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Abstract. In this paper we deal with a reducible projective surface X with so-called Zap-
patic singularities, which are a generalization of normal crossings. First we compute the
ω-genus pω(X) of X, i.e. the dimension of the vector space of global sections of the dualizing
sheaf ωX . Then we prove that, when X is smoothable, i.e. when X is the central fibre of a
flat family π : X → ∆ parametrized by a disc, with smooth general fibre, then the ω-genus
of the fibres of π is constant.

1. Introduction

In this paper we study some topological properties of reducible projective complex surfaces
(e.g. unions of planes in a projective space) with so–called Zappatic singularities, which are
a generalization of normal crossings. These surfaces naturally occur as central fibres of
(embedded) flat degenerations of surfaces, but they are interesting also on their own.

Recall that a projective surface has a Zappatic singular point of type Rn [resp. Sn, En],
n > 3, if it is locally analytically isomorphic to the vertex of a cone over a union of lines
whose dual graph is a chain of length n [resp. a fork with n− 1 teeth, a cycle of order n] and
which is projectively normal in the projective space it spans (see Definition 2.1 below).

A Zappatic surface X is a reduced, connected, projective surface which is a union of smooth
surfaces and whose singularities are Rn-, Sn-, En-points, n > 3, and, in codimension one,
double curves which are smooth and irreducible along which two irreducible components of
X meet transversally (see Definition 2.2). This terminology is justified by interesting papers
by Guido Zappa (see e.g. [16, 17]), where degenerations of surfaces to unions of planes with
E3-, R3- and S4-points have been studied.

As stick curves are used to study moduli spaces of smooth curves (cf. [8] and [14]), degener-
ations of surfaces to a Zappatic surface naturally arise in the study of components of moduli
spaces of smooth surfaces and their compactifications (see e.g. [3], [4], [6]). We expect that
such degenerations will find even more applications, e.g., in the classification of surfaces with
low invariants, in braid monodromy computations (see [5], [11], [12], [15]), in the birational
classification of higher-dimensional varieties, etc.

In [2], we made a complete analysis of the K2 and χ invariant for Zappatic surfaces and
degenerations of smooth surfaces to Zappatic ones. There is one more primary birational
invariant for surfaces, namely the geometric genus; this paper is devoted to the analysis of
this invariant for Zappatic surfaces and degenerations.

Let us define the ω-genus of a projective variety Y to be

pω(Y ) := h0(Y, ωY ),

where ωY is the dualizing sheaf of Y . It is just the arithmetic genus, if Y is a reduced curve,
and the geometric genus, if Y is a smooth surface.

Mathematics Subject Classification (2000): 14J17; (Secondary) 14B07, 14D06, 14D07, 14N20.
The first three authors are member of G.N.S.A.G.A. at I.N.d.A.M. “Francesco Severi”. The authors would
like to thank L. Badescu and A. Beauville for discussions and references.

1



2 ALBERTO CALABRI, CIRO CILIBERTO, FLAMINIO FLAMINI, RICK MIRANDA

One of the results in this paper is the computation of the ω-genus pω(X) of a Zappatic
surface X (cf. Theorem 3.1):

Theorem 1. Let X =
⋃v

i=1
Xi be a Zappatic surface and let GX be its dual graph (cf.

Definition 2.4). Consider the natural map ΦX :
⊕v

i=1
H1(Xi,OXi

) →
⊕

16i<j6vH
1(Cij,OCij

),

where Cij = Xi ∩ Xj if Xi and Xj meet along a curve, or Cij = ∅ otherwise (cf. Definition
2.5). Then:

(1.1) pω(X) = h2(GX ,C) +
v∑

i=1

pg(Xi) + dim(coker(ΦX)).

In particular, (1.1) shows that pω is a topological invariant of Zappatic surfaces.
Suppose now that a Zappatic surface X is smoothable, namely X = X0 is the central

fibre of a flat degeneration π : X → ∆ of surfaces, where ∆ is the spectrum of a DVR (or
equivalently the complex unit disk) and each fibre Xt = π−1(t), 0 6= t ∈ ∆, is smooth.

In [2], we gave sharp bounds for K2
Xt

, t 6= 0; this enabled us to prove, in the above situation,
a stronger version of the Miyaoka-Yau inequality for the general fiber Xt.

In this paper, we show that the ω-genus of the fibres of a flat degeneration of surfaces with
Zappatic central fibre as above is constant, namely we prove the following (cf. Theorem 4.14):

Theorem 2. Let X → ∆ be a flat degeneration of surfaces parametrized by a disc, such that
the central fibre X0 = X is Zappatic and each fibre Xt, t 6= 0, is smooth. Then, for any t 6= 0,
one has:

(1.2) pg(Xt) = pω(X).

Let us briefly describe the contents of this paper. Section 2 recalls some basic definitions
and notation concerning Zappatic surfaces. We associate to a Zappatic surface X a dual
graph GX which encodes the configuration of the irreducible components of X as well as of
its Zappatic singularities. For more details, the reader is referred to [1] and [2].

In Section 3 we compute the cohomology of the structure sheaf of a Zappatic surface X,
thus proving Theorem 1 above, since pω(X) = h2(X,OX). In order to do so, we exploit
the natural injective resolution (3.4) of the sheaf OX in terms of the structure sheaves of the
irreducible components of X and of its singular locus. An alternative, and in some sense dual,
approach is via the interpretation of the global sections of ωX as collections of meromorphic
2-forms on the irreducible components of X, having poles along the double curves of X with
suitable matching conditions. This interpretation makes it possible, in principle, to compute
h0(X,ωX) by computing the number of such independent collections of forms. This is the
viewpoint taken in [1], where we discussed only the normal crossings case. However, the
approach taken here leads more quickly and neatly to our result.

In Section 4 we consider flat degenerations π : X → ∆, parametrized by a disc, of smooth
surfaces to a Zappatic one X = X0 and we prove Theorem 2. We recall the construction of
a normal crossing reduction π̄ : X̄ → ∆ of π, i.e. X̄ → X is a resolution of singularities of X

and the support of its central fibre X̄0 has global normal crossings (cf. Remark 4.2). Then we

apply the results in Chapter II of [9] in order to get a semistable reduction π̃ : X̃ → ∆ of π.

This enables us to deduce the topological properties of the fibres of X̃ from those of X, with
the assistance of the Clemens-Schmid exact sequence (cf. e.g. [13]).

2. Preliminaries

In this paper we deal with projective varieties defined over the complex field C.
Let us recall the notions of Zappatic singularities, Zappatic surfaces and their dual graphs.

We refer the reader for more details to our previous papers [1] and [2]. One word of warning:
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what we call good Zappatic singularities there, here we simply call Zappatic singularities,
because no other type of Zappatic singularity will be considered in this paper.

Definition 2.1. Let us denote by Rn [resp. Sn, En] a graph which is a chain [resp. a fork,
a cycle] with n vertices, n > 3, cf. Figure 1. Let CRn

[resp. CSn
, CEn

] be a connected,
projectively normal curve of degree n in P

n [resp. in P
n, in P

n−1], which is a stick curve, i.e.
a union of lines, whose dual graph is Rn [resp. Sn, En].

• • • • • • •
•

• • • •••

•
•

•

•

• •

•

Figure 1. A chain Rn, a fork Sn with n− 1 teeth, a cycle En.

We say that a point x of a projective surface X is a Rn- [resp. Sn-, En-] point if (X, x) is
locally analytically isomorphic to a pair (Y, y) where Y is the cone over a curve CRn

[resp.
CSn

, CEn
], n > 3, and y is the vertex of the cone (cf. Figure 2). We say that Rn-, Sn-,

En-points are Zappatic singularities.
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Figure 2. Examples: a R3-point, a S4-point and an E3-point.

Definition 2.2. A projective surface X =
⋃v

i=1
Xi is called a Zappatic surface if X is con-

nected, reduced, all its irreducible components X1, . . . , Xv are smooth and:

• the singularities in codimension one of X are at most double curves which are smooth
and irreducible along which two surfaces meet transversally;

• the further singularities of X are Zappatic singularities.

We set Cij = Xi ∩ Xj if Xi and Xj meet along a curve, we set Cij = ∅ otherwise. We set
Ci = Xi ∩ X −Xi =

⋃v

j=1
Cij. We denote by C the singular locus of X, i.e. the curve

C =
⋃

16i<j6v Cij.

Remark 2.3. A Zappatic surface X is Cohen-Macaulay. Moreover it has global normal
crossings except at the Rn- and Sn-points, for n > 3, and at the Em-points, for m > 4.

We associate to a Zappatic surface X a dual graph GX as follows. Notice that this is
slightly different from the graph defined in [1] and [2], which contains more information that
we will not need here.

Definition 2.4. Let X =
⋃v

i=1
Xi be a Zappatic surface. The dual graph GX of X is given

by:

• a vertex xi for each irreducible component Xi of X;
• an edge lij, joining the vertices xi and xj, for each irreducible component of the curve
Cij = Xi ∩Xj;
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• a n-face Fp for each point p of X of type En for some n > 3: the n edges bounding
the face Fp are the n irreducible components of the double curve C of X concurring
at p.

We will denote by ` the number of edges and by f the number of faces of GX . We will put,
once and for all, the lexicographic orientation on the edges of GX , namely an index pair i < j,
such that Cij 6= ∅, corresponds to a set of edges in GX which are assumed to be oriented from
xi to xj. We will also fix an orientation for the faces of GX .

By abusing notation, we will denote by GX also the natural CW-complex associated to the
dual graph GX of X.

We now define the map ΦX which appears in the statement of Theorem 1.

Definition 2.5. LetX =
⋃v

i=1
Xi be a Zappatic surface. Let rij : H1(Xi,OXi

) → H1(Cij,OCij
)

be the restriction map to Cij as a divisor in Xi. We define the natural map:

(2.6) ΦX :
v⊕

i=1

H1(Xi,OXi
) →

⊕

16i<j6v

H1(Cij,OCij
), ΦX(ai) = −

i−1∑

j=1

rij(ai) +
v∑

j=i+1

rij(ai)

if ai ∈ H1(Xi,OXi
) and extend ΦX linearly. When X is clear from the context, we will write

simply Φ instead of ΦX .

3. The ω-genus of a Zappatic surface

The aim of this section is to compute the ω-genus of a Zappatic surface X. What we will
actually do will be to compute the cohomology of the structure sheaf OX , which is sufficient,
since pω(X) = h2(X,OX).

The main result of this section (cf. Theorem 1 in the introduction) is the following:

Theorem 3.1. Let X =
⋃v

i=1
Xi be a Zappatic surface. Then:

(3.2) pω(X) = h2(X,OX) = h2(GX ,C) +
v∑

i=1

pg(Xi) + dim(coker(Φ)),

and

(3.3) h1(X,ωX) = h1(X,OX) = h1(GX ,C) + dim(ker(Φ))

where GX is the dual graph of X and Φ = ΦX is the map of Definition 2.5.

Proof. Let p1, ..., pf be the En–points of X, n > 3. As in [1], proof of Proposition 3.15, one
has the exact sequence:

(3.4) 0 → OX →
v⊕

i=1

OXi

d0G−→
⊕

16i<j6v

OCij

d1G−→

f⊕

h=1

Oph
→ 0

where the maps are defined as follows:

• The map OX → ⊕v
i=1OXi

is the direct sum of the natural restriction maps.
• To define the map d0

G : ⊕v
i=1OXi

→ ⊕16i<j6vOCij
, we describe the composition of its

restriction to each summand OXi
with the projection to any summand OChk

, with
h < k. This map sends g ∈ OXi

to:
(1) 0 ∈ OChk

, if both h, k are different from i;
(2) g|Cik

∈ OCik
if k > i;

(3) −g|Cki
∈ OCki

if k < i;
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• To define the map d1
G : ⊕16i<j6vOCij

→ ⊕f
h=1

Oph
again we describe the composition

of its restriction to each summand OCij
, with i < j, with the projection to any

summand Oph
. Suppose ph is an En–point corresponding to a face Fh of GX such

that ∂Fh =
∑

16i<j6v eijCij, where either eij = 0 or eij = ±1. Then this map sends

g ∈ OCij
to eijg(ph).

We note that the induced maps on global sections in each case are the corresponding
cochain map for the graph GX ; this motivates the notation for these maps used in (3.4).

Let Λ be the kernel of the sheaf map d1
G, so that we have two short exact sequences

(3.5) 0 → OX → ⊕v
i=1OXi

→ Λ → 0

and

(3.6) 0 → Λ → ⊕16i<j6vOCij

d1G−→ ⊕f
h=1

Oph
→ 0.

The latter gives the long exact sequence:

0 → H0(Λ) → ⊕16i<j6vH
0(OCij)

d1G−→ ⊕f
h=1

H0(Oph
) →

→ H1(Λ)
β

−→ ⊕16i<j6vH
1(OCij

) → 0

and since the cokernel of the map d1
G is H2(GX ,C), we derive the short exact sequence

(3.7) 0 → H2(GX ,C) → H1(Λ)
β

−→ ⊕16i<j6vH
1(OCij

) → 0.

From the short exact sequence (3.5) we have the long exact sequence:

0 → H0(OX) → ⊕v
i=1H

0(OXi
) → H0(Λ) →

→ H1(OX) → ⊕v
i=1H

1(OXi
)

α
−→ H1(Λ) → H2(OX) → ⊕v

i=1H
2(OXi

) → 0.

Now H1(GX ,C) is the kernel of d1
G (which is H0(Λ)) modulo the image of d0

G, which is
the image of the map ⊕v

i=1H
0(OXi

) → H0(Λ) in the first line above. Hence we recognize
H1(GX ,C) as the cokernel of this map, and therefore the second line of the above sequence
becomes

0 → H1(GX ,C) → H1(OX) → ⊕v
i=1H

1(OXi
)

α
−→ H1(Λ) → H2(OX) → ⊕v

i=1H
2(OXi

) → 0.

Now the composition of the map β with the map α is exactly the map Φ: Φ = β◦α. We claim
that α and Φ have the same kernel, which by (3.7) is equivalent to having Im(α)∩H 2(GX ,C)(=
ker(β)) = {0}.

If we are able to show this, then the leftmost part of the above sequence would split off as

0 → H1(GX ,C) → H1(OX) → ker(α) = ker(Φ) → 0

which would prove the H1 statement of the theorem. In addition, if this is true, then the
natural surjection from the cokernel of α to the cokernel of Φ would have ker(β) = H 2(GX ,C)
as its kernel, and we would have dim(coker(α)) = dimH2(GX ,C)+dim(coker(Φ)). Since the
rightmost part of the long exact sequence above splits off as

0 → coker(α) → H2(OX) → ⊕v
i=1H

2(OXi
) → 0

we see that the H2 statement of the theorem follows also.
To prove that Im(α)∩H2(GX ,C) = {0}, notice that the sheaf map d0

G (which has Λ as its
image) factors through obvious maps:

⊕v
i=1OXi

→ ⊕v
i=1OCi

→ ⊕16i<j6vOCij

and therefore the map α on the H1 level factors as:

⊕v
i=1H

1(OXi
) → ⊕v

i=1H
1(OCi

) → H1(Λ).
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Moreover one has the short exact sequence:

0 → OC → ⊕v
i=1OCi

→ Λ → 0

where C is the singular locus of X, and thus we have an exact sequence:

(3.8) H1(C,OC) → ⊕v
i=1H

1(OCi
) → H1(Λ) → 0.

We remark now that H1(Ci,OCi
) [resp. H1(C,OC)] is the tangent space at the origin

to Pic0(Ci) [resp. to Pic0(C)] which is a (C∗)δi–extension [resp. a (C∗)δ–extension] of
⊕v
j=1Pic0(Cij) [resp. of ⊕16i<j6vPic0(Cij)], where δi [resp. δ] depends on the singular points

of Ci [resp. of C].
There are natural restriction maps:

a : ⊕v
i=1Pic0(Xi) → ⊕v

i=1Pic0(Ci)

and
b : Pic0(C) → ⊕v

i=1Pic0(Ci)

which are maps of C
∗–extensions of abelian varieties; their differentials at the origin are

⊕v
i=1H

1(OXi
) → ⊕v

i=1H
1(OCi

)

and
H1(C,OC) → ⊕v

i=1H
1(OCi

)

respectively; the latter is the leftmost map of the sequence (3.8).
The map b appears in the following exact diagram:

0 → (C∗)δ → Pic0(C) → ⊕i<jPic0(Cij) → 0
↓ b ↓ ↓

0 → ⊕i(C
∗)δi → ⊕iPic0(Ci) → ⊕i,jPic0(Cij) → 0

The vertical map on the right is an injection; indeed, it is the direct sum of diagonal maps
Pic0(Cij) → Pic0(Cij) ⊕ Pic0(Cji). Therefore, if we denote by V the cokernel of the central
map b, we have a short exact sequence of cokernels

0 → (C∗)γ → V → ⊕i<jPic0(Cij) → 0

for some γ; in particular, V is again a C
∗–extension of abelian varieties. We now recognize

by (3.8) that H1(X,Λ) is the tangent space at the origin to V ; moreover the sequence (3.7)
is the map on tangent spaces for the above sequence of groups. In particular the map β is
the tangent space map for the projection V → ⊕i<jPic0(Cij).

Composing a with the projection of ⊕v
i=1Pic0(Ci) to V gives a map

c : ⊕v
i=1Pic0(Xi) → V

whose differential at the origin is the previously encountered map

α : ⊕v
i=1H

1(OXi
) → H1(X,Λ).

Now ⊕v
i=1Pic0(Xi) is compact, and therefore the image of c in V has finite intersection

with the kernel of the projection V → ⊕16i<j6vPic0(Cij). At the tangent space level, this
means that the image of α has trivial intersection with the kernel of the map β, which we
have identified as H2(GX ,C), which was to be proved. �

Remark 3.9. Note that the formulas (3.2) and (3.3) agree with, and imply, the formula:

χ(OX) =
v∑

i=1

χ(OXi
) −

∑

16i<j6v

χ(OCij
) + f

we found in [1], Proposition 3.15.



ON THE GENUS OF REDUCIBLE SURFACES AND DEGENERATION OF SURFACES 7

4. Degenerations to Zappatic surfaces

In this section we focus on degenerations of smooth surfaces to Zappatic ones.

Definition 4.1. Let ∆ be the spectrum of a DVR (equiv. the complex unit disk). A degen-
eration of surfaces parametrized by ∆ is a proper and flat morphism π : X → ∆ such that
each fibre Xt = π−1(t), t 6= 0 (where 0 is the closed point of ∆), is a smooth, irreducible,
projective surface.

We will say that X → ∆ is a normal crossing degeneration if the total space X is smooth
and the supportXred of the central fibreX = X0 is a divisor in X with global normal crossings,
i.e. Xred is a Zappatic surface with only E3-points as Zappatic singularities.

A normal crossing degeneration is called semistable if the central fibre is reduced.

Remark 4.2. Given a degeneration π : X → ∆, Hironaka’s Theorem on the resolution of
singularities implies that there exists a birational morphism X̄ → X such that X̄ → ∆ is a
normal crossing degeneration, which we will call a normal crossing reduction of π.

Given a degeneration π : X → ∆, the Semistable Reduction Theorem (see Theorem on p.
53–54 in [9]) states that there exists a base change β : ∆ → ∆, defined by β(t) = tm, for

some m, a semistable degeneration π̃ : X̃ → ∆ and a diagram

(4.3) X̃
ψ

π̃

Xβ X

π

∆
β

∆

such that the square is Cartesian and ψ : X̃ → Xβ is a birational morphism obtained by
blowing-up a suitable sheaf of ideals on Xβ. This is called a semistable reduction of π.

The geometric genus of the general fibre of a semistable degeneration of surfaces can be
computed via the Clemens-Schmid exact sequence, cf. [13]. Clemens-Schmid result implies
the following:

Theorem 4.4. Let X =
⋃v

i=1
Xi be the central fibre of a semistable degeneration of surfaces

X → ∆. Let GX be the dual graph of X and ΦX be the map introduced in Definition 2.5.
Then, for t 6= 0, one has:

(4.5) pg(Xt) = h2(GX ,C) +
v∑

i=1

pg(Xi) + dim(coker(ΦX)).

Then Theorem 4.4 and our Theorem 3.1 imply the following:

Corollary 4.6. Let X → ∆ be a semistable degeneration of surfaces, so that its central fibre
X = X0 is a Zappatic surface with only E3-points as Zappatic singularities. Then, for any
t 6= 0, one has:

pg(Xt) = pω(X).

Remark 4.7. Let X → ∆ be a degeneration of surfaces with central fibre X. Consider the
dualizing sheaf ωX of X. By general properties of dualizing sheaves, one knows that ωX is
torsion-free as an OX-module. Since one has the injection O∆ ↪→ OX, then ωX is torsion-free
over ∆. Since ∆ is the spectrum of a DVR, then ωX is free and therefore flat over ∆. By
semi-continuity, this implies that, for t 6= 0, pg(Xt) 6 pω(X). The above corollary shows that
equality holds for semistable degenerations of surfaces.

Consider, from now on, a degeneration π : X → ∆ of surfaces with Zappatic central fibre
X = X0. Our main purpose in this section is to prove Proposition 4.12, where we show that
the ω-genus of the central fibre of a semistable reduction π̃ : X̃ → ∆ of π equals the ω-genus
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of X. As a consequence we will have that the ω–genus of the fibres of π : X → ∆ is constant
(see Theorem 4.14 below), exactly as it happens in the normal crossings case, as we saw in
Corollary 4.6. In order to prove Proposition 4.12, it is necessary to carefully analyze the
process, basically described in Chapter II of [9], which produces the semistable reduction.

As we said, Hironaka’s result implies the existence of a normal crossing reduction of π.
The birational transformation involved in resolving the singularities can be taken to be a
sequence of blow-ups (which one can arrange to be at isolated points and along smooth
curves) interspersed with normalization maps. For general singularities such a procedure
may introduce components and double curves which affect the ω-genus of the central fibre.
Our next task is to show that, under the assumption that the central fibre is Zappatic, we
have very precise control over the ω-genus. For this we will need to more explicitly describe
an algorithm which produces a resolution. In order to do this, we will use, as common
in programming languages, the word “while” to indicate that the statement following it is
repeated until it becomes false.

Normal crossing reduction algorithm 4.8. Let X → ∆ be a degeneration of surfaces
with Zappatic central fibre.

Step 1: while X0 has a point p of type either Rn or Sn, n > 3, replace X by its blow-up at p;
Step 2: while X0 has a point p of type En and X has multiplicity n > 3 at p, replace X by its

blow-up at p;
Step 3: while X has a double curve γ, replace X by its blow-up along γ;
Step 4: if X has a double point p, then replace X by the normalization of its blow-up at p

and go back to Step 3;
Step 5: while there is a component of X0 with a double point p, replace X by its blow-up at

p;
Step 6: while there are two components X1 and X2 of X0 meeting along a curve with a node

p, first blow-up X at p, then blow-up along the line which is the intersection of the
exceptional divisor with the proper transform of X0, and finally replace X with the
resulting threefold.

The following proposition is devoted to prove that this algorithm works.

Proposition 4.9. Let π : X → ∆ be a degeneration of surfaces with Zappatic central fibre
X = X0 =

⋃v

i=1
Xi and run the normal crossing reduction algorithm 4.8. The algorithm stops

after finitely many steps and its output gives a normal crossing reduction π̄ : X̄ → ∆ of π.

Proof. The total space X of π may have the following singularities:

• double curves, which are double curves also for X;
• isolated double points along the double curves of X;
• further singular points at the Zappatic singularities of X, which can be isolated or

may occur on double curves of the total space.

Our aim is to prove that the normal crossing reduction algorithm 4.8 resolves the singularities
of the total space and produces a central fibre whose support has global normal crossings.

(Step 1) By Proposition 5.17 in [2], if X has either a Rn-point or a Sn-point, n > 3, then
the total space X has multiplicity n at p. Let X′ → X be the blow-up of X at a Rn-point
[resp. Sn-point] p. By Proposition 5.23 in [2], the exceptional divisor E is a Zappatic surface
of degree n in P

n+1 such that all of its irreducible components are rational normal surfaces
meeting along lines and E has at most Rm-points, m 6 n [resp. Sm-points, m 6 n] as Zappatic
singularities. Let X ′ be the proper transform of X. The curve Γ = E ∩ X ′ is a stick curve
CRn

[resp. CSn
] which, being nodal, does not contain any Zappatic singularity of E. The

new central fibre E ∪X ′ has either E3- or E4-points at the double points of Γ, depending on
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whether E is smooth or has a double point there. These points are accordingly either smooth
or double points for X′.

The fact that Step 1 is repeated finitely many times follows e.g. from Proposition 3.4.13
in [10]. If X′ → X is the composition of all the blow-ups done in Step 1, then X′ → ∆ is a
degeneration whose central fibre is a Zappatic surface with only En-points, n > 3, as Zappatic
singularities.

(Step 2) By Proposition 5.17 in [2], if X has an En-point p, n > 3, then either X has
multiplicity n at p, or n 6 4 and X has at most a double point at p. In this step we consider
only the former possibility, since the other cases are considered in the next steps. Let X′ → X

be the blow-up of X at p. By Proposition 5.23 of [2], as shown in the proof of Theorem 7.2
therein, the exceptional divisor E is a Gorenstein surface of degree n in P

n which is one of
the following:

(I) an irreducible del Pezzo surface, possible only if n 6 6;
(II) a union F = F1 ∪ F2 of two irreducible components F1 and F2 such that F1 ∩ F2 is a

(possibly reducible) conic; the surface Fi, i = 1, 2, is either a smooth rational normal
cubic scroll, or a quadric, or a plane;

(III) a Zappatic surface, whose m 6 n irreducible components meet along lines and are
either planes or smooth quadrics; moreover E has a unique Zappatic singularity, which
is an Em-point.

In case (I), the del Pezzo surface E has at most isolated rational double points.
In case (II), the surface E is Zappatic unless either the conic is reducible or one of the two

components is a quadric cone. Note that, if F1 ∩ F2 is a conic with a double point p′, then
F1 and F2 are tangent at p′ and E has not normal crossings.

Let X ′ be the proper transform of X. The curve Γ = E ∩X ′ is a stick curve CEn
. In case

(II), if an irreducible component of E is a quadric cone, the vertex of the cone is a double
point of Γ and X′ also has a double point there. In case (III), the curve Γ, being nodal, does
not contain the Em-point of E. As in Step 1, one sees that the singular points of Γ are either
smooth or double points for X′.

In cases (I) and (II), we have eliminated the original Zappatic En singularity; in case (III),
we have a single Em (m 6 n) point to still consider. Whatever extra double points have been
introduced, will be handled in later steps.

As Step 1, also Step 2 is repeated finitely many times e.g. by Proposition 3.4.13 in [10].

(Step 3) Now the total space X of the degeneration has at most double points. Suppose that
X is singular in dimension one and let γ be an irreducible curve which is double for X. Then
γ lies in the intersection of two irreducible components X1 and X2 of X. By Definition 2.1 of
Zappatic surface and the previous steps (cf. Sections 6 and 7 in [2]), one has that γ is smooth
and the intersection of X1 and X2 is transversal at the general point of γ.

Now let X′ → X be the blow-up of X along γ. Let E be the exceptional divisor and X ′
i,

i = 1, 2, be the proper transform of Xi in X′. Let p be the general point of γ. Note that there
are effective Cartier divisors of X through p having a node at p. Therefore there are effective
Cartier divisors of X through p having at p a double point of type Ak, for some k > 1. Since
the exceptional divisor of a minimal resolution of such a point does not contain multiple
components, we see that E must be reduced. Then E is a conic bundle and γi = E ∩ X ′

i,
i = 1, 2, is a section of E isomorphic to γ.

Let C be the general ruling of E. If C is irreducible, then E is irreducible and has at most
isolated double points. We remark moreover that γ1 and γ2 are generically smooth for the
total space X′, since they are generically smooth for E, which is a Cartier divisor of X′. In
this case, we got rid of the double curve.
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Let C = r1∪ r2 be reducible into two distinct lines. We may assume that ri∩γi, i = 1, 2, is
a point whereas ri∩ γ3−i = ∅. This implies that E is reducible; one component meets X ′

1 and
the other meetsX ′

2. Hence we may write E = F1∪F2, where Fi meets generically transversally
X ′
i along γi, i = 1, 2. It may happen that F1 and F2 meet, generically transversally, along

finitely many fibres of their rulings; away from these, they meet along the curve γ ′, whose
general point is r1 ∩ r2.

We note that γ ′, being isomorphic to γ, is smooth. Moreover, a local computation shows
that F1 and F2 meet transversally at a general point of γ ′. If the general point of γ ′ is smooth
for X′, we have nothing to do with γ ′, otherwise we go on blowing-up X′ along γ′. As usual,
after finitely many blow-ups we get rid of all the curves which are double for the total space.

(Step 4) Now the total space X of the degeneration has at most isolated double points. Let
Xred be the support of the central fibre X. Note that, the first time one reaches this step,
one has that Xred = X, which implies that Xred is Cartier. In what follows, we only require
that in a neighborhood of the singular points where we apply this step, the reduced set of
components is Cartier.

By the discussion of the previous steps, one sees that a double point p of X can be of the
following types (cf. Figure 3):

(a) an isolated double point of Xred;
(b) a point of a double curve of Xred;
(c) an E3-point of Xred;
(d) an E4-point of Xred;
(e) a quadruple point of Xred which lies in the intersection of three irreducible components

X1, X2 and X3 of Xred; two of them, say X2 and X3, are smooth at p, whereas X1 has
a rational double point of type Ak, k > 1, at p. In this case, X2 ∪ X3 and X1 are both
complete intersection of X locally at p.

p • •p
•

γ1

γ2 γ3

•
γ1γ2

γ3 γ4
•

γ1

γ2 γ3

X1

(a) (b) (c) (d) (e)

Figure 3. Types of double points of the total space X.

Double points of type (a) may appear either in Step 2, if the exceptional divisor is a
singular del Pezzo surface, or in Step 3, if the exceptional divisor is a singular conic bundle.
In both cases, they are rational double points for Xred. By resolving them, one clearly gets
as exceptional divisors only rational surfaces meeting each other (and the proper transform
of the central fibre) along rational curves.

Consider a double point p of type (b), so p lies on a double curve which is in the intersection
of two irreducible components X1 and X2 of Xred. Let X′ → X be the blow-up of X at p and
let E be the exceptional divisor, which is a quadric surface in P

3. Denote by X ′
i the proper

transform of Xi, i = 1, 2, and by p′ the point p′ = E ∩X ′
1 ∩X

′
2. Since a general hyperplane

section of X1 ∪X2 at p is a curve with a node at p, the quadric E is either:

(i) a smooth quadric meeting X ′
i, i = 1, 2, along a line; or

(ii) an irreducible quadric cone with vertex p′; or
(iii) the union of two distinct planes meeting along a line γ passing through p′.
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In case (i), we resolved the singularity of the total space at p. In case (ii), the new total space
X′ has an isolated double point of type (e) at p′. In case (iii), there are two possibilities: if
the line γ is a double curve of X′, then we go back to Step 3, otherwise X′ has an isolated
double point of type (d).

Let p be a double point of type (c). According to Proposition 5.17 in [2], the embedding
dimension of X at p is 4 and the central fibre is locally analytically near p a hyperplane section
of X. Since the multiplicity of the singularity of the threefold is two, and the multiplicity of
the central fibre at this point is three, the locally analytic hyperplane section must contain
a component of the tangent cone of the threefold singularity. This tangent cone is therefore
a quadric which has rank at most two: it is either two distinct hyperplanes or a double
hyperplane (i.e. a hyperplane counted twice). In fact a local computation shows that the
latter cannot happen. In the former case, when one blows up X at p, one introduces two
planes in the new central fibre. One of these planes meets the proper transforms of the three
components each in a line, forming a triangle in that plane; this plane is double in the new
central fibre. (Note that at this point we introduce a non-reduced component of the central
fibre; but the rest of the algorithm does not involve this multiple component.) The other
of the planes, which is simple in the new central fibre, meets each of the proper transforms
at a single distinct point, which is still an ordinary double point of the total space. Three
more blow-ups, one each at these double points, locally resolve the total space. (This analysis
follows from a local computation.)

Consider now a double point p of type (d). By Proposition 5.17 in [2], locally the tangent
cone of X at p is a quadric cone in P

3 and the tangent cone T of Xred at p is obtained by
cutting it with another quadric cone in P

3, hence T is a cone in P
4 over a reduced, projectively

normal curve of degree 4 and arithmetic genus 1 which spans a P
3. Let X′ → X be the blow-

up of X at p and let E be the exceptional divisor. Then E is a quadric meeting the proper
transform of X along a stick curve CE4

, therefore E is either

(i) a smooth quadric; or
(ii) the union of two distinct planes meeting along a line γ.

In case (i), we resolved the singularity of X at p. In case (ii), there are two possibilities: if the
line γ is a double curve of X′, then we go back to Step 3, otherwise X′ has again two isolated
double points of type (d) at the intersection of γ with the proper transform of Xred.

Here we have created double components of the central fibre, namely the exceptional divisor
is counted twice. However this exceptional divisor is a Cartier divisor, and therefore Xred is
also a Cartier divisor locally near this exceptional divisor.

Finally let p = X1 ∩ X2 ∩ X3 be a double point of type (e). As in the case of type (d),
locally the tangent cone of X at p is a quadric cone in P

3, whereas the tangent cone T of
Xred at p is a cone in P

4 over a reduced, projectively normal curve of degree 4 and arithmetic
genus 1 which spans a P

3. Let X′ → X be the blow-up of X at p and let E the exceptional
divisor. Denote by p′ the intersection of E with the proper transform of X2 and X3. Then
E is a quadric meeting the proper transform of Xred along the union of two lines and a conic
spanning a P

3, therefore E is either

(i) a smooth quadric; or
(ii) a quadric cone with vertex at p′; or
(iii) a pair of planes.

In case (i), we resolved the singularity of the total space at p. In case (ii), the total space
X′ has at p′ again a point of type (e). More precisely, if p is a rational double point of type
Ak, then p′ is a rational double point of type Ak−1 for E. In case (iii), the line of intersection
of the two planes may be singular for the new total space; if so, we return to Step 3. If not,
there are again isolated double points of type (d) and we iterate this step again.



12 ALBERTO CALABRI, CIRO CILIBERTO, FLAMINIO FLAMINI, RICK MIRANDA

As in the case of type (d), the reduced central fibre remains Cartier in a neighborhood of
the new exceptional locus.

It is clear that, after having repeated finitely many times Steps 3 and 4, one resolves the
singularities of the total space at the double points of these five types (a)-(e).

We remark that we can proceed, in Step 4, by first resolving all of the points of type (c),
and that such points are not created in the resolutions of points of type (d) and (e). In fact
they are not created in any later step of the algorithm. Indeed, anytime three components
X1, X2, and X3 concur at a point as in type (c) where at least one of the three surfaces has
been created by blowing-up, we claim that exactly one of the three surfaces has been created
by blowing-up (i.e., is an exceptional divisor). Since such an exceptional divisor is locally
Cartier and smooth at the point, then the total space is smooth at the point and therefore the
point cannot be of type (c). To prove the claim, note that the only other possibility is that
two of the three components, say X2 and X3 belong to an exceptional divisor. By blowing
them down, then X1 acquires a singular point which is worse than an ordinary double point,
which is impossible.

(Step 5) Let p be an isolated double point of the central fibre X which is a smooth point of
X. According to the previous steps, p is either a rational double point of a del Pezzo surface
or the singular point of a reduced fibre of a conic bundle. In both cases, the singularity of X
at p is resolved by finitely many blow-ups. Since p is a smooth point of X, the exceptional
divisor of each blow-up is a plane.

(Step 6) Following the previous steps, one sees that the support of the central fibre X has
global normal crossings, except at the points p, where two components X1 and X2 of X meet
along a curve with a node at p. Note that X1 and X2 are indeed tangent at p.

If one blows-up X at p, the exceptional divisor E is a plane meeting the proper transform
X ′
i of Xi, i = 1, 2, along a line γ, which is a (−1)-curve both on X ′

1 and X ′
2. The support

of the new central fibre has not yet normal crossings. However a further blow-up along γ

produces the normal crossing reduction. �

Let X =
⋃v

i=1
Xi be the central fibre of the original degeneration and let X̄red =

⋃w

i=1
X̄i be

the support of the central fibre X̄ of its normal crossing reduction obtained as above, where
w > v. Next we describe the relation between the dual graph G of X and the one Ḡ of X̄red.
By the proof of Proposition 4.8, one has that G is a subgraph of Ḡ and we may assume that
X̄i is birational to Xi, i = 1, . . . , v.

Proposition 4.10. In the above situation, one has:

(i) pg(X̄i) = 0, i = v + 1, . . . , w;
(ii) dim(coker(ΦX̄red

)) = dim(coker(ΦX));
(iii) the graphs G and Ḡ have the same Betti numbers.

Proof. Following the discussion of each Step of the normal crossing reduction algorithm 4.8,
one sees that each new component X̄i, i = v + 1, . . . , w, of the central fibre is an exceptional
divisor of a blow-up, which is either a rational or a ruled surface. This proves (i).

For i = 1, . . . , v, the birational morphism σ̄ : X̄ → X determines a birational morphism
X̄i → Xi which is the composition of blow-ups at smooth points of Xi. In order to prove
(ii), we notice that in algorithm 4.8, we have added rational double curves (which do not
contribute to the cokernel), new rational components (which also do not contribute to the
cokernel), and irrational ruled surfaces, which are only created by blowing-up irrational double
curves. Focusing on single such irrational double curve, one sees that it is replaced by a certain
number h of irrational ruled surfaces, and by h + 1 new double curves. The map on the H 1
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level is an isomorphism between the new surfaces and the new curves. Hence there is no
change in the dimension of the cokernel. This concludes the proof of (ii).

In order to prove (iii), let us see what happens at each step of algorithm 4.8.
In Step 1 one blows-up Rn- and Sn-points of X = X0. An example will illustrate the key

features of the analysis. Let p be a R4-point of X. After blowing-up X at p, there are five
different possible configurations of the exceptional divisor E (cf. the proof of Claim 6.20 in
[2]):

(i) E is the union of two quadrics with normal crossings;
(ii) E is the union of a quadric and two planes having a R3-point p′, and the quadric is

in the middle;
(iii) E is the union of a quadric and two planes having a R3-point p′, and one of the planes

is in the middle;
(iv) E is the union of four planes having two R3-points p′, p′′;
(v) E is the union of four planes having a R4-point p′.

The corresponding dual graphs are illustrated in Figure 4, where the proper transforms of
the four components of X concurring at p are the left-hand-side vertices in each graph. As
the pictures show, G is a deformation retract of the new dual graph (considered as CW-
complexes).

PSfrag replacements

p′

PSfrag replacements
p′PSfrag replacements

p′

p′′

PSfrag replacements

p′p′

Case (i) Case (ii) Case (iii) Case (iv) Case (v)

Figure 4. After blowing-up a R4-point p, there are five possibilities

Generally, if one blows-up a Rn- [resp. Sn-] point p, in the dual graph one builds new 3-
and 4- faces (triangles and quadrangles) over the original chain of length n [resp. fork with
n− 1 teeth] corresponding to the n components of X concurring at p. Therefore it is always
the case that G is a deformation retract of the new dual graph.

From this point on there are no more Rn or Sn points ever appearing in the configuration.
However it may happen that at intermediate steps of the algorithm, we do not have strict
normal crossings nor Zappatic singularities. If this happens, we still consider the usual dual
graph of the configuration, namely a vertex for each component, an edge for each connected
component of an intersection between components, and faces for intersections of three or
more components.

Consider Step 2 of algorithm 4.8. Each blow-up of a En-point, where the total space has
multiplicity n, has the effect of adding new vertices in the interior of the corresponding n-face
and of adding new edges which subdivide the n-face. This does not modify the Betti numbers
of the dual graph.

In Step 3, the blow-up along a double curve determines a subdivision of the edge corre-
sponding to the double curve and a subdivision of the faces adjacent on that edge.

In Step 4, the blow-ups at double points of types (a) and (b) add trees adjacent only to a
vertex or an edge, and again this does not modify the topological properties of the graph.
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Resolving a double point of type (c), one first subdivides the original triangle of vertices
v1, v2, v3 in three triangles; then, setting v0 the new vertex, one adds another vertex v′0 above
v0 and three triangles of vertices v0, v

′
0, vi, respectively for i = 1, 2, 3. Clearly the resulting

graph retracts back to a subdivision of the original one.
For a double point of type (d), one subdivides the original quadrangle either in four trian-

gles, if the exceptional divisor E of the blow-up is a smooth quadric, or in two triangles and
two quadrangles as in Figure 5, if E is the union of two planes.

• •

••

• •

Figure 5. Subdivision of a quadrangle in type (d), case (ii)

For a double point of type (e), one subdivides the original triangle either in three triangles,
if the exceptional divisor E of the blow-up is irreducible, or in a triangle and two quadrangles
as in Figure 6, if E is reducible.

•

•

•

• •

Figure 6. Subdivision of a triangle in type (e), case (iii)

In all cases, one sees that these modifications, coming from the resolution of double points
of type (c), (d) and (e), do not change the Betti numbers of the dual graph.

Finally, the blow-ups of Steps 5 and 6 add trees adjacent to a vertex or an edge and again
do not modify the Betti number of the dual graph. �

We are interested not only in X̄red but in X̄ itself. For each component i, let µi be the
multiplicity of X̄i in X̄. For the analysis of the semistable reduction, we must understand
rather precisely the components of multiplicity larger than one.

Corollary 4.11. Set C̄ij = X̄i ∩ X̄j if X̄i and X̄j meet along a curve, or C̄ij = ∅ otherwise.
If µi > 1, one has the following possibilities:

(i) X̄i is a generically ruled surface and the curve
∑

j 6=i µjC̄ij is generically supported on a
bisection of the ruling.

(ii) There is a birational morphism σ : X̄i → P
2 such that the curve

∑
j 6=i µjC̄ij maps to

four distinct lines.
(iii) µi = 4 and X̄i is a smooth quadric; the curve

∑
j 6=i µjC̄ij consists of two (multiplicity

one) fibres in one ruling and one double fibre from the other ruling.
(iv) X̄i is a smooth quadric and the curve

∑
j 6=i µjC̄ij is linearly equivalent to µiH, where H

is a plane section of X̄i.
(v) There is a birational morphism σ : X̄i → P

2 such that the curve
∑

j 6=i µjC̄ij is the total
transform via σ of a plane curve of degree µi supported on two distinct lines.

(vi) X̄i is a Hirzebruch surface F2 and the curve
∑

j 6=i µjC̄ij is of the form µi(H+A), where

A is the (−2)-curve and H is a section of self-intersection 2.
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Proof. Following the steps of the normal crossing reduction algorithm 4.8, one sees that
multiple components are not created in Steps 1 or 2 of the algorithm. It is possible that a
multiple component may be created in Step 3, by blowing-up a double curve of Xred which is
the intersection of two components that have multiplicity. This will create a multiple ruled
surface whose double curve is a bisection, giving case (i).

Multiple components of the central fibre X̄ may arise also in Step 4 when one blows-up
double points of types (c), (d) and (e). In case (c), two types of multiple components appear.
The first is a plane blown-up at three collinear points, with multiplicity two; the double curve
consists of the collinearity line, three other general lines, and the three exceptional divisors
counted with multiplicity four; this is case (ii). The other type of multiple component is a
quadric with multiplicity four, giving case (iii). This analysis follows from the remark we did
at the end of Step 4, where we showed that the three surfaces coming together to form this
singularity of type (c) each have multiplicity one.

Let p = X1 ∩ X2 ∩ X3 ∩ X4 be a point of type (d), where X1, . . . , X4 are irreducible
components of Xred. One may choose the numbering on the four components such that
X1∪X2 and X3∪X4 are local complete intersections of X at p, and moreover the multiplicities
satisfy µ1 = µ2 and µ3 = µ4. (This is clear at the start, when all multiplicities are one; and
from that point on one proceeds inductively.) Then the exceptional divisor E appears in the
new central fibre with multiplicity µ1+µ3 = µ2+µ4. Recall that if E is a smooth quadric, the
resolution process stops, and we have case (iv) above; while if E is the union of two planes,
then both planes appear with multiplicity µ1 + µ3 and we go on inductively; this gives case
(v).

Let now p = X1∩X2∩X3 be a point of type (e). As noted above, X2∪X3 and X1 are local
complete intersections of X at p. As above, one may assume that the multiplicities satisfy
µ2 = µ3. Then the exceptional divisor E appears in the new central fibre with multiplicity
µ1 + µ2 = µ1 + µ3. If E is a smooth quadric, the resolution process stops, giving case (iv)
again. If E is a quadric cone, then we proceed to blow-up the vertex of the cone, and therefore
the proper transform of E in the final central fibre will be a Hirzebruch surface F2, which
gives the final case (vi). Finally if E is a pair of planes, each plane gives rise to a component
in case (v). �

Now we are able to prove the main result of this section:

Proposition 4.12. Let π : X → ∆ be a degeneration of surfaces with Zappatic central fibre
X = X0 =

⋃v

i=1
Xi. Let π̄ : X̄ → ∆ be the normal crossing reduction of π given by algorithm

4.8 and let π̃ : X̃ → ∆ be the semistable reduction of π̄ obtained by following the process
described in Chapter II of [9]. Then:

(4.13) pω(X̃0) = pω(X).

Proof. Let X̄ = X̄0 =
∑w

i=1
µiX̄i be the central fibre of the normal crossing reduction π̄. One

has v 6 w and we may assume that µi = 1 for 1 6 i 6 v, and that these first v components
are birational to the original components of X. The surface X̄ is a toroidal embedding in X̄,
in the sense of Definition 1, p. 54 of [9]. To any such a toroidal embedding one can associate
a compact polyhedral complex Γ̄ with integral structure as shown in [9], pp. 71 and 94. In
our present situation, the complex Γ̄ is exactly the dual graph Ḡ. The integral structure is
recorded by the multiplicities of the components.

By [9], p. 107, there exists a semistable reduction X̃ → ∆ as in Diagram 4.3, where the

base change β(t) = tm is such that m is a common multiple of µ1, . . . , µw. Notice that X̃ is

again a toroidal embedding of the central fibre X̃ = X̃0. Denote by G̃ the dual graph of X̃.
Again by [9], p. 107, one has that the corresponding polyhedron Γ̃ is a subdivision of Γ̄, in
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the sense of the definition at p. 111 of [9]. This implies that the CW-complexes G̃ and Ḡ are
homeomorphic. In particular they have the same homology.

Now the central fibre X̃ = X̃0 =
⋃u

i=1
X̃i is reduced, with global normal crossings. One

has that u > w and, by taking into account the base change, one may assume that, for
i = 1, . . . , w, X̃i is birational to the µi-tuple cover of X̄i, branched along

∑
j 6=i µjC̄ij.

Let us first consider components with µi = 1. These include the first v components X̃i,
i = 1, . . . , v, which correspond to the original components ofX. For these components we have
pg(X̃i) = pg(X̄i) = pg(Xi), i = 1, . . . , v. There also may be components with µi = 1 which
were introduced in the normal crossing reduction algorithm. We have seen in Proposition 4.10
that all such components have pg = 0. Finally there may be components with µi = 1 with
i > w which have been introduced in the semistable reduction process. These new surfaces
are of two types: they may correspond either to

(a) vertices of G̃ which lie on an edge η of Ḡ; or to
(b) vertices of G̃ which lie in the interior of a triangular face of Ḡ.

We recall that the birational morphism X̃ → Xβ as in Diagram 4.3 is the blow-up of a suitable
sheaf of ideals, cf. p. 107 of [9].

Let X̃j be a surface of type (a). This is an exceptional divisor of such a blow-up with

support on the double curve γ of X̄ corresponding to the edge η. Then X̃j maps to γ with
fibres which are rational by the toric nature of the singularity along γ.

Suppose that X̃j is of type (b). Then X̃j is an exceptional divisor appearing in the toric

resolution of a toric singular point. Therefore X̃j is rational and moreover it meets the other
components along rational curves (cf., e.g., Section 2.6 in [7]).

Therefore all of these components are rational or ruled, and hence also have pg = 0.

Now let us consider the case µi > 1. In this case X̃i is a µi-cover of the surface X̄i, and
such surfaces were classified in the previous corollary, along with the double curves which
give the branch locus of the covering. In each case the cover is easily seen to be rational or
ruled. Hence also for these surfaces one has pg = 0.

Since we have shown that the homology of the graphs are the same, and we have controlled
the pg of the components properly, the only thing left to prove is that dim(coker(ΦX)) =
dim(coker(ΦX̃)).

We have already seen that dim(coker(ΦX̄red
)) = dim(coker(ΦX)) in Proposition 4.10. The

argument here is similar; it suffices to show that the extra components X̃v+1, . . . , X̃u do not
contribute to dim(coker(ΦX̃)). These surfaces are either rational or ruled over a curve γ. In
the rational case, by the proof of Proposition 4.8 and by the above considerations about toric
resolution of singularities, they meet the other components of X̃ along rational curves. Hence
they do not contribute to dim(coker ΦX̃).

In the ruled case, X̃j is a scroll over γ and, by the description of the resolution process, X̃j

meets the other components of X̃ along curves which are either rational or isomorphic to γ.
The same argument as in Proposition 4.10 shows that the cokernel is unchanged in this case.

Thus the proof is concluded by Theorem 3.1. �

As a direct consequence, we have the following:

Theorem 4.14. Let π : X → ∆ be a degeneration of surfaces with Zappatic central fibre
X = X0. Then, for any t 6= 0, one has:

pg(Xt) = pω(X).
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Proof. Just consider the semistable reduction π̃ : X̃ → ∆ as we did before. One clearly has
that pg(Xt) = pg(X̃t) for t 6= 0. Theorem 4.4 then implies that pg(X̃t) = pω(X̃0) and finally

Proposition 4.12 concludes that pω(X̃0) = pω(X). �
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