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ON FAMILIES OF RANK-2 UNIFORM BUNDLES ON HIRZEBRUCH

SURFACES AND HILBERT SCHEMES OF THEIR SCROLLS

GIAN MARIO BESANA, MARIA LUCIA FANIA, AND FLAMINIO FLAMINI

Abstract. Several families of rank-two vector bundles on Hirzebruch surfaces are shown
to consist of all very ample, uniform bundles. Under suitable numerical assumptions, the
projectivization of these bundles, embedded by their tautological line bundles as linear scrolls,
are shown to correspond to smooth points of components of their Hilbert scheme, the latter
having the expected dimension. If e = 0, 1 the scrolls fill up the entire component of the
Hilbert scheme, while for e = 2 the scrolls exhaust a subvariety of codimension 1.

1. Introduction

Vector bundles over smooth, complex, varieties and their moduli spaces, have been intensely
studied by several authors over the years (see e.g. the bibliography in [9] for an overview).

In looking at the landscape of vector bundles over smooth projective varieties, with the eyes
of a classical projective geometer, it is natural to wonder about the relationship between that
landscape and the parallel world of the families of projective varieties obtained by embedding
the projectivized bundles, when possible. Several authors have investigated Hilbert schemes
of projective varieties that arise naturally as embeddings of projectivization of vector bundles,
when the appropriate conditions of very ampleness for the bundles themselves, or equivalently
for the tautological line bundle on their projectivization, hold.

In the first case of interest, i.e. rank-two, degree d vector bundles over genus g curves C,
the paper of C. Segre, [33], has to be considered as a corner-stone. Segre’s work has indeed
inspired several investigations on surface scrolls in projective spaces (cf. e.g. [27, 3, 25, 26]) as
well as a recent systematic study of Hilbert schemes of such surfaces, [11, 12, 13]. Morever,
the fact that any rank-two vector bundle E on C is an extension of line bundles is translated
in Segre’s language in terms of Hilbert schemes of unisecants on the ruled surface PC(E), with
fixed degree w.r.t. its tautological line bundle. This viewpoint has been recently considered
in [5, 14, 15, 30, 31], where the authors study questions on Brill-Noether loci in the moduli
space UC(d) (SUC(L), resp.) of semi-stable, rank-two vector bundles with fixed degree d (fixed
determinant L ∈ Picd(C), resp.) on C, just in terms of extensions of line bundles and Hilbert
schemes of unisecants. This series of papers leverages the relationship between the Hilbert
scheme approach and the vector-bundle one, in order to obtain results on rank-two vector
bundles on curves using primarily projective techniques of embedded varieties.

In attempting to extend this comparative analysis of the two approaches to vector bundles,
and correspondingly linear scrolls, over higher dimensional varieties, one is naturally led to
consider rank-two vector bundles over ruled surfaces on one hand, and three dimensional linear
scrolls embedded with low codimension on the other, as first steps. As far as the latter are
concerned, if the codimension is 2, it is known [32] that there are only four such examples:
the Segre scroll, the Bordiga scroll, the Palatini scroll, the K3-scroll. The first two examples
are varieties defined by the maximal minors of an appropriate matrix of linear forms and their
Hilbert scheme has being described by Ellingsrud [16]. More generally the Hilbert scheme of
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subvarieties of positive dimension in projective space which are cut-out by maximal minors of
a matrix with polynomial entries is considered in [18, 29]. As for the Palatini scroll, its Hilbert
scheme is described in [22], while its natural generalizations as Hilbert schemes of scrolls that
arise as degeneracy loci of general morphisms φ : O⊕m

P2k−1 −→ ΩP2k−1(2) are studied in [17] and
[18]. Further examples of K3-scrolls are presented in [23]. Turning our attention to rank-two
vector bundles over ruled surfaces, one first has the complete classification given by Brosius
[10], who introduced a canonical way of representing them as extensions of suitable coherent
sheaves as in Segre’s approach for curves. An equivalent way of obtaining such rank-two
bundles as extensions, naturally compatible with Brosius’ model, was introduced by Aprodu
and Brinzanescu, [9, 2], who studied moduli spaces of such vector bundles, independently of
any notion of stability.

Notwithstanding this thorough understanding of such bundles, in order to implement our
program of investigation, one has to deal with the significant difficulty of establishing the very
ampleness of the vector bundle (or tautological line bundle). Even just for rank-two vector
bundles over rational ruled surfaces this is a delicate problem. Alzati and the first author,
[1], gave a numerical criterion that enables one, in some cases, to establish the necessary very
ampleness. This criterion, joined with a need to complete the study of smooth projective
varieties of small degree, [20], [21], [6], motivated the authors to investigate Hilbert schemes
of threefold scrolls given by a particular family of vector bundles E, of rank 2 over Hirzebruch
surfaces Fe.

In a series of three papers, the authors dealt with a family of rank-two vectors bundles
E with first Chern class c1(E) = 3C0 + λf, where C0 and f are the standard generators of
the Picard group of Fe. In particular, if e = 0, 1, in [7] and [8] the authors show that the
irreducible component of the Hilbert scheme containing such scrolls is generically smooth, of
the expected dimension, and that its general point is actually a threefold scroll, and thus
the corresponding component of the Hilbert scheme is filled up completely by scrolls. Then
in [19], the second and third author extended the study of the same family of bundles (and
scrolls) to the cases with e ≥ 2. In particular, they showed that, similarly to the previous cases,
there exists an irreducible component of the Hilbert scheme containing such scrolls, which is
generically smooth, of the expected dimension, with the given scroll corresponding to a smooth
point. In contrast to the previous cases though, the family of constructed scrolls surprisingly
does not fill up the whole component. A candidate variety to represent the general point of
the component was also constructed, and it was shown that one can then flatly degenerate
a given scroll to the new variety, in such a way that the basescheme of the flat, embedded
degeneration is entirely contained in the given component.

In this note we observe that, if one allows the degree of the embedded scrolls to be relatively
high, the criterion in [1] establishes the very ampleness of other families of vector bundles
E over Fe, with c1(E) = 4C0 + λf. All very ample rank-two bundles in these families are
shown to be uniform, with splitting type (3, 1), see Proposition 3.1. Investigating fully the
cohomological properties of the scrolls considered here would require an extensive enumeration
of possible cases, according to sets of values for the parameters involved, see Remark 4.3, that
goes beyond the scope of this note. Therefore, in the second part of this work, scrolls over
surfaces Fe with e ≤ 2 are considered, for which convenient cohomology vanishing can be
obtained, see Theorem 4.2. Nonetheless, the overall framework is quite general and could be
adapted to encompass the rest of the bundles in the identified uniform families. Under the
new assumptions, Theorem 4.2 shows that the scrolls under consideration are smooth points
of a component of the Hilbert scheme of embedded projective varieties with the same Hilbert
polynomial, with the expected dimension. Leveraging both the vector bundle approach and
the Hilbert scheme one, Theorem 4.7 shows that scrolls obtained from our families of vector
bundles fill up their component of the Hilbert scheme if e = 0, 1 but exhaust a subvariety of
codimension 1 when e = 2. The last result extends to this new class of scrolls results from
[19]. Beyond the obvious goal of extending these results to scrolls over Fe for e ≥ 3, a few
other natural questions arise. Following [19], in the cases in which our scrolls fill out a positive
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codimension subvariety of the component of the Hilbert scheme, can one describe a variety
Z which is a candidate to represent the general point of such component? Assuming that a
description of a variety Z as above is achieved, can one interpret the projective degeneration
of Z to a scroll of ours in terms of vector bundles on Hirzebruch surfaces? All these questions
will be addressed in forthcoming works.

It is a pleasure for the authors to dedicate this note to Emilia Mezzetti, in the occasion of
her recent life milestone.

2. Notation and Preliminaries

Throughout this paper we will use the following notation:

X is a smooth, irreducible, complex projective variety of dimension 3 (or simply a
3-fold);
OX is the structure sheaf of X;
χ(F) =

∑3
i=0(−)ihi(X,F) is the Euler characteristic of any coherent sheaf F on X;

F|Y is the restriction of F to any subvariety Y ⊂ X;
KX (or simply K, when the context is clear) is a canonical divisor on X;
ci = ci(X) is the ith Chern class of X;
ci(E) is the ith Chern class of a vector bundle E on X;
if L is a very ample line bundle on X, then d = degX = L3 is the degree of X in the
embedding given by L;
if S is a smooth surface, ≡ will denote the numerical equivalence of divisors on S and,
if W ⊂ S is any closed subscheme, we will simply denote by JW its ideal sheaf in OS .

Cartier divisors, their associated line bundles and the invertible sheaves of their holomor-
phic sections are used with no distinction. Mostly additive notation is used for their group.
Juxtaposition is used to denote intersection of divisors. For any notation and terminology not
explicitly listed here, please refer to [28].

Definition 2.1. Let X be a 3-fold and L be an ample line bundle on X. The pair (X,L)
is called a scroll over a normal variety Y if there exist an ample line bundle M on Y and a
surjective morphism ϕ : X → Y , with connected fibers, such that KX+(4−dim Y )L = ϕ∗(M).

When Y is smooth and (X,L) is a scroll over Y , then (cf. [4, Prop. 14.1.3]) X ∼= P(E), where
E = ϕ∗(L) and L is the tautological line bundle on P(E). Moreover, if S ∈ |L| is a smooth
divisor, then (see e.g. [4, Thm. 11.1.2]) S is the blow up of Y at c2(E) points; therefore
χ(OY ) = χ(OS) and

(2.1) d := L3 = c21(E) − c2(E).

In this paper, we will consider three dimensional scrolls X whose base, Y, is the Hirzebruch
surface Fe = P(OP1 ⊕ OP1(−e)), with e ≥ 0 an integer. If π : Fe → P1 denotes the natural
projection, then Num(Fe) = Z[C0] ⊕ Z[f ], where C0 is the unique section corresponding to
OP1 ⊕ OP1(−e) →→ OP1(−e) on P1, and f = π∗(p), for any p ∈ P1. In particular, it is
C2
0 = −e, f2 = 0, C0f = 1.
Let E be a rank-two vector bundle over Fe. Then c1(E) ≡ aC0 + cf , for some a, c ∈ Z, and

c2(E) = γ ∈ Z. In this context, following Aprodu and Brinzanescu, [2, § 1], one can consider
two numerical invariants associated to E, as follows :

(i) Let f ≃ P1 be a general fibre of the map π. Then E|f
∼= Of (d1) ⊕ Of (d2), where the

pair (d1, d2) is called the generic splitting type of E, and where d2 ≤ d1, d1 + d2 = a.
Such an integer d1 is the first numerical invariant of E.

(ii) The integer r defined as:

−r := Inf {ℓ ∈ Z | H0(E(−d1 C0 + ℓ f)) = H0(E(−d1 C0)⊗ π∗(OP1(ℓ))) 6= 0}

is the second numerical invariant of E.

Recall that the vector bundle E is said to be uniform if the splitting type (d1, d2) as in (i)
is constant for any fibre f (cf. e.g. [2, Definition 3]).
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3. A family of rank-two uniform vector bundles over Fe.

Alzati and Besana, [1, p. 1211, Example 1], considered rank-two vector bundles on Fe con-
structed in the following way: let

(3.1) L ≡ C0 + blf and M ≡ 3C0 + bmf

be two line bundles on Fe with the assumption

(3.2) bm − bl − e− 2 > 0,

and let W be a zero-dimensional subscheme consisting of two distinct, reduced points on a
fixed fibre f . Then one gets a rank-two vector bundle E fitting in the following exact sequence

(3.3) 0 → L → E → M ⊗ JW → 0.

Assuming that

(3.4) bl > −2 and bm ≥ 3e+ 6,

it follows that the vector bundle E is very ample (see [1, Theorem 4.2]).
The second of the assumptions (3.4) can be written as bm = 3e + 6 + t with t ≥ 0. Thus,

from (3.2), we get

(3.5) bl < 2e+ 4 + t

From (3.3), in particular, one has

c1(E) = 4C0 + (bm + bl)f and c2(E) = L ·M + 2 = γ.

For simplicity of notation, set bl = b. Under our assumptions, we have

bl + bm = b+ 3e+ 6 + t and c2(E) = γ = 3b+ 8 + t.

Proposition 3.1. Let E be any rank-two vector bundle as in (3.3), for which assumptions
(3.4) and (3.5) hold. Then E is uniform, of splitting type (3, 1).

Proof. Since E is a very ample, rank-two vector bundle with c1(E) = 4C0 + (bm + bl)f then
the generic splitting type of E is either (3, 1) or (2, 2).

Claim 3.2. (2, 2) cannot occur as generic splitting type.

Proof of Claim 3.2. With notation as above, consider, as in [2, Theorem 1], the following
integer ℓ(c1, c2, d1, r) := γ+ a(d1e− r)− (bl+ bm)d1 +2d1r− d21e and assume by contradiction
that (2, 2) occurs as generic splitting type, i.e. d1 = d2 = 2. Then, with our notation and
under our numerical assumptions, it follows that

ℓ(c1, c2, 2, r) = 3b+ 8 + t+ 4(2e− r)− 2(3e + b+ 6 + t) + 4r − 4e(3.6)

= b− t− 2e− 4.

By (3.5) it follows that ℓ(c1, c2, d1, r) < 0 which contradicts [2, Theorem 1]. Thus (2, 2) cannot
occur as generic splitting type. �

Claim 3.2 implies that E has generic splitting type (3, 1). To show that E is uniform, by [2,
Corollary 5], it is enough to show that ℓ(c1, c2, 3, r) = 0. In order to compute ℓ, the invariant r
must first be considered. Tensoring the exact sequence (3.3) by−3C0⊗π∗(OP1(ℓ)) = −3C0+ℓf
gives

(3.7) 0 → −2C0 + (b+ ℓ)f → E(−3C0 + ℓf) → (3e+ 6 + t+ ℓ)f ⊗ JW → 0.

Note that H0(−2C0 + (b+ ℓ)f) = 0 and, by Serre duality, H1(−2C0 + (b+ ℓ)f) = H1(−(e+
2 + b+ ℓ)f) = H1(P1,OP1(−(e+ 2 + b+ ℓ))) = 0 if −e− 2− b− ℓ ≥ −1, that is if

(3.8) ℓ ≤ −e− 1− b.
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In this range it follows that H0(E(−3C0 + ℓf)) = H0((3e+ 6+ t+ ℓ)f ⊗ JW ) 6= 0 if and only
if 3e + 6 + t + ℓ ≥ 1 as, by construction, W is a zero-dimensional scheme consisting of two
distinct points on a fibre. Thus

(3.9) ℓ ≥ −3e− 5− t.

Notice that for (3.8) and (3.9) to be compatible it must be b ≤ 2e + 4 + t, which certainly
holds by (3.5). Thus we conclude that r = 3e+ 5 + t.

We finally can compute

ℓ(c1, c2, 3, r) = 3b+ 8 + t+ 4(3e− 3e− 5− t)− 3(b+ 3e+ 6 + t) + 6(3e + 5 + t)− 9e = 0,

which implies that E is uniform. �

Let E be a rank-two vector bundle over Fe as in Proposition 3.1. Then

(3.10) c1(E) ≡ 4C0 + (b+ 3e+ 6 + t)f, c2(E) = γ = 3b+ 8 + t, for t ≥ 0,

and E is uniform, of splitting type (3, 1). Thus, (see [1, Prop.7.2] and [10]), there exists an
exact sequence

(3.11) 0 → A → E → B → 0,

where A and B are line bundles on Fe such that

(3.12) A ≡ 3C0 + (3e+ 5 + t)f and B ≡ C0 + (b+ 1)f.

From (3.11), in particular, one has c1(E) = A+B and c2(E) = A ·B. Note also that since
E is very ample it follows that B is ample and thus b > e− 1.

Using (3.11), we can compute cohomology of E, A, and B. Indeed, we have:

Proposition 3.3. Let E be a rank-two vector bundle over Fe as in Proposition 3.1. Then

hi(E) = hi(A) = hi(B) = 0, for i ≥ 1 and h0(E) = 5e+ 2b+ 4t+ 28.

Proof. For dimension reasons, it is clear that hj(E) = hj(A) = hj(B) = 0, j ≥ 3. Recalling
that KFe

≡ −2C0 − (e+ 2)f, and using Serre duality, it is:

h2(A) = h0(−5C0 − (4e + 7 + t)f) = 0 and h2(B) = h0(−3C0 − (e+ 3 + b)f) = 0.

In particular, this implies that h2(E) = 0. In order to show that h1(B) = h1(A) = 0 first notice
that R1π∗(B) = R1π∗(O(1))⊗OP1 (b+ 1) = 0 and R1π∗(A) = R1π∗(O(3))⊗OP1 (3e+ 5 + t) = 0
(see for example [28, p.253]). Recalling that b > e − 1, and t ≥ 0, Leray’s isomorphism then
gives

h1(B) = h1(P1, R0π∗(C0 + (b+ 1)f))

= h1(P1, (OP1 ⊕ OP1(−e))⊗ OP1(b+ 1))

= h1(P1,OP1(b+ 1)) + h1(P1,OP1(b+ 1− e)) = 0,

and

h1(A) = h1(P1, R0π∗(3C0 + (3e+ 5 + t)f))

= h1(P1, Sym3(OP1 ⊕ OP1(−e))⊗ OP1(3e+ 5 + t))

= h1(P1, (OP1 ⊕ OP1(−e)⊕ OP1(−2e) ⊕ OP1(−3e)) ⊗ OP1(3e+ 5 + t))

= h1(P1,OP1(3e+ 5 + t)⊕ OP1(2e + 5 + t)⊕ OP1(e+ 5 + t)⊕ OP1(5 + t)) = 0.
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Similarly we get that

h0(A) = h0(P1,OP1(3e + 5 + t)⊕ OP1(2e+ 5 + t)⊕ OP1(e+ 5 + t)⊕ OP1(5 + t))

= 3e+ 6 + t+ 2e+ 6 + t+ e+ 6 + t+ 6 + t

= 6e+ 4t+ 24,

h0(B) = h0(P1,OP1(b+ 1)⊕ OP1(b+ 1− e))

= 2b+ 4− e,

and thus

h0(E) = h0(A) + h0(B) = 6e+ 4t+ 24 + 2b+ 4− e = 5e+ 2b+ 4t+ 28.

�

4. 3-dimensional scrolls over Fe and their Hilbert schemes

As all vector bundles in the the family introduced in § 3 are very ample, they give rise
to a corresponding family of threefolds embedded in projective space as linear scrolls over
Fe. In this section we will show that such threefolds correspond to smooth points of suitable
components of the appropriate Hilbert scheme, and that in some cases (e.g. e = 2) they fill up
only a codimension e− 1 subvariety of such a component.

Let E be a very ample rank-two vector bundle over Fe as in Proposition 3.1, with c1(E) and
c2(E) as in (3.10). As observed above, E fits in an exact sequence as in (3.11), where A and
B are as in (3.12). With this set up, let (P(E),OP(E)(1)) be the 3-dimensional scroll over Fe,
and ϕ : P(E) → Fe be the usual projection.

Proposition 4.1. The tautological line bundle L = OP(E)(1) defines an embedding

Φ := Φ|L| : P(E) →֒ X ⊂ Pn,

where X = Φ(P(E)) is smooth, non-degenerate, of degree d, with

(4.1) n = 5e+ 2b+ 4t+ 27 and d = L3 = 8e+ 5b+ 7t+ 40.

Moreover,

(4.2) hi(X,L) = 0, i ≥ 1.

Proof. The very ampleness of L follows from that of E. The expression for the degree d of X
in (4.1) follows from (2.1). Leray’s isomorphisms and Proposition 3.3 give (4.2) whereas the
first part of (4.1) follows from Proposition 3.3, because n+ 1 = h0(X,L) = h0(Fe,E). �

4.1. The component of the Hilbert scheme containing [X]. In what follows, we are
interested in studying the Hilbert scheme parametrizing closed subschemes of Pn having the
same Hilbert polynomial P (T ) := PX(T ) ∈ Q[T ] of X, i.e. the numerical polynomial defined
by

P (m) = χ(X,mL) =
1

6
m3L3 −

1

4
m2L2 ·K +

1

12
mL · (K2 + c2) + χ(OX), for all m ∈ Z,

(cf. [24, Example 15.2.5]). For basic facts on Hilbert schemes we refer to e.g. [34].

A scroll X ⊂ Pn, as above, corresponds to a point [X] ∈ H
d,n
3 , where H

d,n
3 denotes the

Hilbert scheme parametrizing closed subschemes of Pn with Hilbert polynomial P (T ) as above,
where n and d are as in (4.1). Let

(4.3) N := NX/Pn

denote the normal bundle of X in Pn. From standard facts on Hilbert schemes (see, for
example, [34, Corollary 3.2.7]), one has

(4.4) T[X](H
d,n
3 ) ∼= H0(N)
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and

(4.5) h0(N)− h1(N) ≤ dim[X](H
d,n
3 ) ≤ h0(N),

where the left-most integer in (4.5) is the expected dimension of Hd,n
3 at [X] and where equality

holds on the right in (4.5) if and only if X is unobstructed in Pn (namely, iff [X] ∈ H
d,n
3 is a

smooth point).
In the next result we exhibit components of the Hilbert schemes of scrolls, as in Proposition

4.1, which are generically smooth and of the expected dimension.

THEOREM 4.2. Assume e ≤ 2 and b = 2e + 3 + t. Then, for any t ≥ 0, there exists an

irreducible component Xe ⊆ H
d,n
3 , which is generically smooth and of (the expected) dimension

(4.6) dim(Xe) = n(n+ 1) + 9e+ 20 + 6t,

where n = 9e+ 33 + 6t and d = 18e+ 55 + 12t, such that [X] sits in the smooth locus of Xe.

Remark 4.3. (i) Notice that, for any fixed integer t ≥ 0, b = 2e + 3 + t is the maximal
value that b can achieve according to (3.5). Correspondingly, one can compute n and
d by simply substituting this value of b in (4.1), which exactly gives n = 9e+ 33 + 6t
and d = 18e+ 55 + 12t as in the statement of Theorem 4.2.

(ii) Assumptions e ≤ 2 and b = 2e+3+t in Theorem 4.2 are not inherently imposed by the
problem, but added here only to simplify technical details in the proof of Theorem 4.2
(see details of proof below). One could as well consider all cases −2 < b ≤ 2e+3+t, but
then an exhaustive analysis of all possible numerical values for b, e and t, compatible
with (3.2), (3.4), (3.5), would be required, as well as thorough parameter computations
for the construction of threefolds X as in Proposition 4.1. This approach would be
beyond the scope of this note. Thus, to simplify the proof of Theorem 4.2, we will
assume b = bl < 6 + t + e which, by (3.5), is indeed the case as soon as e ≤ 2, as
well as b ≥ 2e + 3 + t which, together with (3.5), gives exactly b = 2e + 3 + t. We
would like to stress that, even under the conveniently chosen numerical assumptions,
Theorem 4.2 gives infinitely many classes of examples of Hilbert schemes: for any
e ∈ {0, 1, 2} and for any integer t ≥ 0. Indeed one notices that (3.2) is always satisfied
when bm = 3e+ 6 + t and bl = b = 2e+ 3 + t, for any t ≥ 0.

(iii) Under the numerical assumptions of Theorem 4.2, all bundles E will split (cf. (4.17)).

Proof of Theorem 4.2. By (4.4) and (4.5), the statement will follow by showing thatH i(X,N) =
0, for i ≥ 1, and computing h0(X,N) = χ(X,N). The necessary arguments, and cohomologi-
cal computations, run as in [19, Theorem 4.4], with appropriate obvious modifications, hence
we omit most of the details.

From the Euler sequence on Pn restricted to X

0 −→ OX −→ OX(1)⊕(n+1) −→ TPn|X −→ 0

and the facts that H i(X,OX ) = H i(Fe,OFe
) = 0, for i ≥ 1, and X is non–degenerate in Pn,

with n as in (4.1), one has:

(4.7) h0(X,TPn|X) = (n + 1)2 − 1 and hi(X,TPne |X) = 0, for i ≥ 1.

The normal sequence

0 −→ TX −→ TPn|X −→ N −→ 0(4.8)

therefore gives

H i(X,N) ∼= H i+1(X,TX ) for i ≥ 1.(4.9)

Claim 4.4. H i(X,N) = 0, for i ≥ 1.
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Proof of Claim 4.4. From (4.7) and (4.8), one has hj(X,N) = 0, for j ≥ 3. For the other
cohomology spaces, we use (4.9). In order to compute Hj(X,TX ) we use the scroll map
ϕ : P(E) −→ Fe and we consider the relative cotangent bundle sequence:

0 → ϕ∗(Ω1
Fe
) → Ω1

X → Ω1
X|Fe

−→ 0.(4.10)

The adjunction theoretic characterization of the scroll and (3.10) give

KX = −2L+ ϕ∗(KFe
+ c1(E)) = −2L+ ϕ∗(KFe

+ 4C0 + (3e+ 6 + t+ b)f)

thus
Ω1
X|Fe

= KX + ϕ∗(−KFe
) = −2L+ ϕ∗(4C0 + (3e+ 6 + t+ b)f)

which, combined with the dual of (4.10), gives

0 → 2L− ϕ∗(4C0 + (3e+ 6 + t+ b)f) → TX → ϕ∗(TFe
) → 0.(4.11)

As in [19, Theorem 4.4], if e 6= 0,

h0(X,ϕ∗(TFe
)) = h0(Fe, TFe

) = e+ 5,

h1(X,ϕ∗(TFe
)) = h1(Fe, TFe

) = e− 1,(4.12)

hj(X,ϕ∗(TFe
)) = hj(Fe, TFe

) = 0, for j ≥ 2,

whereas

h0(X,ϕ∗(TF0
)) = h0(F0, TF0

) = 6,(4.13)

hj(X,ϕ∗(TF0
)) = hj(F0, TF0

) = 0, for j ≥ 1.

The cohomology of 2L−ϕ∗(4C0 + (3e+6+ t+ b)f) in (4.11) is computed as in [19, Theorem

4.4]. Since Riϕ∗(2L) = 0 for i ≥ 1 (see [28, Ex. 8.4, p. 253]), projection formula and Leray’s
isomorphism give

H i(X, 2L−ϕ∗(4C0+(3e+6+ t+b)f)) ∼= H i(Fe, Sym
2E⊗ (−4C0− (3e+6+ t+b)f)), ∀ i ≥ 0.

As in the proof of [19, Theorem 4.4], the fact that E fits in (3.11) implies there exists a
finite filtration

Sym2(E) = F 0 ⊇ F 1 ⊇ F 2 ⊇ F 3 = 0

s.t.
F 0/F 1 ∼= 2B, F 1/F 2 ∼= A+B, F 2 ∼= 2A,

since F 3 = 0 (for technical details, we refer the reder to [19, Theorem 4.4]). Thus, we get the
following exact sequences

(4.14) 0 → F 1 → Sym2(E) → 2B → 0 and 0 → 2A → F 1 → A+B → 0,

Tensoring the two exact sequences in (4.14) by −c1(E) = −4C0 − (3e+6+ t+ b)f = −A−B,
we get respectively:

(4.15) 0 → F 1(−4C0−(3e+6+t+b)f) → Sym2(E)⊗(−4C0−(3e+6+t+b)f) → B−A → 0,

(4.16) 0 → A−B → F 1(−4C0 − (3e + 6 + t+ b)f) → OFe
→ 0.

From (3.12) it follows that A−B = 2C0+(3e+4+t−b)f . Now R0π∗(2C0+(3e+4+t−b)f) ∼=
(OP1 ⊕OP1(−e)⊕OP1(−2e))⊗OP1(3e+4+ t− b) and Riπe∗(2C0 + (3e+4+ t− b)f) = 0, for
i > 0. Hence, from Leray’s isomorphism and Serre duality, we have

hj(A−B) = hj(P1, (OP1 ⊕ OP1(−e)⊕ OP1(−2e)) ⊗ OP1(3e + 4 + t− b))

= hj(OP1(3e+ 4 + t− b)) + hj(OP1(2e + 4 + t− b)) + hj(OP1(e+ 4 + t− b))

= 0, if j ≥ 2;

h1(A−B) = h1(OP1(3e + 4 + t− b)) + h1(OP1(2e+ 4 + t− b)) + h1(OP1(e+ 4 + t− b))

∼= h0(OP1(b− 6− t− 3e)) + h0(OP1(b− 6− t− 2e)) + h0(OP1(b− 6− t− e)).

This implies that, if b < 6 + t+ e, then h1(A−B) = 0.
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Since by (3.5) we have b = bℓ < 2e + 4 + t, notice that 2e + 4 + t ≤ e + 6 + t is equivalent
to our numerical assumption e ≤ 2. In particular, under the assumptions (3.5) and e ≤ 2, the
case b ≥ 6 + t+ e cannot occur. Hence, under these assumptions, no indecomposable vector
bundles can arise, i.e. any E is such that

(4.17) E = A⊕B.

Moreover the condition h1(A−B) = 0, along with hi(OFe
) = 0, for i ≥ 1, and the cohomology

associated to (4.16) give hi(F 1(−4C0 − (3e+ 6 + t+ b)f) = 0 for i ≥ 1.
We now compute the cohomology of B −A. Using Serre duality,

Hj(B −A) = Hj(−2C0 − (3e + 4 + t− b)f)

∼= H2−j(−2C0 − (e+ 2)f + 2C0 + (3e+ 4 + t− b)f))

∼= H2−j((2e+ 2 + t− b)f)

∼= H2−j(OP1(2e+ 2 + t− b)).

Notice that, when b ≥ 2e+ 3 + t one has h2(B −A) = 0.
Thus numerical assumption b = 2e + 3 + t in the statement is compatible with (3.5) and

ensures the vanishing of H2(B −A). It also implies H1(B −A) ∼= H1(OP1(−1)) = 0.
From the cohomology sequence associated to (4.15) it follows that if b = 2e+ 3 + t then

hj(X, 2L − ϕ∗(4C0 + (3e+ 6 + t+ b)f)) = hj(2L− ϕ∗(4C0 + (5e + 9 + 2t)f))

= hj(Fe, Sym
2E⊗ (−4C0 − 5e− 9− 2t)f)(4.18)

= 0, for j ≥ 1.

Using (4.12), (4.13) and (4.18) in the cohomology sequence associated to (4.11), we get

(4.19) hj(X,TX ) = 0, for j ≥ 2.

Moreover

h1(X,TX ) =

{

e− 1 for e 6= 0

0 for e = 0.
(4.20)

Isomorphism (4.9) concludes the proof of Claim 4.4. �

Claim 4.4, together with the fact that smoothness is an open condition, implies that there

exists an irreducible component Xe of H
d,n
3 which is generically smooth, of the expected dimen-

sion dim(Xe) = h0(X,N) = χ(N), such that [X] lies in its smooth locus (recall (4.4), (4.5)).
The Hirzebruch-Riemann-Roch theorem gives

χ(N) =
1

6
(n3

1 − 3n1n2 + 3n3) +
1

4
c1(n

2
1 − 2n2)(4.21)

+
1

12
(c21 + c2)n1 + (n− 3)χ(OX ),

where ni := ci(N) and ci := ci(X).
Setting, for simplicity, K := KX , Chern classes of N can be obtained from (4.8):

n1 = K + (n+ 1)L;

n2 =
1

2
n(n+ 1)L2 + (n+ 1)LK +K2 − c2;(4.22)

n3 =
1

6
(n− 1)n(n+ 1)L3 +

1

2
n(n+ 1)KL2 + (n + 1)K2L

−(n+ 1)c2L− 2c2K +K3 − c3.
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The numerical invariants of X can be easily computed by:

KL2 = −2d+ 6e+ 28 + 6t+ 6b; K2L = 4d− 20b− 20t− 20e− 96;

c2L = 2e+ 24 + 2b+ 2t; K3 = −8d+ 48b + 48t+ 48e + 240;

−Kc2 = 24; c3 = 8.

Plugging these in (4.22) and then in (4.21), one gets

χ(N) = (d− 3e− 3b− 3t− 12)n + 122 + 21t+ 21e+ 21b− 3d.

From (4.1), one has d = 8e+ 5b+ 7t+ 40 and n = 5e+ 2b+ 4t+ 27; in particular

d− 3e− 3b− 3t− 12 = n+ 1.

Thus

χ(N) = (n+ 1)n + 2− 3e+ 6b = (n+ 1)n+ 9e+ 20 + 6t,

as in (4.5), with n = 9e+ 33 + 6t since b = 2e+ 3 + t. �

Remark 4.5. The proof of Theorem 4.2 gives

(4.23) h0(N) = (n+ 1)n + 9e+ 20 + 6t, hi(N) = 0, i ≥ 1.

Using (4.7) and (4.23) in the exact sequence (4.8) and the values of b, n and d as in Theorem
4.2, one gets

(4.24) χ(TX) = n− 6b+ 3e− 2 = 8e− 4b+ 4t+ 25 = 13.

Moreover, from (4.8) and (4.7), one has:

(4.25) 0 → H0(TX) → H0(TPn|X )
α
→ H0(N)

β
→ H1(TX) → 0.

Corollary 4.6. With the same assumptions as in Theorem 4.2 one has:

i) if e 6= 0,

h0(TX) = e+ 12, h1(TX) = e− 1, hj(TX) = 0, for j ≥ 2;

ii) if e = 0,

h0(TX) = 13, hj(TX) = 0, for j ≥ 1.

Proof. Let e 6= 0, then hj(TX) = 0, for j ≥ 2, is (4.19) and h1(TX) = e − 1, from (4.20). We
now use (4.24) to get that h0(TX) = 9e− 4b+ 4t+ 20 = e+ 12. A similar argument gives the
desired values for h0 and hj in the case e = 0. �

The next result shows that, for e = 2, scrolls arising from Proposition 4.1 do not fill up the

component X2 ⊆ H
d,n
3 .

THEOREM 4.7. Assumptions as in Theorem 4.2. Let Ye be the locus in Xe filled-up by
3-fold scrolls X as in Proposition 4.1. Then

codimXe
(Ye) =

{

e− 1 for e 6= 0

0 for e = 0

Proof. If τ denotes the number of parameters counting isomorphism classes of projective bun-
dles P(E) as in Proposition 4.1, then τ = 0 since E = A ⊕ B (see (4.17)). Therefore X ∼=
P(A⊕B) is uniquely determined by A and B. Thus, by construction, dim(Ye) = dim(Im(α)).
From (4.25), dim(Coker(α)) = h1(TX) so

codimXe
(Ye) = dim(Coker(α)) =

{

e− 1 for e 6= 0

0 for e = 0
,

�
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5. Open Questions

We have seen in Theorem 4.7 that the locus Ye in Xe of 3-fold scrolls X as in Proposition
4.1, does not necessarily fill up Xe if e = 2. The following problems arise naturally:

1) Describe a variety Z which is a candidate to represent the general point of the com-
ponent X2;

2) Assuming that a description of a variety Z as in 1) above is achieved, interpret the
projective degeneration of Z to X, where [X] ∈ Y2, in terms of vector bundles on
Hirzebruch surfaces;

3) Extend the results in this note to the case e ≥ 3.
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