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NON-SPECIAL SCROLLS WITH GENERAL MODULI

ALBERTO CALABRI, CIRO CILIBERTO, FLAMINIO FLAMINI, RICK MIRANDA

Abstract. In this paper we study smooth, non-special scrolls S of degree d, genus g ≥ 0,
with general moduli. In particular, we study the scheme of unisecant curves of a given degree
on S. Our approach is mostly based on degeneration techniques.

1. Introduction

It is well-known that the study of vector bundles on curves is equivalent to the one of
scrolls in projective space. In the present article, we will mostly take the projective point
of view, together with degeneration techniques, in order to study smooth, non-special scroll
surfaces of degree d, sectional genus g ≥ 0, with general moduli, which are linearly normal
in PR, R = d − 2g + 1. However we will bridge this approach with the vector-bundle one
showing how projective geometry and degenerations can be used in order to improve some
known results about rank-two vector bundles and to obtain some new ones (cf. also [4]).

The first three sections of the paper basically contain some folklore, which we think will
be useful for a possible reader. In § 2 and 3 we fix notation and terminology and recall
preliminary results on scrolls. In § 4 we introduce the vector bundle setting.

If d ≥ 2g + 3 + min{1, g − 1}, such scrolls fill up a unique component Hd,g of the Hilbert
scheme of surfaces in P

R which dominates Mg (this result is essentially contained in [2]; see
[3] for an explicit statement and different proofs). Let [S] ∈ Hd,g be a general point, such
that S ∼= P(F), where F is a very ample rank-two vector bundle of degree d on C, a curve
of genus g with general moduli, and S is embedded in PR via the global sections of OP(F)(1).
In § 5, we first recall that if g ≥ 2 and S is general, then F is stable (in case g = 1 there is
a slightly different result; cf. Theorem 5.4 and Remark 5.5. This result is contained in [2].
We give here a short, independent proof). This suggests that Hd,g plays, in the projective
geometry setting, a role analogous to the one of the moduli stack of semistable rank-two
vector bundles of degree d over Mg. We discuss in Remarks 5.7 and 5.8 a few examples
showing that Hd,g contains points corresponding to unstable bundles as well as to strictly
semistable products of the type C×P1. We finish § 5 by describing two constructions closely
related to the ones in [3] (cf. Constructions 5.9 and 5.11) which prove that Hd,g contains
smooth points corresponding to some reducible scrolls. The results in [2] also imply that
Hd,g contains points corresponding to reducible scrolls. However, the ones that we need to
consider in this paper are different from those in [2] and therefore we have to introduce them
here. Note that in [3] one proves that Hd,g contains points corresponding to surfaces which
are reducible in suitable unions of planes, thus solving an old problem posed by G. Zappa
(cf. [35]). These planar degenerations however are not used here.

In § 6 we consider the scheme Div1,m
S parametrizing unisecant curves of given degree m on

S (cf. Definition 6.1). By using degeneration arguments involving the above constructions,
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we prove Theorem 6.9, which says that S is a general ruled surface in the sense of Ghione in
[11, Definition 6.1] (cf. Definition 6.6 below). Namely

(i) dim(Div1,m
S ) = dm := max{−1, 2m− d− g + 1};

(ii) Div1,m
S is smooth, for any m such that dm ≥ 0;

(iii) Div1,m
S is irreducible, for any m such that dm > 0.

This, in particular, gives effective existence results for general ruled surfaces (whereas [11,
Théorème 7.1] is only asymptotic, cf. Theorem 6.7 below). The idea of using degenerations to
study unisecants is already present in [2], where however it is used only to prove the stability
of the rank-two vector bundle determining the general point of Hd,g.

In § 7 we make some applications proving a few enumerative properties of Div1,m
S . In

Theorem 7.1 we give a new and easy proof of a result of Ghione (cf. [11, Théorème 6.4
and 6.5]), which provides also an effective version of it. Then, we apply Theorem 7.1 to
compute the so called index of Div1,m

S , thus giving a new proof of a result of Corrado Segre

(cf. Proposition 7.2). In § 7.3 we study the monodromy action on Div1,m
S in case this is finite,

proving that the monodromy acts as the full symmetric group. Finally, in § 7.4 we extend
the result in [16] and [27, Example 3.2], by computing the genus of the curve parametrizing
those divisors in Div1,m

S passing through dm − 1 general points of S.
This paper has to be regarded as the continuation of a project initiated with [3]. In [4] we

make further application of the ideas contained in [3] and in the present paper to the Brill-
Noether theory of sub-line bundles of rank-two vector bundles on curves. We will devote a
forthcoming article to the case of special scrolls.

2. Notation and preliminaries

In this section we will fix notation and general assumptions. As a general warning, if there
is no danger of confusion, we will identify line bundles and divisors.

Let C be a smooth, projective curve of genus g ≥ 0 and let ρ : F → C be a geometrically
ruled surface on C, i.e. F = P(F), with F a rank-two vector bundle on C. For us, a rank r
vector bundle is a locally free sheaf of rank r.

In this paper, we shall make the following:

Assumptions 2.1. With notation as above,

(1) the rank-two vector bundle F is of degree deg(F) := deg(det(F)) = d;
(2) h0(C,F) = R + 1, for some R ≥ 3;
(3) the complete linear system |OF (1)| is base-point-free (therefore the general element is

a smooth, irreducible curve on F ) and the morphism

Φ : F → P
R

induced by |OF (1)| is birational to the image.

Definition 2.2. The surface
Φ(F ) := S ⊂ P

R

is said to be a scroll of degree d and of (sectional) genus g, and S is called the scroll determined
by the pair (F, C). Note that S is smooth if and only if F is very ample. If S is not smooth,
then F is its minimal desingularization.

For any x ∈ C, let fx := ρ−1(x) ∼= P1. The general fibre of ρ will be denoted by f . For any
x ∈ C, the line lx := Φ(fx) is called a ruling of S (the general ruling of S will be denoted by
l = Φ(f)). By abusing terminology, the family {lx}x∈C is also called the ruling of S.
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For further details on ruled surfaces, we refer the reader to [15], [18, §V], [2], [8], [9], [10],
[11], [12], [13], [21], [22], [25], [29], [32] and [33].

Let F
ρ
→ C be as above. There is a section i : C →֒ F , whose image we denote by H , such

that OF (H) = OF (1). Then

Pic(F ) ∼= Z[OF (H)] ⊕ ρ∗(Pic(C)). (2.3)

Moreover,
Num(F ) ∼= Z ⊕ Z, (2.4)

generated by the classes of H and f , satisfying Hf = 1, f 2 = 0 (cf. [18, § 5, Prop. 2.3]). If
d ∈ Div(C), we denote by df the divisor ρ∗(d) on F . A similar notation will be used when
d ∈ Pic(C).

From (2.3) and (2.4), any element of Pic(F ) corresponds to a divisor on F of the form

nH + df, n ∈ Z, d ∈ Pic(C).

As an element of Num(F ) this is

nH + df, n ∈ Z, d = deg(d) ∈ Z.

Definition 2.5. For any n ≥ 0 and for any d ∈ Div(C), the linear system |nH + df |, if not

empty, is said to be n-secant to the fibration F
ρ
→ C since its general element meets f at n

points.
For any d ∈ Div(C) such that |H + df | 6= ∅, any B ∈ |H + df | is called a unisecant curve

to the fibration F
ρ
→ C (or simply of F ).

Any irreducible unisecant curve B of F is smooth and is called a section of F .

Recall that there is a one-to-one correspondence between sections B of F and surjections
F ։ L, with L = LB a line bundle on C (cf. [18, § V, Prop. 2.6 and 2.9]). Then, one has an
exact sequence

0 → N → F → L→ 0, (2.6)

where N is a line bundle on C.
Note that the surjection in (2.6) induces the inclusion B = P(L) ⊂ P(F) = F . If L =

OC(m), with m ∈ Divm(C), then m = HB and B ∼ H + (m− det(F))f .
For example, if B ∈ |H|, the associated exact sequence is

0 → OC → F → det(F) → 0, (2.7)

where the map OC →֒ F gives a global section of F which corresponds to the global section
of OF (1) vanishing on B.

With B and F as in Definition 2.5, from (2.6)

OB(B) ∼= N∨ ⊗ L (2.8)

(cf. [18, § 5]). In particular,

B2 = deg(L) − deg(N) = d− 2 deg(N) = 2m− d. (2.9)

Similar considerations hold if B1 is a (reducible) unisecant curve of F such that HB1 = m.
Indeed, there exists a section B ⊂ F and an effective divisor a ∈ Div(C), a := deg(a), such
that

B1 = B + af,
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where BH = m−a. In particular there exists a line bundle L = LB on C, with deg(L) = m−a,
fitting in a sequence like (2.6). Consider the evaluation map

ev : F → O
⊕2
a .

In a local trivialization around the points in a F splits as the sum of N and L. Therefore, a
local section s of F around a, can be considered as a pair (s1, s2) where s1 (respectively s2)
is a local section of N (respectively of L). Then, ev(s) = (ev(s1), ev(s2)), where we denoted
by ev also the obvious evaluation maps for N and L. By projecting onto the diagonal of O⊕2

a

we have a surjection
F → Oa

and therefore also a surjection of
F → L⊕ Oa

and it is clear now that it fits into the exact sequence

0 → N ⊗ OC(−a) → F → L⊕ Oa → 0. (2.10)

As above, the surjection in (2.10) induces the inclusion B1 ⊂ F .

Definition 2.11. Let S be a scroll of degree d and genus g as in Definition 2.2 corresponding
to the pair (F, C). Let B ⊂ F be a section and L as in (2.6).

Let Γ := Φ(B) ⊂ S. If Φ|B is birational to the image, then Γ is called a section of the
scroll S (the classical terminology for Γ was directrix of S, cf. e.g. [9, Defn. 1.9]) .

We will say that the pair (S,Γ) is associated with (2.6) and that Γ corresponds to the line
bundle L on C.

If m = deg(L), then Γ is a section of degree m of S; moreover,

Φ|B : B ∼= C → Γ

is determined by the linear series Λ ⊆ |L|, which is the image of the map

H0(F) → H0(L).

More generally, if B1 ⊂ F is a (reducible) unisecant curve and Φ|B1
is birational to the

image, then we call Φ(B1) = Γ1 a unisecant curve of degree m of S. Note that such a curve
is the union of a section and of some rulings.

As above, the pair (S,Γ1) corresponds to a sequence of the type (2.10).

In general, the map Φ|B may well be not an isomorphism, not even birational to the image
(cf. Example 3.7); indeed, Φ|B can even contract B to a point if L ∼= OC , in which case S is
a cone (cf. Lemma 3.5).

When g = 0 we have rational scrolls and these are well-known (see e.g. [15]). Thus, from
now on, we shall focus on the case g ≥ 1.

3. Preliminary results on scrolls

In this section, we collect some preliminary results concerning scrolls (cf. [29], [8] and [9]).
Let C be a smooth, projective curve of genus g and let F be a rank-two vector bundle on

C as in Assumptions 2.1.
If KF denotes a canonical divisor of F , one has that

KF ≡ −2H + (d+ 2g − 2)f, (3.1)
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where ≡ is the numerical equivalence on Div(F ) (see e.g. [18]). From (3.1), Serre duality and
Riemann-Roch theorem we have

R + 1 := h0(OF (1)) = d− 2g + 2 + h1(OF (1)).

Definition 3.2. The non-negative integer h1(OF (1)) is called the speciality of the scroll and
will be denoted by h1(F ), or simply by h1, if there is no danger of confusion. Thus,

R = d− 2g + 1 + h1, (3.3)

and the pair (F, C) determines S ⊂ PR as a linearly normal scroll of degree d, genus g and
speciality h1. Such a scroll S is said to be special if h1 > 0, non-special otherwise.

This definition coincides with the classical one given by Segre in [29, § 3, p. 128]: Segre
denotes by n the degree of the scroll, by p the sectional genus and by i := g − h1.

Since R ≥ 3, then d ≥ 2g + 2 − h1. In particular, for non-special scrolls

d ≥ 2g + 2. (3.4)

The following lemma provides an upper-bound for the speciality (cf. [29, § 14], [11] and [3,
Lemma 5.7]).

Lemma 3.5. Let C be a smooth, projective curve of genus g ≥ 1 and let F = P(F) be a ruled
surface on C as in Assumption 2.1. If det(F) is non-special, then

h1 ≤ g. (3.6)

In addition, if d ≥ 2g + 2, the equality holds in (3.6) if and only if F = OC ⊕ L, in which
case Φ = Φ|OF (1)| maps F to a cone S over a projectively normal curve of degree d and genus
g in Pd−g.

Proof. The bound (3.6) follows from the exact sequence (2.7), corresponding to a smooth
element H ∈ |OF (1)| (cf. (2.8)).

If the equality holds, then h0(OF (1)) = h0(F) = d − g + 2. If B ∈ |H| is the curve
corresponding to the section of F given by (2.7), then Φ(B) is a smooth curve of degree d
and genus g, which is linearly normal in Pd−g. This curve is projectively normal (cf. [5], [23]
and [24]). Therefore F is mapped via Φ to a surface S which is projectively normal, since its
general hyperplane section is (cf. [14, Theorem 4.27]). In particular, h1(OS) = 0.

Since S is birational to a ruled surface of positive genus, then S cannot be smooth, and
it has some normal (isolated) singularities. This forces S to be a cone (cf. [7, Claim 4.4]).
Hence, the assertion follows. �

From (3.3) and from Lemma 3.5, we have

d− 2g + 1 ≤ R ≤ d− g + 1,

where the upper-bound is realized by cones whereas the lower-bound by non-special scrolls (cf.
[3, Theorem 5.4]). Any intermediate value of h1 can be realized, e.g. by using decomposable
vector bundles, as the following example shows (see [29, pp. 144-145] and [3, Example 5.11]).

Example 3.7. Let g ≥ 3, d ≥ 4g− 1 and 1 ≤ h1 ≤ g− 1 be integers. Let L be a line bundle
on C, such that |L| is base-point-free and h1(L) = h1.

Let D be a general divisor on C of degree d− deg(L). Notice that, since deg(L) ≤ 2g − 2,
then deg(D) ≥ 2g + 1, so the linear series |D| is very ample.

Consider F = L⊕ OC(D). If F = P(F) then |OF (1)| is base-point-free and h1(F ) = h1.
For large values of h1, |OF (1)| is rarely very ample (cf. the case h1 = g in Lemma 3.5). For

example
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(i) if h1 = g−1, then |L| is a g1
2 on C. In this case, S has a double line Γ because |OF (1)|

restricts as the g1
2 to the section corresponding to the surjection F →→ L;

(ii) if h1 = g−2, then either C is hyperelliptic and |L| = 2g1
2, or C is trigonal and |L| = g1

3

or g = 3 and L = ωC. In the former case, as in (i), S contains a double conic Γ; in
the second case, S has a triple line. Only in the latter case, S may be smooth, and
contains a smooth, plane quartic as a section.

The analysis of the interplay between the h1 and the smoothness of the scroll is rather subtle
in general, and we do not dwell on this here. For other examples, we refer the reader to [29,
pp. 144-145], and to [2], [10] and [13].

We now want to discuss general properties of some unisecant curves on scrolls.

Definition 3.8. Let Γ1 ⊂ S be a unisecant curve of S of degree m such that (S,Γ1) is
associated to

0 → N → F → L⊕ Oa → 0, (3.9)

where a ∈ Div(C), possibly a = 0. Denote by Γ the unique section contained in Γ1. We will
say that:

(i) Γ1 is special if h1(C,L) > 0;
(ii) Γ1 is linearly normally embedded if H0(F) ։ H0(L⊕ O⊕2

a ).

If Γ1 = Γ then (ii) is equivalent to Γ = Φ|L|(C).

By Definition 3.2 and Formulae (3.3), (3.4) and (3.9), we immediately have:

Proposition 3.10. Let S ⊂ PR be a linearly normal scroll of degree d ≥ 2g+ 2, genus g ≥ 1
and speciality h1 ≥ 0, determined by the pair (F, C).
(i) Let Γ1 ⊂ S be a unisecant curve of S, which is linearly normally embedded, and let (S,Γ1)
be associated with (3.9). Then:

• if at least one of the two line bundles L and N in (3.9) is special, then S is a special
scroll;

• if both the line bundles L and N are non-special, then S is non-special and

R + 1 = h0(F) = h0(L) + h0(N) + 2a.

(ii) Conversely, the speciality of any unisecant curve of S is less than or equal to the speciality
of S. In particular, if S is non-special, then S contains only non-special unisecant curves.

Moreover, we have:

Proposition 3.11. Let S ⊂ PR be a linearly normal, non-special scroll of genus g ≥ 1 and
degree d ≥ 2g + 2. Then each unisecant curve of S of degree

m ≤ d− 2g + 1

is linearly normally embedded in S.

Proof. Assume by contradiction that Γ is not linearly normally embedded in S, i.e. the map
H0(F) → H0(L ⊕ OC(a)) is not surjective. Equivalently, h1(C,N) > 0. Hence, |N | =

g
d−m−g+h1(N)
d−m is a special linear series on C.
From Clifford’s Theorem

2(d−m− g + h1(N)) ≤ d−m,

which gives
m ≥ d− 2g + 2h1(N) ≥ d− 2g + 2

which is contrary to the assumptions. �
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The two results above are stated in [29, § 4, p. 130 and p. 137] and proved apparently in
a rather intricate way.

4. Results on rank-two vector bundles on curves

We recall here some results on rank-two vector bundles on curves which are frequently used
in what follows. For complete details, we refer the reader to e.g. [26] and [31].

Let C be a smooth, projective curve of genus g ≥ 0. Let E be a vector bundle of rank
r ≥ 1 on C. The slope of E, denoted by µ(E), is defined as

µ(E) :=
deg(E)

r
. (4.1)

From now on, we shall be interested in the rank-two case.
A rank-two vector bundle F on C is said to be indecomposable, if it cannot be expressed

as a direct sum L1 ⊕ L2, for some Li ∈ Pic(C), 1 ≤ i ≤ 2, and decomposable otherwise.
Furthermore, F is said to be:

• semistable, if for any sub-line bundle N ⊂ F, one has deg(N) ≤ µ(F);
• stable, if for any sub-line bundle N ⊂ F, one has deg(N) < µ(F);
• strictly semistable, if it is semistable and there is a sub-line bundle N ⊂ F such that

deg(N) = µ(F);
• unstable, if there is a sub-line bundle N ⊂ F such that deg(N) > µ(F). In this case,
N is called a destabilizing sub-line bundle of F.

Recall the following well-known fact:

Lemma 4.2. In the above setting, if F = L1 ⊕L2 is decomposable, then it is unstable unless
deg(L1) = deg(L2), in which case F is strictly semistable.

Proof. Set k = deg(L1) = deg(L2). Let N ⊂ F be any sub-line bundle; the injection N →֒ F

gives rise to the injection

OC →֒ F ⊗N∨ = (L1 ⊗N∨) ⊕ (L2 ⊗N∨),

i.e. to a global section of (L1 ⊗N
∨)⊕ (L2 ⊗N

∨). Hence, there is i ∈ {1, 2} such that Li⊗N
∨

is effective, i.e. deg(N) ≤ deg(Li) = k = µ(F), which shows the semistability of F. �

It is well-known that, given an integer d, there exists the moduli space of rank-two,
semistable vector bundles of degree d on C, which we denote by UC(d). This is a pro-
jective variety, and we denote by Us

C(d) ⊆ UC(d) the open subscheme parametrizing stable
bundles.

When g = 0, every vector bundle of rank higher than one is decomposable (cf. e.g. [28,
Thm. 2.1.1]). Furthermore, there is no stable vector bundle of rank r > 1 on P

1 (see e.g. [26,
Corollary 5.2.1]). In particular, Us

P1(d) = ∅ for any d.
When g = 1, we have to distinguish two cases. If d is odd, UC(d) = Us

C(d) ∼= C and every
[F] ∈ UC(d) is indecomposable. If d is even, Us

C(d) = ∅ (cf. [26, Rem. 5.9]), UC(d) ∼= Sym2(C)
and every [F] ∈ UC(d) is the direct sum of two sub-line bundles, each of degree d/2. For
details, see [34, Theorem 16] and the proof of Theorem 5.4-(i) later on.

For g ≥ 2, we have the following picture:
(i) UC(d) is irreducible, normal, of dimension 4g − 3;
(ii) Us

C(d) coincides with the set of smooth points of UC(d).
More precisely (cf. [26, § 5]):

(1) if d is odd, then UC(d) = Us
C(d) is smooth, i.e. each semistable vector bundle is stable;
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(2) if d is even, there are strictly semistable vector bundles, i.e. the inclusion Us
C(d) ⊂

UC(d) is proper.

Proposition 4.3. Let C be a smooth, projective curve of genus g ≥ 1 and let d be a positive
integer.

(i) If d ≥ 4g − 3 then, for any [F] ∈ UC(d), h1(C,F) = 0;
(ii) if g ≥ 2 and d ≥ 2g then, for [F] ∈ UC(d) general, h1(C,F) = 0.

Proof. (i) For the proof see [26, Lemma 5.2].
(ii) We use a degeneration argument. Two cases must be considered.
(a) Assume d = 2k, with k ≥ g. Let L1, L2 ∈ Pick(C) be general line bundles. Let

F0 := L1 ⊕ L2.

Since h1(Li) = 0, for 1 ≤ i ≤ 2, then h1(F0) = 0. Observe that µ(F0) = k. By Lemma 4.2,
F0 is semistable, i.e. [F0] ∈ UC(2k). By semicontinuity, h1(F) = 0 for general [F] ∈ UC(2k).
(b) Assume d = 2k + 1, so k ≥ g. Let L ∈ Pick+1(C) and N ∈ Pick(C) be general line
bundles. Let F0 be a general rank-two vector bundle fitting in the exact sequence

0 → N → F0 → L→ 0. (4.4)

As before, since h1(L) = h1(N) = 0, then h1(F0) = 0. Furthermore, µ(F0) = k+ 1
2
. We want

to show that F0 is stable.
Since F0 corresponds to the general element in Ext1(L,N), then the sequence (4.4) is

unsplit, since dim(Ext1(L,N)) = h1(N ⊗ L∨) = g.
Let T ⊂ F0 be any sub-line bundle. We have the following commutative diagram:

0

T
ϕ

0 N F0 L 0.

(i) If ϕ is the zero-map, then T is a sub-line bundle of N , so deg(T ) ≤ k < µ(F0).
(ii) If ϕ is not the zero-map, then ϕ is injective, hence L⊗T∨ is effective. Thus, deg(T ) ≤ k+1
and the equality holds if and only if L ∼= T . In the latter case, the exact sequence

0 → N → F0 → L→ 0

would split, against the assumption.
Therefore, deg(T ) < µ(F0), i.e. [F0] ∈ Us

C(2k + 1). One concludes the arguments using
semicontinuity. �

5. Hilbert schemes of non-special scrolls

From now on, we shall focus on linearly normal, non-special scrolls S of degree d and genus
g. Therefore, from (3.3), S ⊂ PR where

R = d− 2g + 1, (5.1)

with d as in (3.4).
If we moreover assume that S is smooth, of genus g ≥ 1, one can deduce further restrictions

on d. Indeed, one has linearly normal, non-special smooth scrolls of genus g ≥ 1 only for

d ≥ 5, when g = 1, and d ≥ 2g + 4, when g ≥ 2, (5.2)
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(cf. [3, Remark 4.20]).
Basic information about the Hilbert scheme of these scrolls are essentially contained in [2].

We recall the main results. First of all the following theorem (see [2], for a more explicit
statement cf. Theorem 1.2 in [3]).

Theorem 5.3. Let g ≥ 0 be an integer and set k := min{1, g − 1}. If d ≥ 2g + 3 + k, then
there exists a unique, irreducible component Hd,g of the Hilbert scheme of scrolls of degree d,
sectional genus g in PR such that the general point [S] ∈ Hd,g represents a smooth, non-special
and linearly normal scroll S.
Furthermore,

(i) Hd,g is generically reduced;
(ii) dim(Hd,g) = 7(g − 1) + (d− 2g + 2)2 = 7(g − 1) + (R + 1)2;
(iii) Hd,g dominates the moduli space Mg of smooth curves of genus g.

For g ≥ 1, the next result gives more information about the general scroll parametrized by
Hd,g (cf. [2]; we give here a short, independent proof).

Theorem 5.4. Let g ≥ 1 and let d and R be as in Theorem 5.3. Let [S] ∈ Hd,g be a general
point and (F, C) be a pair which determines S, where [C] ∈ Mg general. Then [F] is a general
point in UC(d).
Denote by GS ⊂ PGL(R + 1,C) the subgroup of projective transformations fixing S.
(i) If g = 1, then

• when d is odd, then GS = {1} and the pair (F, C) determining S is unique.
• when d is even, then dim(GS) = 1, and accordingly there is a 1-dimensional family of

vector bundles [F] ∈ Uc(d), such that the pairs (F, C) determine S.

If g ≥ 2, then GS = {1} and the pair (F, C) determining S is unique.

Proof. We first consider the case g ≥ 2. Denote by Ud
τ
→ Mg the relative moduli stack

of degree d, semistable, rank-two vector bundles so that, for [C] ∈ Mg, τ
−1([C]) = UC(d).

Since, for any [C] ∈ Mg, UC(d) is irreducible of dimension 4g − 3, then Ud is irreducible, of
dimension 7g − 6.

Let FU

π
−→ Ud be the universal bundle. From Proposition 4.3 - (ii), on an open, dense

subscheme U ⊆ Ud, π∗(FU)|U is a vector bundle of rank R + 1. After possibly shrinking U ,
we may assume that this vector bundle is trivial on U and we can choose indipendent global
sections s0, . . . , sR of π∗(FU)|U .

Consider PU := U × PGL(R + 1,C) which is irreducible, of dimension 7g − 7 + (R + 1)2.
An element of PU can be regarded as a triple (C,F, ρ), where [C] ∈ Mg is a general curve,
[F] ∈ UC(d) is general, and ρ is a projective transformation. Moreover, the sections s0, . . . , sR
induce indipendent sections of H0(C,F) and therefore determine a morphism F = P(F) →
S ⊂ PR.

Let Hilb(d, g) denote the Hilbert scheme of scrolls of degree d and genus g in P
R. Consider

the morphism
Ψ : PU → Hilb(d, g)

which maps the triple (C,F, ρ) to the surface ρ(S).
Let SU be the image of Ψ, which is irreducible. From Proposition 4.3 and Theorem 5.3, SU

is contained in Hd,g. Since semistability is an open condition (cf. e.g. [19, Proposition 2.3.1]),
then Ψ is dominant onto Hd,g.

Recalling the description of UC(d) in § 4, it follows that the general scroll parametrized by
a point in Hd,g corresponds to a stable vector bundle.
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From Theorem 5.3, we deduce that Ψ is generically finite onto the image. More precisely,
let (C,F, ρ) and (C,F′, ρ′) be points in PU such that ρ(S) = Ψ(C,F, ρ) = Ψ(C,F′, ρ′) = ρ(S ′).
Hence φ = (ρ′)−1 ◦ ρ : S → S ′ is a projective transformation. Let F = P(F) ∼= P(F′) = F ′.
Since C, being general, has no non-trivial automorphisms, φ induces an automorphism Φ :
F → F ′ and Φ∗(OF ′(1)) = OF (1).

Since P(F) ∼= P(F′), there is a line bundle η ∈ Pic0(C) such that F′ ∼= F ⊗ η. Note that
Pic0(C) ⊂ Pic0(F ) = Pic0(F ′). Thus, OF (1) ∼= Φ∗(OF ′(1))⊗ η. This implies that η is trivial.

Finally, we claim that ρ = ρ′, i.e. φ = id. Otherwise, Φ : F → F would come from a
non-trivial automorphism of F which is not possible because F, being stable, is simple (cf.
e.g. [26, Corollary 5.1.1]).

Now let g = 1. As above, we can consider Ud
τ
→ M1, the open subset U ⊂ Ud and the variety

PU = U × PGL(R + 1,C). Then, PU is irreducible and

dim(PU) =

{

d2 + 1, if d is odd,
d2 + 2, if d is even,

(cf. § 4). For the same reasons as above, the map Ψ : PU → Hd,1 is dominant.
If [S] ∈ Hd,1 denotes the general point and if PS := Ψ−1([S]), we have:

dim(PS) =

{

1, if d is odd,
2, if d is even.

Indeed, assume that S is determined by a pair (F, C). Let h = g.c.d.(2, d), 2 = hn′ and
d = hd′. Then, as in [34, Theorem 16], any [F] ∈ UC(d) is of the form

F = E(n′, d′) ⊗ (
h

⊕

i=1

Li),

where E(n′, d′) is the Atiyah’s bundle of rank n′ and degree d′ and where the Li’s are line
bundles of degree 0, determined up to multiplication by a n′-torsion element in J(C) ∼= C,
1 ≤ i ≤ h.

If d is odd, then h = 1, n′ = 2, d = d′, so any [F] ∈ UC(d) is of the form F = E(2, d) ⊗ L,
for some L ∈ J(C). Since C is an elliptic curve, for any x ∈ C:

tx : C
∼=

−→ C
p −→ p+ x,

is an automorphism of C. Since UC(d) ∼= C, this defines a natural action of C on UC(d): fix
[F] ∈ UC(d), then for every M ∈ J(C),

t∗[M∨](F) = F ⊗M ∈ UC(d).

From [20], t[M∨] ∈ Aut(C) lifts to an automorphism of the elliptic ruled surface P(F). As a
consequence, for any other [F′] ∈ UC(d), P(F) ∼= P(F′). Since dim(PS) = 1, an argument
completely similar to the one we made in the case g ≥ 2 proves that GS = {1}.

If d is even, then h = 2, n′ = 1 and d′ = d/2, so any [F] ∈ UC(d) is of the form F =
E(1, d/2) ⊗ (L1 ⊕ L2), for some L1, L2 ∈ J(C). In the same way, any other [F′] ∈ UC(d) of
the form F′ = E(1, d/2) ⊗ ((L1 ⊗ N) ⊕ (L2 ⊗ N)), for some N ∈ J(C), and P(F) ∼= P(F′).
Since dim(PS) = 2, this implies that dim(GS) = 1. �

Remark 5.5. If g = 1 and d is even, the elements of the one-dimensional groupGS correspond
to non-trivial endomorphisms of the corresponding strictly semistable vector bundle F. This
can be read off by looking at the projective geometry of S. Indeed, S contains sections Γi



NON-SPECIAL SCROLLS WITH GENERAL MODULI 11

of degree d/2 associated with the line bundles Mi = E(1, d/2) ⊗ Li, 1 ≤ i ≤ 2. These two
sections are disjoint, since F is decomposable (cf. [18, p. 383]), and are the curves of minimal
degree of S, since they are determined by quotients via sub-line bundles of maximal degree
(cf. also Theorem 7.1).

Let Λi := 〈Γi〉 ∼= P
d−2

2 , for 1 ≤ i ≤ 2. Then Λ1 ∩ Λ2 = ∅ so, if G denotes the connected
subgroup of PGL(R + 1,C) of elements which pointwise fix these two skew linear subspaces
of P

R, then dim(G) = 1 and each element of G fixes S. This shows that G is the connected
component of the identity of GS.

Remark 5.6. In [3], we gave an explicit dimension count for Hd,g (cf. [3, Theorem 5.4 and
Remark 5.6]). Theorem 5.4 gives another way of making the same computation.

Precisely, when g ≥ 2, the number of parameters on which the general point of Hd,g

depends, is given by the following count:

• 3g − 3 parameters for the class of the curve C in Mg, plus
• 4g − 3 parameters for the general rank-two vector bundle in UC(d), plus
• (R + 1)2 − 1 parameters for projective transformations in PR.

When g = 1, we have:

• 1 parameter for C in M1, plus
• 1 or 2 parameters (according to the cases d odd or d even), for the general rank-two

vector bundle in UC(d), plus
• (R+1)2−1−dim(GS) parameters for projective transformations in PR (with dim(GS) =

0 or 1, according to the cases d odd or d even), minus
• 1 parameter, for the C-action on UC(d).

Remark 5.7. Even if d is large with respect to g (cf. Proposition 4.3 - (i)), Theorem 5.4 does
not imply that all smooth scrolls in Hd,g come from either a stable or a semistable rank-two
vector bundle on C. Indeed, let F be any rank-two vector bundle on a curve C of genus g.
By twisting F with a sufficiently high multiple of an ample line bundle A on C, we have a
new vector bundle F′ = F ⊗ A⊗k, such that h1(C,F′) = 0 and OP(F′)(1) is very ample. By
embedding P(F′) via |OP(F′)(1)|, one has a smooth, non-special, linearly normal scroll S of a
certain degree d, and therefore [S] ∈ Hd,g.

More precisely, look at the following example. Let C be any smooth, projective curve of
genus g ≥ 2 and k ≥ 2 be an integer. Let L ∈ Pic2g+k(C) and N ∈ Pic2g+k−1(C) be general
line bundles. Let F0 be a general, rank-two vector bundle on C fitting in the exact sequence

0 → L→ F0 → N → 0.

Thus, deg(F0) = 4g + 2k − 1 and, by the generality assumption on L and N , h1(C,F0) = 0.
Furthermore, by degree assumptions, both L and N are very ample on C. Therefore, the pair
(F0, C) determines a smooth scroll S which is non-special and linearly normal in P2g+2k, i.e.
[S] ∈ H4g+2k−1,g.

Nonetheless, F0 is unstable on C: indeed, µ(F0) = 2g + k − 1
2

whereas deg(L) = 2g + k >
µ(F0), so L is a destabilizing sub-line bundle of F0.

In accordance with Theorem 5.4, the reader can verify that the number of parameters on
which scrolls of this type depend is at most

6g − 5 + (2g + 2k + 1)2 < dim(H4g+2k−1,g).

Remark 5.8. In [3, Theorem 1.2] we proved that there are points in Hd,g corresponding
to unions of planes with Zappatic singularities. This means that smooth surfaces in Hd,g

degenerate to these unions of planes. It is interesting to remark that this applies to surfaces
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of the type C×P1, suitably embedded as scrolls corresponding to points in Hd,g. First of all,
let C be any curve of genus g and let L be a very-ample non-special line bundle of degree
d ≥ g+3. The global sections of L determine an embedding of C in Pd−g. Consider the Segre
embedding of C × P

1. This gives a linearly normal, non-special smooth scroll of degree 2d
in P2d−2g+1 and the corresponding point sits in H2d,g. Moreover, by looking at the argument
in [3, § 3], one sees that the planar Zappatic surface X2d,g contained in H2d,g is a limit of a
product. In Zappa’s original paper [35], the author remarked that products C × P1 can be
degenerated to union of quadrics, leaving as an open problem to prove the degeneration to
union of planes.

We finish this section by constructing suitable reducible surfaces, frequently used in the
rest of the paper, corresponding to points in Hd,g. The first construction is contained in [3,
Constructions 4.1, 4.2, Claim 4.3, Theorem 4.6, Lemma 4.7] (cf. also [6]), and will be stated
below for the reader’s convenience.

Construction 5.9. Let g ≥ 1, d and Hd,g be as in Theorem 5.3. Then Hd,g contains points
[T ] such that T is a reduced, connected, reducible surface, with global normal crossings, of the
form

T := X ∪Q, (5.10)

where X is a scroll corresponding to a general point of Hd−2,g−1 and Q is a smooth quadric,
such that X∩Q = l1∪l2, where li are general rulings of X, for 1 ≤ i ≤ 2, and the intersection
is transverse.

Furthermore, if NT/PR denotes the normal sheaf of T in PR, then h1(T,NT/PR) = 0; in
particular, [T ] is a smooth point of Hd,g.

The second construction is similar. Precisely, we have:

Construction 5.11. Let g ≥ 1, d and Hd,g be as in Theorem 5.3. Then Hd,g contains points
[Y ] such that Y is a reduced, connected, reducible surface, with global normal crossings, of
the form

Y := W ∪Q1 ∪ · · · ∪Qg, (5.12)

where W is a rational normal scroll, corresponding to a general point of Hd−2g,0, and each
Qj is a smooth quadric, such that

Qj ∩Qk = ∅, if 1 ≤ j 6= k ≤ g (5.13)

and
W ∩Qj = l1,j ∪ l2,j ,

where li,j are general rulings of W , for 1 ≤ i ≤ 2, 1 ≤ j ≤ g, and the intersection is
transverse.

Furthermore, for any such Y , one has h1(Y,NY/PR) = 0; in particular, [Y ] is a smooth
point of Hd,g.

Proof. Let [W ] ∈ Hd−2g,0 be a general point. This corresponds to a smooth, rational normal
scroll of degree d − 2g in PR. Let l1,j , l2,j, 1 ≤ j ≤ g, be 2g general rulings of W . Let Πj

be the P3 spanned by l1,j and l2,j. Let Qj ⊂ Πj be a general quadric, containing l1,j, l2,j, for
1 ≤ j ≤ g. Then, Qj is smooth and, for any 1 ≤ j ≤ g,

W ∩Qj = l1,j ∪ l2,j

and the intersection is transverse (for g = 1, we have only one quadric and the assertion
follows, whereas for g ≥ 2, see [3, Construction 4.2]).
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By generality and since d ≥ 2g + 4, when g ≥ 2, one sees that dim(Πj ∩ Πk) ≤ 1, for
1 ≤ j 6= k ≤ g, and therefore we can assume (5.13).
Let Y be as in (5.12). Then Y is of degree d, its sectional (arithmetic) genus is g and
h1(Y,OY (1)) = 0 since it is clearly linearly normal in P

R. From Theorem 5.3, it follows that
[Y ] ∈ Hd,g. Furthermore, as in the proof of [3, Theorem 4.6 and Lemma 4.7], h1(NY/PR) = 0
so [Y ] is a smooth point of Hd,g. Thus, [Y ] deforms to a general point [S] ∈ Hd,g. �

6. Properties of the scheme of unisecant curves

In this section we prove Theorem 6.9 below, which contains basic information on the scheme
parametrizing unisecant curves of given degree m on the scroll S, where [S] is a general point
in Hd,g, with g ≥ 0 and d as in Theorem 5.3.

First, we recall some results in [11], which are inspired by the work of C. Segre [29, § 11,
p. 138].

Definition 6.1 (see [11, Definition 6.1]). Let C be a smooth, projective curve of genus g ≥ 0.
Let F = P(F) be a geometrically ruled surface over C and let d = deg(F). For any positive
integer m, denote by

Div1,m
F (6.2)

the Hilbert scheme of unisecant curves of F , which are of degree m with respect to OF (1) (cf.
Definition 2.5).

Remark 6.3. By recalling (2.6) and (2.10), the elements in Div1,m
F correspond to quotients

of F. Therefore, Div1,m
F has a natural structure as a Quot-scheme (cf. [17]). As such, Div1,m

F

has an expected dimension

dm := max{−1, 2m− d− g + 1} (6.4)

and therefore
dim(Div1,m

F ) ≥ dm. (6.5)

Definition 6.6 (see [11, Definition 6.1]). Notation as in Definition 6.1. F is said to be a
general ruled surface if:

(i) dim(Div1,m
F ) = dm;

(ii) Div1,m
F is smooth, for any m such that dm ≥ 0;

(iv) Div1,m
F is irreducible, for any m such that dm > 0.

Note that being general is an open condition in Hd,g.
In [11], there is an asymptotic existence result for general ruled surfaces.

Theorem 6.7 (cf. [11, Théorème 7.1]). Let C be a smooth, projective curve of genus g ≥ 0.
There is a positive integer δC such that, for every d ≥ δC, there is a general ruled surface of
degree d over C.

As a consequence, using [3, Proposition 5.2 and Theorem 5.4] and the proof of [11,
Théorème 7.1], one has:

Corollary 6.8. For every g ≥ 0, there is a positive integer δg such that, for any d ≥ δg, the
general point of Hd,g corresponds to a general ruled surface.

Note that Ghione’s argument gives no information about δg. Using a degeneration argu-
ment, it is possible to improve Corollary 6.8 by specifing a bound on δg.
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Theorem 6.9. Let g and d be as in Theorem 5.3. If [S] ∈ Hd,g is a general point, then S is
a general ruled surface.

Proof. We proceed by induction on g. The case g = 0 is clear.
Assume g > 0 and let either d ≥ 5, if g = 1, or d ≥ 2g + 4, if g ≥ 2. Let [X] ∈ Hd−2,g−1

be a general point. By induction, X is a smooth, general ruled surface. Let l1 and l2 be
two general rulings of X. Let Q be a general quadric surface containing l1 and l2; thus Q is
smooth and X and Q meet transversally along X ∩Q = l1 ∪ l2.

In particular, the surface T := X ∪ Q is such as in Construction 5.9, so [T ] is a smooth
point of Hd,g.

We consider a section ΓT of T as a connected union

ΓT = ΓX ∪ ΓQ, (6.10)

where ΓX (resp. ΓQ) is a section of X (resp. of Q), such that ΓX and ΓQ meet transversally
at ΓX ∩ ΓQ = {p1, p2}, where pi ∈ li, 1 ≤ i ≤ 2. From Definition 2.11, since X and Q are
smooth then ΓX and ΓQ are both smooth and irreducible, hence ΓT is a reduced, reducible
curve having two nodes as its only singularities.

Similarly as in Definition 6.6, we will denote by

Div1,m
T (6.11)

the Hilbert scheme of curves on T of degree m, arithmetic genus g, which intersect at only
one point the general line of the ruling of X and of the ruling |l1| = |l2| of Q.

Thus, [ΓT ] ∈ Div1,m
T is the union of two curves

(i) [ΓX ] ∈ Div1,mX

X , with mX < m, and

(ii) [ΓQ] ∈ Div1,m−mX

Q ,

which match along l1 ∪ l2.
By induction and by (6.4), we have:

• if d+ g − 3 is even, then d+g−3
2

≤ mX ≤ m− 1,

• if d+ g − 3 is odd, then d+g−4
2

≤ mX ≤ m− 1,

• in any case, by induction, dmX
= 2mX − d− g + 4 = dim(Div1,mX

X ).

Moreover, the scheme Div1,mX

X is smooth and, in addition, it is irreducible unless dmX
= 0.

This is equivalent d + g − 3 odd and mX = d+g−4
2

, in which case Div1,mX

X consists of finitely
many distinct curves on X (in Theorem 7.1 - (ii), we shall prove that the number of these
curves is 2g−1). The scheme Div1,m−mX

Q is not empty, irreducible and dim(Div1,m−mX

Q ) =
2(m−mX) − 1 ≥ 1.

For any mX as above, let GmX
1 = Div1,mX

X and GmX
2 = Div1,m−mX

Q . We have two natural
rational maps

φmX
i : GmX

i 99KP
1 × P

1, 1 ≤ i ≤ 2,

given by intersecting the general curve in GmX
i with l1 and l2. Consider

GmX
T (6.12)

the closure of the fibre product of the maps φmX
i , for 1 ≤ i ≤ 2.

Claim 6.13. Every irreducible component of GmX
T has dimension dm = 2m− d− g + 1 ≥ 0.

Moreover, if dm > 0, then GmX
T is irreducible.
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Proof of Claim 6.13. For the first part, observe that the family GmX
2 is the linear system of

curves of type (1, m−mX − 1) on Q and dim(GmX
2 ) = 2(m−mX) − 1.

Consider the projection
GmX
T

π1−→ GmX
1 .

(a) If m − mX > 1, then π1 is surjective and its fibres are projective spaces of dimension
2(m−mX) − 3; hence the assertion follows.
(b) If m−mX = 1, then GmX

T is isomorphic to (φmX
1 )−1(φmX

2 (GmX
2 )). Note that φmX

2 (GmX
2 ) is

a smooth, rational curve of type (1, 1) on P1 ×P1. Since Q is general, this curve is general in
its linear system. This implies that dim(GmX

T ) = dim(GmX
1 ) − 1, proving the first assertion.

The assertion about the irreducibility of GmX
T , when dm > 0, is clear in case (a) above. In

case (b), by induction, GmX
1 is smooth and irreducible, since dmX

= dm+1 > 0. The proof of
case (b) shows that GmX

T is the pull-back via φmX
1 of a general curve of type (1, 1) on P

1 ×P
1.

This is irreducible by Bertini’s theorem. �

The general element of a component of GmX
T is a pair (ΓX ,ΓQ) such that neither ΓX nor

ΓQ contains either l1 or l2.
Let

U :=
⋃

⌊ d+g−3

2
⌋≤j≤m−1

Gj
T ,

with Gj
T as in (6.12). When dm = 0, then U = G

d+g−3

2

T ; when dm > 0, the irreducible

components of U coincide with the Gj
T ’s (cf. Claim 6.13).

Note that there is a natural map

U
ψ

−→ Div1,m
T (6.14)

which is surjective and birational on any irreducible component of U. Therefore, the irre-
ducible components of Div1,m

T are images of the irreducible components of U. In particular,
by Claim 6.13,

dim(Div1,m
T ) = dm.

Claim 6.15. If [S] ∈ Hd,g is a general point and if Div1,m
S 6= ∅, then dm ≥ 0, i.e. 2m− d−

g + 1 ≥ 0, and moreover dim(Div1,m
S ) = dm.

Proof of Claim 6.15. Note that, when S degenerates to T , the flat limit of Div1,m
S is contained

in Div1,m
T . If Div1,m

S 6= ∅, then Div1,m
T 6= ∅. Therefore, there is a ⌊d+g−3

2
⌋ ≤ j ≤ m − 1 such

Gj
T 6= ∅. Then dm ≥ 0 follows from Claim 6.13. By semicontinuity, one has

dim(Div1,m
S ) ≤ dim(Div1,m

T ) = dm.

Equality holds by (6.5). �

The next step is the following:

Claim 6.16. If dm > 0, Div1,m
T is connected.

Proof of Claim 6.16. Let Div1,m
T (j) be the irreducible component of Div1,m

T which is the image

of Gj
T via ψ. We will prove that, for every j such that ⌊d+g−3

2
⌋ ≤ j ≤ m− 2, the subschemes

Div1,m
T (j) and Div1,m

T (j + 1) intersect.

Consider a general point of Div1,m
T (j). This consists of the union of two general curves

[Γ1] ∈ Div1,j
X , [Γ2] ∈ Div1,m−j

Q with Γ1 ∩ Γ2 = {p1, p2}, where pi ∈ li, 1 ≤ i ≤ 2.
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Since m− j ≥ 2, the linear system |Γ2| has dimension at least three. Hence,

dim(|I{p1,p2}/Q ⊗ OQ(Γ2)|) ≥ 1

and therefore Γ2 degenerates inside the latter linear system to Γ2 + l1, where Γ2 ∈ Div1,m−j−1
Q

is a general curve on Q passing through p2 and intersecting l1 at a point q1.
Now, the curve [Γ1 + l1] ∈ Div1,j+1

X . Since, by induction and by (6.4),

dim(Div1,j+1
X ) = dim(Div1,j

X ) + 2

we can find a one-dimensional family of curves in Div1,j+1
X passing through q1 and p2, and

degenerating to Γ1 + l1. This proves the assertion: a connecting point of Div1,m
T (j) and

Div1,m
T (j + 1) is

Γ1 ∪ (Γ2 + l1) = (Γ1 + l1) ∪ Γ2.

�

Next, we need the following:

Claim 6.17. Any [ΓT ] ∈ Div1,m
T is connected and non-special, i.e. h1(OΓT

(1)) = 0. Therefore

h0(OΓT
(1)) = m− g + 1. (6.18)

Proof of Claim 6.17. Consider the exact sequence

0 → OT (H − ΓT ) → OT (H) → OΓT
(H) → 0.

From the definition of T , it follows that h1(OT (H)) = 0 because T is linearly normal in PR.
To prove non-speciality of ΓT , we will prove h2(OT (H − ΓT )) = 0. We recall that T is a

connected union of two smooth, irreducible surfaces, with normal crossings, so the dualizing
sheaf of T is associated to a Cartier divisor, denoted by KT ; by Serre duality, we need to
compute h0(OT (KT −H + ΓT )).

Since
OT (KT −H + ΓT ) →֒ OX(KT −H + ΓT ) ⊕ OQ(KT −H + ΓT ),

it suffices to prove h0(OT (KT −H + ΓT )|Σ) = 0, where Σ is either Q or X.
In the former case, if l and r denote the two distinct rulings on Q, we get

h0(OT (KT −H + ΓT )|Q) = h0(OQ((m−mX − 2)l − 2r)) = 0,

since H|Q ∼ l + r, KT |Q ∼ KQ + l1 + l2 and ΓT |Q ∼ r + (m − mX − 1)l. With similar
computations, if f denotes the ruling of X, we obtain

h0(OT (KT −H + ΓT )|X) = h0(OX(−2H + (m+ 2g − 2)l)) = 0,

which proves non-speciality of ΓT .
Since ΓT is an effective Cartier divisor on T , from the exact sequence

0 → OT (−ΓT ) → OT → OΓT
→ 0

and from analogous computations as above, one shows that h1(OT (−ΓT )) = h1(OT (KT +
ΓT )) = 0, so h0(OΓT

) = h0(OT ) = 1. By Riemann-Roch theorem on ΓT , this gives (6.18). �

Let h := m − g; from the Euler sequence restricted to ΓT and from Claim 6.17, we have
h1(NΓT /Ph) = 0.

From the inclusions ΓT ⊂ Ph ⊂ PR, we have the exact sequence:

0 → NΓT /Ph → NΓT /PR →
⊕

d−g+1−m

OΓT
(H) → 0,
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which shows that also h1(NΓT /PR) = 0.

Observe that ΓT is l.c.i. in T and that T is l.c.i. in PR, i.e. ΓT ⊂ T and T ⊂ PR are regular
embeddings (cf. e.g. [30]). From [30, Proposition 4.5.3], the pair (T,ΓT ) corresponds to a
smooth point of the Flag-Hilbert scheme Fd,g,m parametrizing pairs (S,ΓS), with [S] ∈ Hd,g

and [ΓS] ∈ Div1,m
S (cf. [30, § 4.5]), since the obstructions are contained in

H1(NΓT /PR) ×H1(N
T/PR⊗OΓT

) H
1(NT/PR) = (0).

Let us consider the projection
Fd,g,m

π
−→ Hd,g. (6.19)

For any [S] ∈ Hd,g, the fibre of π over [S] with its scheme structure, coincides with Div1,m
S .

As we saw, the fibre over [T ], i.e. Div1,m
T as in (6.11), consists of smooth points of Fd,g,m.

Hence, there is a non-empty, open Zariski subset U ⊂ Hd,g such that π−1(U) consists of
smooth points of Fd,g,m. By generic smoothness, it follows that the fibre over the general

point [S] ∈ U , which is Div1,m
S , is smooth.

We are left to show that Div1,m
S is connected, for dm > 0 and for [S] ∈ Hd,g general. To

this aim, consider the morphism π as in (6.19). We need the following

Claim 6.20. Div1,m
T is generically reduced, i.e. it is reduced at the general point of any

irreducible component of dimension dm.

Proof of Claim 6.20. To prove this, since [T ] ∈ Hd,g is a smooth point, we have to show that

if ΓT is a general point of a component of Div1,m
T , then the differential of the map π at the

point (T,ΓT ) is surjective. From [30, § 4.5], and from the diagram

0

NT/PR(−ΓT )

NT/PR

0 NΓT /T NΓT /PR NT/PR|ΓT 0

0

it suffices to show that h1(NΓT /T ) = 0. We prove this by induction on g. Note that the case
g = 0 is trivially true.

A general point of an irreducible component of Div1,m
T is a section ΓT of T , as in (6.10),

from which we keep notation.
Since ΓT is a Cartier divisor, NΓT /T = OΓT

(ΓT ). Let ν : C → ΓT be the normalization
morphism. Then, C is the disjoint union of two smooth, irreducible curves C = CX ∪ CQ,
where CX ∼= ΓX and CQ ∼= ΓQ. One has the standard exact sequence

0 → OΓT
→ ν∗(OC) → O{p1,p2} → 0. (6.21)

If we tensor (6.21) with OΓT
(ΓT ), we get

0 → OΓT
(ΓT ) → ν∗(OC) ⊗ OΓT

(ΓT ) → O{p1,p2} → 0. (6.22)
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Since ν is a finite morphism,

H1(ν∗(OC) ⊗ OΓT
(ΓT )) ∼= H1(OC(ν∗(ΓT ))).

Thus,

H1(OC(ν∗(ΓT ))) ∼= H1(OCX
(CX)) ⊕H1(OCQ

(CQ)) ∼= H1(NΓX/X) ⊕H1(NΓQ/Q).

By induction, this is zero.
By (6.22), to prove h1(NΓT /T ) = 0 it suffices to prove that the map

H0(ν∗(OC) ⊗ OΓT
(ΓT ))

ρ
→ H0(O{p1,p2})

∼= C
2 (6.23)

is surjective.
As above, H0(OC(ν∗(ΓT ))) ∼= H0(NΓX/X) ⊕H0(NΓQ/Q) and the map ρ is given by

ρ((σ1, σ2)) = (σ1(p1) − σ2(p1), σ1(p2) − σ2(p2)). (6.24)

Since, by assumption, dm > 0, two cases have to be considered, as in the proof of Claim
6.13. If m −mX > 1, by the expression (6.24), ρ is clearly surjective. If m −mX = 1, by
induction dmX

= dm + 1 ≥ 2; thus, also in this case the map ρ is surjective, because by the
genericity of the lines l1 and l2 and of the quadric Q, the points p1 and p2 are general on T ,
hence they give independent conditions to the curves in Div1,mX

X . This ends the proof of the
claim. �

We claim further that Div1,m
T is actually reduced. Indeed, since Fd,g,m is smooth along

the fibre of π over [T ], this fibre is locally complete intersection in Fd,g,m, hence it has no
embedded component. Thus, being generically reduced and with no embedded component,
this fibre, isomorphic to Div1,m

T , is reduced.

Since Div1,m
T is connected, by Claim 6.16, and reduced, then h0(ODiv1,m

T
) = 1. Finally, the

connectedness of Div1,m
S , for [S] ∈ Hd,g general, follows by the flatness of π over [T ] and by

semicontinuity. �

Remark 6.25. The proof of Theorem 6.9 also shows that Div1,m
T is the flat limit of Div1,m

S .

Remark 6.26. Observe that Theorem 6.9 implies that, if [S] ∈ Hd,g is general and [Γ] ∈
Div1,m

S , then
h1(NΓ/S) = 0. (6.27)

Indeed, h0(NΓS/S) = dm by smoothness and (6.27) follows by Riemann-Roch.

7. Some enumerative results

The aim of this section is to prove some enumerative results concerning the scheme Div1,m
S ,

for [S] ∈ Hd,g general, with d and g as in Theorem 5.3.

7.1. Ghione’s theorem. In [11, Théorème 6.4 and 6.5] Ghione proves some basic enumera-
tive properties concerning unisecant curves of a general ruled surfaces of degree d and genus
g, which were originally stated by C. Segre (cf. [29]). According to Theorem 6.7, Ghione’s
results are asymptotical, i.e. they apply to scrolls of sufficiently high degree d. Theorem
6.9 allows us to prove a more precise statement for ruled surfaces over a curve with general
moduli.

Theorem 7.1. Let g ≥ 0 and d be as in Theorem 5.3. Let [S] ∈ Hd,g be the general point.

Let m := ⌊d+g
2
⌋. Then the minimal degree of the unisecant curves of S is

(1) d+g−1
2

if d+ g is odd; moreover there are 2g such sections;
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(2) d+g
2

if d + g is even; moreover there is a smooth, irreducible, one-dimensional family
of such sections.

Proof. The case g = 0 is well known: since [S] ∈ Hd,0 is general, then S ⊂ Pd+1 is a smooth,
balanced rational normal scroll of degree d (cf. e.g. [3, Proposition 3.8]).

For g ≥ 1, apply Theorems 5.4, 6.9 and [11, Théorème 6.4 and 6.5]. �

As a byproduct of the proof of Proposition 7.3 below, we will give an alternative proof of
the enumerative part of Theorem 7.1 (cf. Remark 7.4).

7.2. The index computation. Let g ≥ 0 and d be as in Theorem 5.3 and let [S] ∈ Hd,g be

the general point. Let m > d+g
2

be an integer. Then, dim(Div1,m
S ) = dm > 0 (see (6.4)).

The index of Div1,m
S is the number of curves in Div1,m

S passing through dm general points
on S (cf. e.g. [29, § 11, p. 137]).

The following result (see [29, § 4, p. 132, § 12, 13, pp. 138–140]) can be derived from
Theorem 7.1.

Proposition 7.2. Hypotheses as in Theorem 7.1. Then, the index of Div1,m
S is 2g.

Proof. The case g = 0 is trivial, so assume g ≥ 1. Let Λ be a set of dm general points on S
and let Γ be any unisecant curve of S of degree m passing through Λ. Denote by πΛ : S → PR

′

the projection of S ⊂ PR from Λ, where R = d− 2g + 1.
If S ′ := πΛ(S), then S ′ ⊂ PR

′

is a smooth, non-special scroll of genus g′ = g such that:

• d′ := deg(S ′) = d− dm = 2d+ g − 2m− 1,
• R′ = R − dm = 2d− 2m− g = d′ − 2g′ + 1.

The numerical assumptions of Theorem 5.3 hold for S ′. Furthermore, by generality of [S] ∈
Hd,g, also [S ′] ∈ Hd′,g′ is a general point.

Denote by Γ′ = πΛ(Γ). Then [Γ′] ∈ Div1,m′

S′ , where m′ = m− dm = d+ g − 1 −m. Since

d′ + g′ = d− dm + g = 2(d+ g −m) − 1

is odd then, for any d, g and m as above, dim(Div1,m′

S′ ) = dm′ = 0. Thus, by Theorem 7.1,
any such Γ′ is a section of minimal degree of S ′ and there exist 2g

′

= 2g such sections.
One concludes by observing that the correspondence between elements of Div1,m

S passing

through Λ and elements of Div1,m′

S′ is bijective. �

7.3. The monodromy action. In this subsection, we study the monodromy of the 2g sec-
tions of minimal degree m of a scroll S corresponding to the general point of Hd,g, when
dm = 0.

Proposition 7.3. Let g ≥ 1, d and Hd,g be as in Theorem 5.3. Assume d + g odd and

let m = d+g−1
2

. Then, for [S] ∈ Hd,g general, the monodromy acts on Div1,m
S as the full

symmetric group.

Proof. Let [Y ] ∈ Hd,g be as in Construction 5.11. As in the proof of Theorem 6.9, a unisecant
curve ΓY of Y will be a union of a unisecant curve ΓW of W and unisecant curves Γj of the
quadrics Qj , for any 1 ≤ j ≤ g, i.e.

ΓY = ΓW ∪ (

g
⋃

i=1

Γj),

with matching conditions on the rulings l1,j , l2,j, for 1 ≤ j ≤ g.
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Since we want to consider unisecant curves of S, properly contained in its hyperplane
section, it immediately follows that any Γj on Qj is either a conic, say Cj , or a line, say rj ,
not belonging to the ruling |li,j|, for 1 ≤ i ≤ 2 and 1 ≤ j ≤ g.

Up to a permutation of the indices, for some 0 ≤ k ≤ g, we may assume we have conics

Cj ⊂ Qj , for 1 ≤ j ≤ k ≤ g

and lines
rj ⊂ Qj , for j > k,

when k ≥ 1, or only lines, when k = 0.
In any case,

ΓY = ΓW ∪ (
⋃

j≤k

Cj) ∪ (

g
⋃

i=k+1

ri),

therefore

deg(ΓW ) := νk =
d+ g − 1

2
− 2k − (g − k) =

d− g − 1

2
− k.

Notice that one has νk ≥ d−2g−1
2

which, by Theorem 7.1, is the minimal degree for the
unisecant curves on W ; hence g ≥ 2k. Moreover, the unisecant curves ΓW form a complete
linear system Λk on W and, by (6.4), one has

dim(Λk) = g − 2k.

Consider
⋃

1≤i≤2, 1≤j≤g

li,j ∼= (P1)2g.

For any k ≥ 0, we have a rational map

λk : Λk 99K (P1)2g,

which is generically injective. Let Vk := Im(λk); then [Vk] is a cycle of dimension g − 2k in
the Chow ring of (P1)2g.

Consider the projection to the i-th factor

(P1)2g = (P1 × P
1)g

πi−→ (P1 × P
1)i.

Set
Hi = π∗

i (OP1×P1(1)), 1 ≤ i ≤ g.

Thus, |Hi| is base-point-free, for any 1 ≤ i ≤ g. Therefore,

dim(Vk ∩ (

g
⋂

t=k+1

Ht)) = max {−1,−k},

where Hi is general in |Hi|, for k+ 1 ≤ i ≤ g. By generality and by the matching conditions,
we need this dimension to be non-negative. This implies k = 0.

In the above setting, define V0,i := V0 ∩ H1 ∩ . . . ∩ Hi for i ≥ 0; with this notation V0,0

coincides with V0. One has

v0,i := dim(V0,i) = max {−1, g − 2k − i}.

We claim that V0,i is irreducible as soon as v0,i ≥ 1, i.e. g ≥ 2k + i + 1. The assertion
holds for V0,0 = V0, so we proceed by induction on i. Thus we assume i ≥ 1, v0,i ≥ 1
and V0,i−1 irreducible of dimension v0,i−1 = v0,i + 1 ≥ 2. Let us prove that the projection
π′
i : V0,i−1 99K (P1 × P1)i is dominant. To see this, let Λ0,i−1 be the pull–back via the map λ0

of V0,i−1. This is a sublinear system of Λ0 of dimension v0,i + 1 ≥ 2. If π′
i were not dominant,
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then, by our generality assumptions, the linear system Λ0,i−1 of unisecants would map two
general lines of the scroll W to the same line, hence Λ0,i−1 would be a pencil, a contradiction.
Since π′

i is dominant, the claim follows by Bertini’s theorem.
Finally, V0,g−1 is an irreducible curve and Λ0,g−1 is a pencil. The same argument as above

shows that πg maps V0,g−1 injectively to an irreducible curve Γ on the smooth quadric Qg
∼=

(P1 × P1)g ⊂ P3. By [1, Lemma, p. 111], the monodromy group of this curve in P3 is the full
symmetric group, implying the assertion. �

Remark 7.4. With the same ideas as in the proof of Proposition 7.3, we can give an alterna-
tive proof of the fact that, when d+ g is odd, then S contains 2g sections of minimal degree.
Indeed, since [Y ] ∈ Hd,g is a smooth point and the map π as in (6.19) is in this case smooth

over [Y ] (see the proof of Theorem 6.9), we see that deg(Div
1, d+g−1

2

S ) = deg(Γ), where Γ is the
curve on the smooth quadric Qg considered at the end of Proposition 7.3.

It is not difficult to see that deg(Γ) = 2g. In fact, any Hi ⊂ (P1)2g is linearly equivalent to
r1,i + r2,i, where rj,i, 1 ≤ j ≤ 2, are the pull-backs, via πi, of the two rulings of (P1 × P1)i.
Therefore, in the Chow ring of (P1)2g, one has

H1 ·H2 · . . . ·Hg =
∑

i,j

Ri,j, (7.5)

where Ri,j := r1,i1 . . . r1,ikr2,j1 . . . r2,jh and i1 < i2 < · · · < ik, j1 < j2 < · · · < jh, such that

{i1, i2, · · · , ik, j1, j2, · · · , jh} = {1, · · · , g}, in particular h + k = g. For any summand, one
has

Ri,j · V0 = 1.

The intersection is in fact equivalent to imposing to the linear system Λ0, of dimension g,
g general points on W . The assertion follows since the right hand side of (7.5) contains 2g

summands.

7.4. The genus computation. Let g ≥ 0 and d be as in Theorem 5.3 and let [S] ∈ Hd,g be

the general point. Let m > d+g
2

be an integer. Then, dim(Div1,m
S ) = dm > 0 (see (6.4)).

Given Z a general 0-dimensional subscheme of S of length dm− 1, there is a 1-dimensional
family D ⊂ Div1,m

S consisting of curves containing Z. The following proposition computes
the genus of D, slightly extending the results in [16] and [27, Example 3.2].

Proposition 7.6. Hypotheses as in Theorem 5.3. Then, D is smooth and irreducible, of
genus

γ := 2g(g − 1) + 1.

Proof. We prove the assertion in case dm = 1. The case dm > 1 can be dealt with as in
Proposition 7.2.

As in the proof of Proposition 7.3, we can consider a cycle V ′
k , 1 ≤ k ≤ g, in the Chow-ring

of (P1)2g, which is the image of the complete linear system Λ′
k on W of unisecant curves of

degree

µk :=
d+ g

2
− 2k − (g − k) =

d− g

2
− k

via the obvious rational map λ′k : Λ′
k 99K (P1)2g. Then dim(Λ′

k) = dim(V ′
k) = g + 1 − 2k and

dim(V ′
k ∩ (

g
⋂

t=k+1

Ht)) = max {−1, 1 − k}.
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In the present situation, we need the above dimension to be either 0 or 1, i.e. either k = 0 or
k = 1.

(1) If k = 0, dim(V ′
0) = g + 1 and the curve

Ξ0 := V ′
0 ∩ (

g
⋂

j=1

Hj),

which is smooth and irreducible (see proof of Proposition 7.3), is a component of the
family of unisecant curves on Y .

(2) If k = 1, on W we have the linear system Λ′
1 of curves of degree µ1 = d−g−2

2
, where

dim(Λ′
1) = g− 1, and there exists an index l ∈ {1, . . . , g} such that on the quadric Ql

we have conics, whereas on the quadrics Qj, for 1 ≤ j 6= l ≤ g, we have lines. In this
case, for any 1 ≤ l ≤ g, we have a reduced, 0-dimensional scheme

Ξ1,l := V ′
1 ∩ (

⋂

1≤j 6=l≤g

Hj).

For each point in Ξ1,l we have a rational component of the family of unisecant curves
on Y .

First we compute the class of Ξ0. As in Remark 7.4,

H1 ·H2 · . . . ·Hg =
∑

i,j

Ri,j.

Fix general points pi ∈ l1,i and qi ∈ l2,i. Consider i = (i1, . . . , ik) and j = (j1 . . . , jh) such
that {i1, . . . , ik, j1, . . . , jh} = {1, . . . , g} and let Λ′

0,i,j be the sublinear system of Λ′
0 consisting

of all curves containing pi1 , . . . , pik , qj1, . . . , qjh. This is a pencil, whose image Ξi,j in (P1)2g

has class Ri,j · V
′
0 . Hence Ξ0 is homologous to

∑

i,j Ξi,j , i.e. to a sum of 2g copies of P
1. It

is not difficult to see how they intersect each other. Indeed Ξi,j · Ξi′,j′ is non–zero, and it is

a point, if and only if {pi1 , . . . , pik , qj1, . . . , qjh} ∩ {pi1, . . . , pi′k , qj1, . . . , qj′h} consists of exactly
g − 1 points. This implies that each Ξi,j intersects exactly g others Ξi′,j′ .

Fix now l any integer such that 1 ≤ l ≤ g. Let a (resp., b) denote a sequence of in-
tegers a1 < a2 < · · · < ak (resp., b1 < b2 < · · · < bh), such that h + k = g − 1 and
{a1, a2 . . . , ak, b1, b2, . . . , bh} = {1, . . . , g}\{l}. Let Dl,a,b be the unique curve of Λ′

1 containing
pi1 , . . . , pik , qj1, . . . , qjh. This matches a pencil of conics on the quadric Ql, to give a smooth
rational component Ξ′

l,a,b of the family of unisecant curves on Y as described in (2). These
rational curves do not intersect each other. However, they intersect the curves Ξi,j, and pre-
cisely only two of them, i.e. the ones for which either i consists of a and l, or j consists of b
and l.

As in the proof of Theorem 6.9, we see that the flat limit of the smooth curve D = Div
1, d+g

2

S

on [S] ∈ Hd,g general can be in turn flatly degenerated to a union of smooth rational curves
whose dual graph G has:

• v = 2g + 2g−1 · g = 2g−1(2 + g) vertices and
• e = g · 2g

2
+ 2 · 2g−1 · g = 3 · 2g−1 · g edges.

Hence χ(G) = v − e = 2g(1 − g) and therefore the arithmetic genus of D is γ = 1 − χ(G) =
1 + 2g(g − 1). �
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Notice that, when g = 2, then γ = 5. This also follows, via a different approach, from [27,

Remark 1.6], because in this case the curve Div
1, d+2

2

S is isomorphic to a divisor in |2Θ| in the
jacobian of the curve C.
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