M)) = 0; otherwise— M would be an effective divisor, thereforel/ A > 0,
for each ample divisoA. From(1), it follows thatc; (£) = M + B, so, by(1) and(32),

(35) M —B=2M—D+2H € N()*.

ThusM H > %; next byi) it follows that H(D — 2H) > 0, hence-MH < 0.

The cohomology sequence associate@t ensures there exists a divisar~ D — 2H — M s.t.
Ny C A and s.t. the irreducible nodal curvé ~ D, whose set of nodes ¥, is not a component ah
(otherwise—M — 2H would be an effective divisor, which contradicts the non-effectivenessia@).

Next, by Bezout's theorem, we get
(36) XA =X(D—2H — M) > 25.

On the other hand, taking/ maximal, we may further assume that the general secti¢t{-ef\/) van-
ishes in codimensiof. Denote byZ this vanishing-locus, thugy (£(—M)) = deg(Z) > 0; moreover,
ca(E(=M)) = c2(&) + M? + ¢, (E)(—M) = dg + M? — M (D — 2H), which implies

(37) 8o > M(D —2H — M).

(Note thatM? > 0 since2M — (D — 2H) € NT(S) and(D — 2H) is effective).
By applying the Index theorem to the divisor palp, 2M — D + 2H), we get

(38) D?*(2M — D +2H)? < (D(D — H) —2D(D — 2H — M))?.

Note now that, from hypotheseésandii) it follows that D(D — 2H) > 0, sinceD(D — 4H) > 0 hence
D? —2HD > 2HD > 0. From(36) and from the positivity ofD(D — 2H), it follows

(39) D(D —2H) —2D(D — 2H — M) < D(D — 2H) — 46,.
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We observe that the left side member of (39) is non-negative, §hiée— 2H) — 2D(D —2H — M) =
D(2M — D +2H), whereD is effective and, by35), 2M — D + 2H € N(S)". Squaring both sides of
(39), together with §8), we find

(40) D?*(2M — D +2H)? < (D(D — 2H) — 4d¢)*.

On the other hand, b§37), we get

(2M — D +2H)? = 4(M — %)2 =(D—2H)*> -~ 4(D —2H — M)M > (D — 2H)? — 44,
ie.
(41) (2M — D +2H)? > (D — 2H)? — 4.

Next, we define
(42) F (o) := 402 — 4D(D — 4H)éy + (DH)? — D*H?.

Putting togethe(40) and (41), it follows that F'(dy) > 0. We will show that, with our numerical hy-
potheses, one hds(dy) < 0, proving the statement.

Indeed, the discriminant of the equatibitdy) = 0is D?(D —4H)?, and it is a positive number, since
(D —4H)? > 0, byii), andD? > 0. We remark thaf(5y) < 0iff 6y € (a(D, H), 3(D, H)), where

D(D — 4H) — \/D%(D — 4H)?
8

a(D,H) =

and

D(D —4H) + \/D?*(D — 4H)?
o(p, 1y = PP H VDID A,
so we have to show thaly € (a(D, H), B(D, H)).
Fromv), it follows thatéy < G(D, H). Note thata(D, H) > 0: indeed, ifa(D, H) < 0 then
D(D —4H) < v/D?(D — 4H)?, which contradicts the Index Theorem, sineéD — 4H) > 0 andD
nef. Moreover, we have(D, H) < 1: for simplicity, putt = D(D — 4H); thusa(D, H) < 1 iff

(¥) t —8 < /D2(D —4H)2 = \/t2 — 16((DH)2 — D2H?).

If t —8 < 0, (%) trivially holds; on the other hand, iff— 8 > 0, by squaring both sides ¢&) we get
t?2 — 16t + 64 < t* — 16v(D, H) which means/(D, H) < t — 4 = D(D — 4H) — 4, i.e. hypothesis
i4i). With analogous computations we get tfaD, H) > 1, which ensures there exists at least a positive
integral value for the number of nodes.
In conclusion, our numerical hypotheses contradi¢f,) > 0, therefore the assumptidn (I (D —
2H + Kg)) # 0 leads to a contradiction.

For what concerns the other vanishing, i8(Jy,s(Ks + D — 3H)) = 0, if we consider the exact
sequence

O%jN/S(Ks-i-D—?)H) —>05<K5+D—3H) —>ON(K5+D—3H) — 0,

by Serre duality we get?(Jy,s(Ks+D—3H)) = h*(0s(Ks+D—3H)) = h®(Os(—D+3H)) =0
since, byi), 3H — D cannot be effective. O

Corollary 5.1. If D ~mH on S, withm > 5, and if X] € V|, s is such that

m(m —4)

(43) 0 < )

deg(9),
thenJy,s(Ks + (m — 1)H) is 0-regular onS.

We may observe that Theorem 5.1 also implies the geometric linear normality of theXure do
this, we have to recall the following results from [11], which are a generalization of what Chiantini and
Sernesi proved in [7] for surfaces¥:
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Theorem 5.2. Let.S C P" be a smooth, non-degenerate and linearly normal surface (not necessarily
of general type) such thdt! (Og(H)) = 0 . Let|D| be a complete linear system shwhose general
element is supposed to be smooth, irreducible and linearly norni&l.imhen,X is g.l.n. if and only if

N imposes independent conditions to the linear system Kgs — H |

Theorem 5.3. Let.S C P" be a smooth surface and IgD| be a complete linear system, whose general
element is a smooth, irreducible divisor. Suppose that:

i) (D—H)H > 0;

i) (D—2H)>>0andD(D —2H) > 0;

iy v(D,H) <4(D(D—2H) —4), wherev(D, H) is the Hodge number d and H;
D(D—2H)++/D2(D—2H)?
% .

iv) § <
If X ~ D is areduced, irreducible curve with ondynodes as singular points and = Sing(X), then
h'(In/s(D + Ks — H)) = 0 soN imposes independent conditions|f0 + Ks — H|. In particular,
if S is also assumed to be non-degenerate, linearly normal and suchthst O5(H)) = 0 and if the
general element dD| is also linearly normal irP", thenX is geometrically linearly normal.

If D ~mH then, whenn > 3, all numerical conditions in Theorem 5.3 hold ad becomes

m(m — 2)

4
Remark 5.3. It is a straightforward computation to verify that numerical conditions in Theorem 5.1
imply the ones in Theorem 5.3. Thus SfC P" is a smooth, non-degenerate, regular and linearly normal
surface of general type such that(Os(H)) = 0 and if | D| is a complete linear system, whose general
element is a smooth, irreducible and linearly normal curve satisfying numerical hypotheses in Theorem
5.1, thenX is g.l.n and the map, ¢ is surjective (see Remark 5.2).

(44) d < deg(S).

By summarizing, we have the following result:

Theorem 5.4. Let.S C P" be a smooth, regular, non-degenerate and linearly normal surface of general
type, such thab!(0s(H)) = 0. Denote by D| a complete linear system, whose general element is as-
sumed to be a smooth, irreducible and linearly normal curve satisfying numerical hypotheses in Theorem
5.1. Let[X] € V|p, s be aregular point of the Severi variety (in the sense of Definition 1.4),5athin

iv) of Theorem 5.1, i.&f < DO—4H)+ % DED=AHE Then, the morphism

Tpls - Viple = My

has injective differential atX]. In particular, 7| p| ; has finite fibres on each generically regular compo-
nent ofV|p| 5, SO each such component parametrizes a family having the expected number of moduli.

Proof. See Remark 5.1, Remark 5.2, Theorem 5.1 and Remark 5.3. O

Corollary 5.2. Let S be as in Theorem 5.4 and 12 ~ mH on S, with m > 5, and assume that

[X] € V|p) s is aregular point of the Severi variety, withas in (43), i.e.

m(m —4)
4

Then, the morphism,,, ;7 s has injective differential atX]. In particular, 7|,,, 7|5 has finite fibres on

each generically regular component &f,, ;7| 5, SO each such component parametrizes a family having

the expected number of moduli.

d < deg(S).

Remark 5.4. A particular case of the corollary above is wh&nis a complete intersection " of
type (aq,...,a.—2); as already observed the upper-boundpansuring thatX is g.l.n., becomes <

m(m

+2)deg(5), as in (44), whereas the bound &ensuring that all components bfp ; are regular is

(45) o< deg(S)

m(m — 2((Sja;) —r — 1)
4
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(see [7] and [10]). This shows that, in general, the strongest restrictichisrgiven by asking the
regularity property of the poirtX] in the sense of Severi variety theory, then @hegularity property of
the sheafly,5(D + Ks — H) on S and, finally, the geometric linear normality property for the cukie

Remark 5.5. As an interesting related result, we may observe that the bountlioriTheorem 5.1
ensuring thé-regularity of the shedfy,s(Ks + D — H) is sharp. The following example was inspired
by Corollary C in [33].

Example: Let S C P be a smooth sextic. We want to show there exist irreducible nodal ciifysach
that[X] € Vigp) s, for whichJy,s(Ks + D — H) = Jn/s(9) is notO-regular. SinceX ~ 8H, one
trivially has

h*(Inys(Ks + D —3H)) = h*(Inys(7)) = h*(0s(7)) = h°(05(=5)) = 0;

thus the condition ofi-regularity fails as soon ds' (J,5(8)) # 0. We will show that, for such a curve
X, its set of nodesV imposes one condition less ®H | proving the sharpness of (43) in Corollary 5.1
(observe in fact that8 = 58(8 — 4)).

As a preliminary count, observe that the family of curve$giff | with nodes in48 given points has, at
least, dimension 10. To construct an explicit example Nébe a 0-dimensional complete intersection
subscheme of' obtained by the intersection of a general elem@nof |2H| and of a general element
Cy of |[4H|; thus N is supported o8 reduced points. By using the Koszul sequencéVoin S, we
immediately find

h'(In/s(9)) =0 and h'(Ins(8)) = 1.
Observe that
dim(|Inys(6)]) = 43, dim(|In/s(4)]) = 10, dim(|In;s(2)]) = 0;

letl'y, Ay € [In/s(4)], As € [Tnys(6)| andA; € |Ty/s(2)| be general elements in such linear systems,
which are smooth curves simply passing throighPut

Yl :F4—|—A4 and }/2 :A2+A6;
thusY; andY> are reducible nodal curves ¢h linearly equivalent t@ H and having nodes itV. Let
Fapu = {\Y1 + uYa|[\ p] € P}

be the pencil of curves generated ByandY>. Its general elemenY’,, ,, is an irreducible curve linearly
equivalent to8 4 on S passing doubly throughv. To conclude, we have to show that, , has only
nodes inN. To prove this, observe that

F4A2 = A4A2 = 48,

thus, among the poinfg, Y5 = (I'y + A4) (A2 + Ag), those which are nodes for both andY; are only
the points of/V. Therefore X ,, has only nodes inv.

On the other hand, observe that such curves are geometrically linearly normal4&iiscstrictly less
than the bound in (44) which $3(8 — 2) = 72.

Remark 5.6. Note that the example above also determines non-regular points of the Severi variety
Vism|,48- We recall that Chiantini and Sernesi constructed in [7] some examples of non-regular points of
the Severi varietie$),,, 7 s, (,n—4), m = 5, 0n a general quintic surface C P3, proving the sharpness

of (45). These examples were generalized in [11] to Severi varieties on general canoniégd (i-eH)

and non-degenerate complete intersection surfaces.iifhe key point to construct such examples was
that on a canonical surface the condition for a nodal cufve S to be g.l.n. is equivalent to the fact that

[X] is a regular point; in particular, (44) and (45) coincide.

In the same way, whefi is 2-canonical (as it particularly happens in the example abové)-thgularity

of the sheafl v, 5(K's + D — H) is equivalent to the fact thak| is a regular point; in particular, (43)

and (45) coincide.
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6. NUMBER OF MODULI FOR FAMILIES OF NODAL CURVES ON COMPLETE INTERSECTION
SURFACES OF GENERAL TYPE

To complete the overview on positive answers to the moduli problem for divisors of theridinon
S C P, the cases < m < 4, which are not covered by Corollary 5.2, must be still considered.
From now on, we shall focus on the casefC P" a smooth, non-degenerate complete intersection
surface of general type; thus,
Kg ~aH,
for some positive integex.
We first consider the cases = 3 and4.

Theorem 6.1. Let[X] € V|,,,;7|,5 On .S be a regular point, withn > 3, and assume tha's ~ o H, with

a>2.1fdisasin (44),i.e.
m(m — 2)

0 < 1

deg(S),
then the morphism
TimH|,s * Vimm,s — My
has injective differential atX]. In particular, 7|,,, 7|, 5 has finite fibres on each generically regular com-
ponent ofl/,,, ;7 5, SO each such component parametrizes a family having the expected number of moduli.

The same conclusion holds for the family of smooth cuvygs;| o also witha: = 1.

Proof. By the hypothesis o and by the facts that, > 3 andd is as in (44), we get thaX is g.l.n. (see
Theorem 5.3). Therefore, as in (a) of Remark 5.2,

hO(Og(u* (H))) = h*(05(H)) = h°(Oc(H)) =7+ 1.

By combining the pull-back t& of the Euler sequence I and the exact sequence definifign S, we
get the following diagram:

0 0 0
1 ! 1
0— 05(-C) — HOg(u*(H)))" @ 05" (H)-C) — p*(Tpr)®05(-C) —0
! 1 1
0= 05 —  H(0z(u*(H)) @0z(u*(H) — - (Ter) -0
1 1 1
0— Oc — H°(0c(H))" @ Oc(H) - ©* (Tpr) —0
1 1 1
0 0 0
From the regularity of, we get
! !
= HO(03(p"(H)))Y @ H(05(u*(H))) HO(u*(Tpr)) —0
lh lh/
Lo HYOc(D)Y @ HY(0c(H) % HO(¢* (Ter) — HYOc)
! 1

H (1 (Tpr) ® 05(=C))
From the second row ¢ is surjective if and only ify is. Sinceh/ o g = ¢’ o h and sincg is surjective,
it suffices to prove thak’ is surjective. With the given hypotheses, we shall prove that

(+)  hHp(Ter) ® 05(=C)) =0

holds. By Serre duality and by Leray’s isomorphisi(.* (7pr) @ Og(—C)) = h'(In/s @ Q. |s ®
Os(Ks +mH)). The regularity oft/,,, ;7| 5 at[X] implies that the restriction map

H°(0s(mH)) " H*(On (mH))
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is surjective. By tensoring the exact sequence
0—IJns—0s—0N—0
with the vector bundl€)l, |s ® Os(Kgs + mH), we get

pszér 1s@0g(Kg+mH)
—

< — HY(Qpe|s ® Og(Kg +mH)) HY(Qp:|n ® O5(Ks +mH)) —

H'(In/s @ Qbr|s © Os(Ks +mH)) — H' (Qp|s © Og(Ks +mH)) — -+
SinceS is a non-degenerate c.i. (in particular projectively normal), from standard computations involving
the Euler sequence restricted $owe find 2! (Q2}.|s ® Os(Ks + mH)) = 0 (for details, see [9]).
Therefore, the vanishing«) holds if and only if the mapo%r‘sg)os(KSerH) is surjective. By the
assumptionks ~ aH, with o > 2, the vector bundlé)}, |s @ Os(«) is globally generated; then one
concludes as in Theorem 3.2. In the same way, one concludes also in the<€asands = 0.
Since we have proven thaf is g.l.n and that the map, ¢, by Propositions 4.1 (i) and 5.1 we get the
statement. (]

The above result gives new positive answers to the moduli problem for Severi varieties of the form
Vimm),s» for m = 3 and4 on smooth, complete intersection surfaces of general type. These cases are
covered neither by the results in Section 3 nor by those in Section 5.

For what concerns the cases= 1 and2, we cannot apply Theorem 6.1, since by hypothesisjust
be bigger than 2. In such cases, we shall make use of the following theorem in [8] (which generalizes a
result of Accola in [1]):

Theorem 6.2. (see[8], Teorema 2.11) Laf C P be an irreducible, non-degenerate curve of degiee
and letr : T' — T be its normalization. Let > r > 2 and lety(n, r) be theCastelnuovo numbewhich
is a non-negative integer such that
n—1 n—1

-1 ) < 1
r—1 < x(nr) r—1
wherex(n,r) = 0iff " is a smooth, rational normal curve. Put

(46)

x(n,r) =1
=
Assume there exists @ha linear systeng?, with m < n ands > r. Then, either
@) g5, = g, (Whereg] is the birational linear system on related torr)

or

(i) g(I) < ®(n,7) := g(n, ) — x(n,7) + 1.

47) gn,r) =x(n,r)[n—r— r—1)].

Remark 6.1. In our cases, we have thAt= X is a nodal curve which is linearly equivalentitod on a
smooth, complete intersection surfage- P” of degreed, I = C andr = ¢.

(@) Whenm = 2, X C P" is a non-degenerate, irreducible, nodal curve of degglemn S andy is related
to a linear systerg;; mappingC' birationally ontoX. By adjunction onS,

B _ (2H + Ks)2H
9(0) = pu(X) =0 = S

From Theorem 6.2, i < p,(X) — ®(2d,r), i.e.
(r+3—4d)

+1-6=@2+a)d+1-4.

-1
(48) 6 < d(2+a) + o —>x(2d,r) + r . ) (x(2d,1))?,
with o > 1andx(2d, r) € Zso N [25E — 1, 2221, then theys, on C is uniquely determined.

(b) If m = 1, we have a nodal curv& ~ H on S, which is a hyperplane section of a non-degenerate

surface, soX ¢ P"~! =~ H is non-degenerate iff. Thus, we have @2*1 on C. As before, if

§ < po(H)—®(d,r—1),ie.

d(1+ ) n (r—2d+2)
2 2

with o > 1 andx(d,r — 1) € Zso N [4=L — 1, 4=1

U2 (e 1)

), theg’,~" on C'is unique.

(49) 5§ < x(d,r — 1)+
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By using Remark 6.1, we can conclude with the following

Theorem 6.3. Let D ~ mH on S, with1 < m < 2, and assume thdfX| € V|p, 5 is a regular point of
the Severi variety. Suppose that
(r + 3 — 4d)

5 x(2d,r) + @(X(Qd, r)?and a > 1, if m =2,

d<d2+ o)+

wherex(2d,r) € Zxo N [25

), and

’ r— 1
d(1+ «) n (r—2d+2)

2 2 2
wherex(d,r — 1) € Zso N[ ,4=1). Then, the morphism,,, ;| s has injective differential atx|.
In particular, 7|,,, 7|5 has finlte fibres on each generically regular componenit|pfy 5, S0 each such
component parametrizes a family having the expected number of moduli.

(r—2)

o< (x(d,r —1))*and a > 1, if m = 1,

x(d,r —1)+

Proof. Suppose, by contradiction, that(¢*(7s)) # 0; thus,dim(w@Hm(mmH‘,g([X]))) > 0. Since

[X] is by assumption a regular point, it corresponds to an unobstructed cusvd lrerefore, an element

of Tix; (wl_rerm(mmH‘,g([X})) is induced by an effective algebraic deformation. From what observed

in Remark 6.1, such deformations must be induced by projectivities. Then, one can conclude by using
Proposition 4.1. |

Example: if we consider an irreducible, nodal plane sectiron a smooth quinti§ c P23, we get that
x(d,r — 1) = x(5,2) = 3; so if [X] is a regular point of the corresponding Severi variety and, by (49),
if § < 1—20 — 1—25 + % = 2, the component passing throughi] has the expected number of moduli.

Remark 6.2. We cannot apply what observed in Remark 6.1 whes 3 and4 since, in such cases, one
can show thap, (3H) — ®(3d,r) < 0 andp,(4H) — ®(4d,r) <0

7. EXAMPLES AND FINAL REMARKS

For clarity sake, here we shall summarize what one can deduce from our more general results of
Sections 3, 5 and 6 in the particular cases of Severi varigtigg| s onS C P" a smooth, non-degenerate
complete intersection of general type or, in particularSoa S; C P? of degreed > 5.

Proposition 7.1. Let.S ¢ P" be a smooth, non-degenerate complete intersection of general type whose
canonical divisor isKs ~ aH, whereH denotes its hyperplane section. Suppose {Katis a regular
point of the Severi variety|,, x| s-
Assume that:
1) < dim(|mH)|) if

aa>2,m>a+6,0>1o0r

b)a>1,m>a+6,6=0;
(2)6 < Wdeg(S) ifa>1ands <m<a+5;
3)

a) § < ™™=2)geg(S) if a > 2andm = 3, 4 or

b) 6_0|fa:1andm:3, 4;
(4) 5 < deg(S)(2 + ) + =29 3 (2deg(9), r) + T (x(2deg(S),r))? if @ > 1andm = 2,
wherey (2deg(S), r) is a non- negatlve integer |i3d?9(s) ! 2deg(9)=1y;

—1,
(5)8 < a8 (1 4 o) 4 =299 ) (g — 1) 4 U5 2’( ( r—1))%ifa > 1andm = 1, where

x(deg(S), ) is a non-negative integer iff<2S) =1 _ deg Ly;

Then the morphism

TimH|,5 * VimH|,s — My
has injective differential atX]. In particular, it has finite fibres on each generically regular component
of Vi, m,5, SO each such component parametrizes a family having the expected number of moduli.

In particular, we have:
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Corollary 7.1. Let S c P? be a smooth surface of degrde> 5 and let[X] € VimH|,s be a regular

point.

Assume that:

1) < dim(|mH)|) if
a)d>6,m>d+2,§>1or
b)d>5,m>d+2,0 =0;

2)0 < Wdifd25and5§m§d+l;

3)

a) < Wdifdzmlndm:& 4or

b) §=0ifd=5andm =3, 4;
@o<d—2ifd>5andm = 2;
B)d<d—-3ifd>5andm = 1.

Then the morphism

Tim|,s * Vimmls — My
has injective differential atX]. In particular, it has finite fibres on each generically regular component
of V|, 1,5, SO €ach such component parametrizes a family having the expected number of moduli.

Observe that our results generalize what can be proven in the case of a general smooth, complete
intersection surfacé C P" by using a recent result of Schoen, [28]. In his paper, he studies algebraic
varieties which are dominated by products of varieties of smaller dimension (abbreDRtgdin the
case of products of curves, one writB®C. The main goal of Schoen’s paper is to discuss, via real
algebraic group theory and Hodge theory, some obstructiobd?t© and DPV properties. As a result,
he shows for example that W c PV is a sufficiently general complete intersection variety of degree
d > N +1 and of dimensiom > 2, thenW cannot satisfy th®PC-property. Thus, the general complete
intersection surfacé C P, of degreel > r + 2, cannot be dominated by a product of curéggsx Cs.
Therefore, there cannot exist isotrivial pencils of smootli-aodal curves ifmH|, otherwise, after a
suitable base change, such a surface woulDBE.

Thus, via Schoen'’s results, one can answer the moduli problem, for smooth and nodal curves in the
linear systemimH|, m > 1, on a general complete intersection surf&ce P" of degreed > r + 2.

Our results are more generally valid for divisdpson S, whereS is not necessarily a general complete
intersection and can have a wildly complicat®dv(,S). Moreover, our techniques involve only vanish-

ing theorems, vector bundle theory on smooth projective surfaces and Brill-Noether theory on smooth
projective curves, so they are of a more elementary nature and give simpler proofs.
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