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Abstract. This short paper concerns the existence of curves with low gonality on smooth hyper-

surfaces X ⊂ Pn+1. After reviewing a series of results on this topic, we report on a recent progress

we achieved as a product of the Workshop Birational geometry of surfaces, held at University of

Rome “Tor Vergata” on January 11th− 15th, 2016. In particular, we obtained that if X ⊂ Pn+1 is a

very general hypersurface of degree d > 2n+2, the least gonality of a curve C ⊂ X passing through

a general point of X is gon(C) = d−
⌊√

16n+1−1
2

⌋
, apart from some exceptions we list.

Introduction

A natural way to investigate a projective variety X is to describe the geometry of its subvarieties,
both when they are rigid in X, and when they deform in families. Basic questions concern for
instance the existence of subvarieties of given invariants, especially when they have either dimension
or codimension equal to one.

In this paper we are interested in studying the gonality of curves lying on general hypersurfaces
X ⊂ Pn+1 of sufficiently large degree. In Sections 1 and 2 we shall briefly review a series of results
on this topic. Then, we shall report on a recent result governing the least gonality of a curve passing
through the general point of X (cf. Theorem 3.3).

Our interest on this subject arose from discussions we had during the Workshop Birational
geometry of surfaces, held on January 11th−15th, 2016 at University of Rome “Tor Vergata” among
us, and with other partecipants. So, we are pleased to thank the Organizers for their invitation,
and Concettina Galati, Margarida Melo, and Duccio Sacchi for helpful discussions.

Notation. We work throughout this paper over the field C of complex numbers. By variety we
mean a complete reduced and irreducible algebraic variety X over C, unless otherwise stated. By
curve we intend a variety of dimension 1. We say that a property holds for a general (resp. very
general) point x ∈ X if it holds on a Zariski open non-empty subset of X (resp. outside the union
of a countable collection of proper subvarieties of X).

1. Rational curves on hypersurfaces

The study of rational curves on projective varieties is an important issue in many areas of
algebraic geometry, such as the birational classification of algebraic varieties with its incarnation
in the minimal model program, and enumerative geometry in its modern manifestation of Gromov-
Witten theory.

The research leading to these results has received funding from the European Research Council under the Eu-

ropean Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement no. 307119, MiUR FIRB

2012 “Spazi di moduli e applicazioni”, MiUR PRIN 2010–2011 “Geometria delle varietà algebriche”, and INdAM

(GNSAGA).
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We assume throughout the paper that X ⊂ Pn+1 is a smooth hypersurface of degree d, so that
its canonical bundle satisfies KX

∼= OX (d− n− 2). If d < n + 2, then X is a Fano variety, and it
is uniruled. On the other hand, X is no longer swept out by rational curves as soon as d > n + 2
because of the nefness of KX , although rational curves may still cover subvarieties of X having large
dimension.

The study of rational curves on hypersurfaces has been carried out also with respect to the
degrees of the curves. In this direction, there are classical results dating back to Morin, B. Segre
and Predonzan regarding the existence of lines on complete intersections Y ⊂ Pn+1 and determining
for general Y the dimension of the Fano scheme F1(Y ) in the Grassmannian G(1, n + 1), which
parametrizes lines on Y (see [39, 47, 45]). Actually, these results concern the existence of linear
subvarieties of arbitrary dimension, and they have been extended in more recent times in various
directions (see e.g. [8, 17]). In particular, for hypersurfaces one has (see [33, Theorem V.4.3])

Theorem 1.1. Let X ⊂ Pn+1 be a smooth hypersurface of degree d 6 2n − 1. Then X contains
lines and, if in addition X is assumed to be very general, then the Fano scheme F1(X) ⊂ G(1, n+1)
is smooth of dimension 2n− 1− d.

Of course, there exist smooth hypersurfaces of any degree and dimension that contain lines,
so in particular, they contain rational curves. On the other hand, a series of seminal results by
Clemens, Ein, and Voisin ensures that, out of the range of Theorem 1.1, very general hypersurfaces
do not contain rational curves (cf. [42]). Namely,

Theorem 1.2. Let X ⊂ Pn+1 be a very general smooth hypersurface of degree d > 2n. Then X

does not contain rational curves.

The latter theorem has been proved by Clemens [16] for d > 2n+1. Then it has been extended
by Ein [19, 20] to complete intersections in smooth arbitrary varieties, whereas the weaker hypothesis
d > 2n follows from the work of Voisin [49, 50]. In the boundary case d = 2n − 1, it follows from
[49] that if n > 4, there exist finitely many rational curves of fixed degree in X. Pacienza showed in
[42] that for n > 5 the very general hypersurface of degree 2n− 1 does not contain rational curves
other than lines (which exist by Theorem 1.1).

The basic, important idea used to prove Theorem 1.2 and its variant for complete intersections
consists in a fine analysis of positivity of suitable vector bundles on universal families of hypersur-
faces, or complete intersections. The proof of the result announced in this paper also rely on the
same ideas and techniques.

2. Irregular curves on algebraic varieties

Apart from rational curves, it is natural to wonder how a curve into a given variety is far from
being rational. In this direction there are two natural invariants measuring the irrationality of a
curve: its geometric genus and its gonality.

The existence of curves with low genus on particular classes of varieties has been investigated,
as for instance, on Kummer [44], Prym [1, 41], and Jacobian varieties [36].

Turning to smooth hypersurfaces X ⊂ Pn+1 of degree d, the case of plane curves is trivial,
since the degree and the genus g are related by the well-known formula g = (d−1)(d−2)

2 . The case of
surfaces in P3 is more subtle. If d 6 3, X carries curves of any genera, as it is rational. For d = 4,
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X is a K3 surface and again any g can occur (cf. e.g. [13, Corollary 2.2]). The case of degree d > 5
is covered by the following result due to Xu ([51, Theorem 1]).

Theorem 2.1. Let X ⊂ P3 be a very general surface of degree d > 5. Then, there is no curve on
X with geometric genus g 6 d(d−3)

2 − 3. Moreover, curves cut out on X by tri–tangent planes (and
only them, if d > 6) achieve this bound.

A similar result has been obtained by Chiantini and Lopez [9]. Moreover, a detailed study of
the occurrence of the existence of genus g curves on a very general surface in X ⊂ P3 has been
worked out by Ciliberto, Flamini and Zaidenberg in [13]. They proved that on a very general X, if
the degree is d > 5, no curve of geometric genus d2−3d+4

2 6 g 6 d2− 2d− 9 can occur. Furthermore,
there exists a bound Gd such that X carries a curve of geometric genus g for any g > Gd. These
results have been then extended in [14] to possible values for geometric genera of subvarieties Y of
any smooth projective variety X of arbitrary dimension.

Concerning higher dimensional hypersurfaces X ⊂ Pn+1, it is worth noting that the results
[11, 19, 20, 49, 42] mentioned in the previous section on the existence of rational curves are more
general. Indeed, they give sufficient conditions for the canonical bundle of the desingularization of
any irreducible subvariety of X to be effective. As a consequence, they yield that the geometric
genus of these subvarieties turns out to be sufficiently positive. We would also like to stress that
these results are in the same line of the following earlier one by Clemens in [16], on families of
immersed curves.

Theorem 2.2. Let X ⊂ Pn+1 be a very general hypersurface of degree d > 2. Then X does not
admit any irreducible family C of immersed curves (i.e. smooth curves C endowed with a finite
morphism C

ν−→ X which is everywhere of maximal rank) of (geometric) genus g which covers a
subvariety of codimension less than D, where D := 2−2g

deg ν + d− (n + 2).

A notable extension by Pacienza (see [43]) gives sufficient conditions for a k-dimensional sub-
variety Y in a very general hypersurface X ⊂ Pn+1 to be contained in the locus covered by the lines
of X. In particular, if n > 5 and d > 2n, it turns out that any subvariety of X is of general type
(cf. [43, Corollary 1.2]).

As we pointed out, another measure for the irrationality of a given curve C is the gonality,
which is defined as

gon(C) := min
{
c ∈ N

∣∣∃C 99K P1 dominant of degree c
}

.

It is well known that gonality and genus are related by the inequality gon(C) 6
⌊

g+3
2

⌋
, and there

is a stratification of the moduli space Mg of smooth curves of genus g given by gonality.
In his groundbreaking paper [34], Lazarsfeld proved among other things that smooth curves C

in |OX(1)|, with X a smooth K3 surface of genus p > 3 and Pic(X) = Z [OX(1)], behave generically
from the point of view of Brill–Noether theory (despite the fact that these curves have general
moduli only if p 6 11 and p 6= 10; cf. e.g. [24] for an overview). Thus, any such a curve C has
geometric genus p and gonality gon(C) =

⌊
p+3
2

⌋
.

In [15, 22, 23] the authors consider the problem of extending Lazarsfeld’s results to singular
curves in |OX(1)|, computing the gonality of their normalizations. The results in [15] improve those
in [22, 23], by giving a necessary condition on p, g and k for the existence of an irreducible, possibly
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singular, curve C ∈ |OX(1)| of geometric genus g whose normalization has a g1
k. For all admissible

cases, a family of expected dimension of nodal curves in |OX(1)| with geometric genus g, carrying
a g1

k on their normalizations, has been exhibited.
Similar problems have been investigated in different settings, for instance on rational and ruled

surfaces [3, 10, 37, 48], Enriques surfaces [31, 32], elliptic K3’s [46], toric surfaces [29], as well as
abelian ones [44, 30].

Concerning the gonality of curves on hypersurfaces of Pn+1, not much was known till very
recently, except in particular cases. Basili [4] has proven that for a smooth complete intersection of
two surfaces in P3, the gonality is computed by the linear series cut out on the curve by a pencil of
planes off the intersection with a base line, which is a maximal multisecant line to the curve. The
same result holds for any curve on smooth quadrics in P3 (see [2, 37]), while a result on curves on
a certain quartic surface in P3 is due to Farkas [21]. An extended review on curves whose gonality
is computed by multisecant lines can be found in [28].

In the case of very general hypersurfaces of general type, the most complete result is the following
(cf. [7, Proposition 3.8]):

Theorem 2.3. Let X ⊂ Pn+1 be a very general hypersurface of degree d > 2n.
If C ⊂ X is an irreducible curve, then

gon(C) > d− 2n + 1.

More generally, if X contains an irreducible subvariety S ⊆ X of dimension s > 0 covered by a
family of irreducible curves whose general element has gonality c, then

c > d− 2n + s.

3. Covering gonality of general hypersurfaces

Given an n-dimensional projective variety X, we are interested in determining the least gonality
of curves passing through a general point x ∈ X. This is a birational invariant introduced in [7],
called the covering gonality of X, and it can be equivalently defined in terms of families of curves
covering X as

cov. gon(X) := min

k ∈ N

∣∣∣∣∣∣
∃ a family C π−→ T of irreducible curves Ct := π−1(t)
and a dominant morphism f : C −→ X such that
for general t ∈ T, gon(Ct) = k and f|Ct

is birational

 .

A family of curves as above is said to be a covering family of k-gonal curves.
General results on this invariant have been recently proved (cf. [7]). Furthermore, the covering

gonality of specific classes of varieties has been computed (see e.g. [35] concerning smooth surfaces
in P3, and [5] on second symmetric products of curves).

In the case of smooth hypersurfaces X ⊂ Pn+1 of large degree, the covering gonality satisfies
the following bound (cf. [7, Theorem A]).

Theorem 3.1. Let X ⊂ Pn+1 be a smooth hypersurface of degree d > n + 2. Then

cov. gon(X) > d− n. (3.1)
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When n = 1, X is a plane curve of degree d > 3, hence the gonality and the covering gonality
coincide. By a classical result already known to M. Noether, we have cov. gon(X) = d− 1, and any
map X 99K P1 of degree d− 1 is the projection from some point x ∈ X (see [12, Teorema 3.14]; cf.
also [27, Theorem 2.1]).

When X ⊂ P3 is a smooth surface of degree d > 4, the situation is more complicated, but the
problem is still totally understood, i.e. cov. gon(X) = d− 2. Indeed, if X is a smooth quartic in P3,
then X is a K3 surface, and Bogomolov-Mumford’s theorem states that any such a surface contains
at most countably many rational curves and it is covered by singular elliptic curves (cf. [38, p.351]),
thus cov. gon(X) = d− 2 = 2. The case d > 5 has been treated by Lopez and Pirola in [35], where
they proved that cov. gon(X) = d − 2 and classified all the covering families attaining this value
(cf. [35, Corollary 1.7]). In particular, all but one of the constructions of families computing the
covering gonality rely on the existence of some rational or elliptic curve on X, which do not occur
when X is assumed to be a very general surface in P3 (cf. Theorem 2.1). Thus the following holds
(see [35, Corollary 1.8]).

Theorem 3.2. Let X ⊂ P3 be a very general surface of degree d > 5. Then

cov. gon(X) = d− 2,

and any covering family C π−→ T of (d − 2)-gonal curves consists of tangent plane sections, i.e. a
general fibre Ct := π−1(t) is a plane curve cut out on X by the tangent plane TxX ⊂ P3 at some
point x ∈ X.

In the above setting, the (d − 2)-gonal map Ct 99K P1 is the projection of the plane curve Ct

from its singular point x ∈ Ct.

As far as higher dimensional hypersurfaces are concerned, we are able to prove the following:

Theorem 3.3. Let X ⊂ Pn+1 be a very general hypersurface of degree d > 2n + 2. Then

d−
⌊√

16n + 9− 1
2

⌋
6 cov. gon(X) 6 d−

⌊√
16n + 1− 1

2

⌋
, (3.2)

and the equality to the right hand side holds for any n ∈ N r
{

4α2 + 3α, 4α2 + 5α + 1
∣∣ α ∈ N

}
.

The second part of the statement simply follows from the fact that
⌊√

16n+9−1
2

⌋
=

⌊√
16n+1−1

2

⌋
if and only if n 6∈

{
4α2 + 3α, 4α2 + 5α + 1

∣∣ α ∈ N
}
. On the other hand, if n = 4α2 + 3α or

n = 4α2 + 5α + 1 for some α ∈ N, then the two bounds in (3.2) differ by one.
Note that this is a substantial improvement of Theorem 3.1 when X is assumed to be very

general.

Remark 3.4. Actually, the hypothesis of Theorem 3.1 can be weakened by assuming X ⊂ Pn+1 of
degree d > n + 2 having only canonical singularities (see [7, Corollary 1.11]). Moreover, under this
less restrictive assumption, the inequality (3.1) is sharp for any dimension n. Indeed, a hypersurface
X ⊂ Pn+1 with an ordinary singular point of multiplicity n does satisfy cov. gon(X) = d − n (cf.
[7, Example 1.7 (v)]).

The complete proof of Theorem 3.3 will appear in a forthcoming paper. Here we give a short
sketch of it. We combine various techniques coming from several of the aforementioned papers, such
as [6, 7, 11, 19, 20, 35, 42, 49].
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A crucial aspect involved in the proof is the description of the geometry of k-gonal curves C ⊂ X

passing through a general point of X. In this direction, we argue as in [5, Section 4] rephrasing
the problem in terms of correspondences with null trace on X and using Mumford’s technique of
induced differentials [40]. Then, [6, Theorem 2.5] assures that if k := gon(C) 6 d− 2, the fibers of
a degree k map φ : C 99K P1 consist of collinear points. Furthermore, by combining the approaches
of [6] and [7], we prove that there exists a point x ∈ X such that the curve C lies on the cone
T d−k

x X ⊂ TxX of lines having multiplicity of intersection with X at x of order at least d − k. In
particular, the map φ : C 99K P1 is obtained by projection from x ∈ T d−k

x X to some rational curve
lying on a general hyperplane section of T d−k

x X. Vice versa, given an integer h 6 d − 2, a point
x ∈ X, and a rational curve R contained in a general hyperplane section of T d−h

x X, the cone over
R with vertex at x cuts out on X an irreducible curve C satisfying gon(C) 6 h.

Recall that the cone T d−h
x X is scheme theoretically defined as the complete intersection of the

polars of degrees 1, . . . , d− h− 1 of x with respect to X. So, we slightly extend Predonzan’s result
[11, Theorem 2.1] on the existence of linear spaces in complete intersections of Pn+1, and deduce
that, for h > d−

√
16n+1−1

2 , there exists a (n−1)-dimensional family of cones T d−h
x X each containing

a line `x not belonging to the ruling. Thus, the linear span of x and `x intersects X along a plane
curve C admitting a degree h map C 99K `x

∼= P1 given by projection from x. Therefore this
construction gives rise to a covering family of curves with gonality at most h, where we may set
h = d−

⌊√
16n+1−1

2

⌋
, so that the upper bound in (3.2) is achieved.

The lower bound in Theorem 3.3 is in turn obtained by following the argument of Pacienza
[42], which is based on the vector bundle approach developed by Ein and Voisin in [19, 20, 49].
We assume k to be the covering gonality of X and, in the universal family over the Grassmannian
G(1, n + 1) of lines in Pn+1, we consider the locus ∆̃d−k ⊂ Pn+1 ×G(1, n + 1) of pairs (x, [`]) such
that the line ` ⊂ Pn+1 is tangent to X at x with intersection multiplicity at least d−k. By the above
discussion, any covering family of k-gonal curves on X induces a (n− 1)-dimensional subvariety of
∆̃d−k swept out by rational curves. By studying the positivity properties of the canonical bundle
of ∆̃d−k, we determine necessary conditions on k for the existence of such a subvariety. Namely, we
obtain k > d−

√
16n+9−1

2 , which leads to the lower bound.

To conclude, we would like to point out a couple of open problems which naturally arise from the
above analysis. The first is to determine the covering gonality of very general hypersurfaces in Pn+1

for the remaining values of n, that is n ∈
{

4α2 + 3α, 4α2 + 5α + 1
∣∣ α ∈ N

}
. In analogy with the

cases where the covering gonality was computed, we conjecture that cov. gon(X) = d−
⌊√

16n+1−1
2

⌋
.

Secondly, there is the problem of characterizing the families of curves for which the covering
gonality bound is achieved. In particular, it would be interesting to understand whether for n � 0,
these families consist only of planar sections.
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