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7 ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF ASURFACE(WITH AN APPENDIX BY EDOARDO SERNESI)FLAMINIO FLAMINI*, ANDREAS LEOPOLD KNUTSEN** AND GIANLUCA PACIENZA***Abstrat. Under natural hypotheses we give an upper bound on the dimension of families ofsingular urves with hyperellipti normalizations on a surfae S with pg > 0 via the study of theassoiated families of rational urves in S[2]. We use this result to prove the existene of nodal urvesof geometri genus 3 with hyperellipti normalizations, on a general K3 surfae, thus obtainingspei� 2-dimensional families of rational urves in S[2]. We give two in�nite series of examplesof general, primitively polarized K3s suh that their Hilbert squares ontain a P2 or a threefoldbirational to a P1-bundle over a K3. We disuss the onsequenes on the Mori one of the Hilbertsquare. 1. IntrodutionFor any smooth surfae S, the Hilbert sheme S[n] parametrizing 0-dimensional length n sub-shemes of S is a smooth 2n-dimensional variety whose inner geometry is naturally related to thatof S. For instane, if ∆ ⊂ S[n] is the exeptional divisor, that is, the exeptional lous of theHilbert-Chow morphism µ : S[n] → Symn(S), then irreduible (possibly singular) rational urvesnot ontained in ∆ roughly orrespond to irreduible (possibly singular) urves on S with a g

1
n′ ontheir normalizations, for some n′ ≤ n (see � 2.1 for the preise orrespondene when n = 2). Oneof the features of this paper is to show how ideas and tehniques from one of the two sides of theorrespondene makes it possible to shed light on problems naturally arising on the other side.If S is a K3 surfae, S[n] is a hyperkähler manifold (f. [31, 2.2℄) and rational urves play afundamental r�le in the study of the (birational) geometry of S[n]. Indeed a result due to Huybrehtsand Bouksom [32, 11℄ implies in partiular that these urves govern the ample one of S[n] (we willreall the preise statement below and in � 6.1). The presene of a Pn ⊂ S[n] gives rise to a birationalmap (the so-alledMukai �op [41℄) to another hyperkähler manifold and, for n = 2, all birational mapsbetween hyperkähler fourfolds fator through a sequene of Mukai �ops [12, 30, 60, 62℄. Moreover, asshown by Huybrehts [32℄, uniruled divisors allow to desribe the birational Kähler one of S[n] (see� 7 for the preise statement). For hyperkähler fourfolds preise numerial and geometri propertiesof the rational urves that are extremal in the Mori one have been onjetured by Hassett andTshinkel [25℄.The sope of this paper, and the struture of it as well, is twofold: we �rst devise general methodsand tools to study families of urves with hyperellipti normalizations on a surfae S, mostly underthe additional hypothesis that pg(S) > 0, in � 2-� 4. Then we apply these to obtain onrete resultsin the ase of K3 surfaes, in � 5-� 7. In partiular, we have tried to develop a systemati way to2000 Mathematis Subjet Classi�ation : Primary 14H10, 14H51, 14J28. Seondary 14C05, 14C25, 14D15, 14E30.(*) and (***) Member of MIUR-GNSAGA at INdAM "F. Severi".(**) Researh supported by a Marie Curie Intra-European Fellowship within the 6th European Community Frame-work Programme.(***) During the last part of the work the author bene�tted from an "aueil en délégation au CNRS".1
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2 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAprodue rational urves on S[2] by showing the existene of nodal urves on S with hyperelliptinormalizations.To give an overview of the paper, we hoose to start with the seond part.Let (S,H) be a general, smooth, primitively polarizedK3 surfae of genus p = pa(H) ≥ 2. We have
N1(S

[2])R ≃ R[Y ] ⊕ R[P1
∆], where P1

∆ is the lass of a rational urve in the ruling of the exeptionaldivisor ∆ ⊂ S[2], and Y := {ξ ∈ S[2]|Supp(ξ) = {p0, y}, with p0 ∈ S and y ∈ C ∈ |H|}, where
p0 and C are hosen. One has that P1

∆ lies on the boundary of the Mori one and by the result ofHuybrehts and Bouksom [32, 11℄ mentioned above, if the Mori one is losed, then also the otherboundary is generated by the lass of a rational urve. If X ∼alg aY − bP1
∆ is an irreduible urvein S[2], di�erent from a �ber of ∆, then we de�ne a/b to be the slope of the urve. Thus, the lowerthe slope is, the loser is X to the boundary of the Mori one. Desribing the Mori one NE(S[2])amounts to omputing

slope(NE(S[2])) := inf
{

slope(X) | X is an irreduible urve in S[2]
}
,and, if the Mori one is losed, then slope(NE(S[2])) = sloperat(NE(S[2])), where

sloperat(NE(S[2])) := inf
{

slope(X) | X is an irreduible rational urve in S[2]
}
.(See � 6.1, 6.2 and 6.3 for further details.)If now C ∈ |mH| is an irreduible urve of geometri genus pg(C) ≥ 2 and with hyperelliptinormalization, let g0(C) ≥ pg(C) be the arithmeti genus of the minimal partial desingularization of

C that arries the g
1
2 (see � 2.1 and � 6.2). By the uniity of the g

1
2, C de�nes a unique irreduiblerational urve RC ⊂ S[2] with lass RC ∼alg mY − (g0(C)+1

2 )P1
∆, f. (6.11). (This formula is alsovalid if RC is assoiated to a given g

1
2 on the normalization of an irreduible rational or ellipti urve

C.) Thus, the higher g0(C) (or pg(C)) is, and the lower m is, the lower is the slope of RC . Thismotivates the searh for urves on S with hyperellipti normalizations of high geometri genus, thus�unexpeted� from Brill-Noether theory.It is well-known that there exist �nitely many (nodal) rational urves, a one-parameter familyof (nodal) ellipti urves, and a two-dimensional family of (nodal) urves of geometri genus 2 in
|H| (see � 5). Every suh family yields in a natural way a two-dimensional family of irreduiblerational urves in S[2], f. � 2. Also note that, by a result of Ran [46℄, the expeted dimension ofa family of rational urves in a sympleti fourfold, whene a posteriori also of a family of urveswith hyperellipti normalizations lying on a K3, equals two (f. Lemma 5.1). In [22, Examples2.8 and 2.10℄ we found two-dimensional families of nodal urves of geometri genus 3 in |H| havinghyperellipti normalizations when pa(H) = 4 or 5. In this paper we generalize this:Theorem 5.2. Let (S,H) be a general, smooth, primitively polarized K3 surfae of genus p =
pa(H) ≥ 4. Then the family of nodal urves in |H| of geometri genus 3 with hyperellipti normal-izations is nonempty, and eah of its irreduible omponents is two-dimensional.The proof takes the whole � 5 and relies on a general priniple of onstruting urves with hy-perellipti normalizations on general K3s outlined in Proposition 5.11: �rst onstrut a marked K3surfae (S0,H0) of genus p suh that |H0| ontains a family of dimension ≤ 2 of nodal (possiblyreduible) urves with the property that a desingularization of some δ > 0 of the nodes is a limit of ahyperellipti urve in the moduli spae Mp−δ of stable urves of genus p−δ and suh that this familyis not ontained in a higher-dimensional suh family. Then onsider the parameter spae Wp,δ ofpairs ((S,H), C), where (S,H) is a smooth, primitively marked K3 surfae of genus p and C ∈ |H|is a nodal urve with at least δ nodes. Now map (the loal branhes of) Wp,δ into Mp−δ by partially



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 3normalizing the urves at δ of the nodes and mapping them to their respetive lasses. The existeneof the partiular family in |H0| ensures that the image of this map intersets the hyperellipti lous
Hp−δ ⊂ Mp−δ. A dimension ount then shows that the dimension of the parameter spae I ⊂ Wp,δonsisting of ((S,H), C) suh that a desingularization of some δ > 0 of the nodes of C is a limitof a hyperellipti urve is at least 21. Now the dominane on the 19-dimensional moduli spae ofprimitively marked K3 surfaes of genus p follows as the dimension of the speial family on S0 was
≤ 2.The tehnial di�ulties in the proof of Proposition 5.11 mostly arise beause the urves in thespeial family on S0 may be reduible (in fat, as in all arguments by degeneration, in pratialappliations they will very often be). Therefore we need to partially desingularize families of nodalurves, and this tool is provided in Appendix A by E. Sernesi. Moreover, we need a areful study ofthe Severi varieties of reduible nodal urves on K3s, and here we use results of Tannenbaum [55℄.Given Proposition 5.11, the proof of Theorem 5.2 is then aomplished by onstruting a suitable
(S0,H0) in Proposition 5.19 with |H0| ontaining a desired two-dimensional family of speial urves,with δ = p− 3, and then showing that the urves in the speial family on S0 in fat deform to urveswith preisely δ nodes on the general S in Lemma 5.20. As will be disussed below, showing thatthe speial family on S0 is not ontained in a family of higher dimension of urves with the sameproperty, is quite deliate.We also show that the assoiated rational urves in S[2] over a threefold, f. Corollary 5.3, andthat g0 = pg = 3, f. Remark 5.23. Turning bak to the desription of NE(S[2]), this shows that thelass of the assoiated rational urves in S[2] is Y − 3

2P1
∆, so that we obtain (f. Corollary 6.27):(6.28) sloperat(NE(S[2])) ≤ 1

2 .In Propositions 7.2 and 7.7 we present two in�nite series of examples of general primitively polarized
K3 surfaes (S,H) of in�nitely many degrees suh that S[2] ontains either a P2 (these exampleswere shown to us by B. Hassett) or a threefold birational to a P1-bundle over a K3 and �nd thetwo-dimensional families of urves with hyperellipti normalizations in |H| orresponding to the linesand the �bres respetively. In partiular, these examples show that the bound (6.28) an be improvedfor in�nitely many degrees of the polarization. Namely, for any n ≥ 6 and d ≥ 2, we get:(7.4) sloperat(NE(S[2])) ≤ 2

2n−9 if p = pa(H) = n2 − 9n+ 20;(7.9) sloperat(NE(S[2])) ≤ 1
d if p = pa(H) = d2.Nevertheless, to our knowledge, (6.28) is the �rst non-trivial bound valid for any genus p of thepolarization.The proofs of Propositions 7.2 and 7.7 are again by deformation, but unlike the proof of Proposition5.11, we now deform S

[2]
0 of a speial K3 surfae S0. The idea is to start with a speial quarti surfae

S0 ⊂ P3 suh that S[2]
0 ontains a P2 or a threefold birational to a P1-bundle over itself, performthe standard involution on S[2]

0 to produe a new suh and then deform S
[2]
0 keeping the new one bykeeping a suitable polarization on the surfae that is di�erent from OS0(1). Here we use results ondeformations of sympleti fourfolds by Hassett and Tshinkel [25℄ and Voisin [57℄.By a result proved in [22℄, any irreduible urve C ∈ |H| with hyperellipti normalization mustsatisfy g0(C) ≤ p+2

2 , where p = pa(H) (f. Theorem 6.16 and (6.17)). It is then natural to askwhether this inequality atually ensures the existene of suh urves. We all this �The hyperellipti



4 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAexistene problem� and we see that a positive solution to this problem would yield a bound on theslope of rational urves that is muh stronger than the ones obtained above, f. (6.25). In this sense,Theorem 5.2 is hopefully only the �rst step towards stronger existene results.The study of urves on S with hyperellipti normalizations is not the only way to obtain boundson the slope of the Mori one of S[2]. In fat, an irreduible urve C ∈ |mH| with a singular point xof multipliity multx(C) yields an irreduible urve in S[2] with lass mY − (1/2)multx(C) (see theproof of Theorem 6.18). In partiular, if p = pa(H), one has the bound (f. Theorem 6.21)(6.22) slope(NE(S[2])) ≤
√

2
p−1 ,obtained by using well-known results on Seshadri onstants on S. This bound is stronger than(6.28) but weaker than the bounds on the slope of the Mori one obtained from (7.4) and (7.9).Moreover, one relatively easily sees that the best bound one an obtain by Seshadri onstants is inany ase weaker than (7.4) and (7.9) and also weaker than the ones one ould obtain by solving �Thehyperellipti existene problem�, f. (6.25). In any ase, note that (6.22), (7.4) and (7.9) show thatthe bounds tend to zero as the degree of the polarization tends to in�nity, that is,(6.23) inf

{
slope(NE(S[2])) | S is a projetive K3 surfae }

= 0,and likewise for sloperat(NE(S[2])).All the families of urves in |H| with hyperellipti normalizations we have seen above have in fatdimension equal to two, the expeted one. Moreover, a ruial point in the proof of Theorem 5.2is to bound the dimensions of families of irreduible urves with hyperellipti normalizations on thespeial K3 surfae S0. This brings us over to the desription of the �rst part of this paper.The problem of bounding the dimension of speial families of urves on surfaes, like in our ase ofurves with hyperellipti normalizations, is interesting in its own, may be studied for larger lasses ofsurfaes, and may lead to further appliations in other ontexts. Whereas methods from adjuntiontheory have proved very useful for the study of smooth hyperellipti urves on surfaes [51, 53, 10℄,these methods do not extend to the ase of singular urves, where in fat very little seems to beknown. Even in the relevant ase of nodal urves on smooth surfaes, whose parameter spaes (theso-alled Severi varieties) have reeived muh attention over the years and have been studied alsoin relation with moduli problems (see e.g. [49℄ for P2 and [21℄ for surfaes of general type), thedimension of their subloi onsisting of urves with hyperellipti normalizations is not determined.The preise question we address is whether there exists an upper bound on the dimension of familiesof irreduible urves on a projetive surfae with hyperellipti normalizations. One easily sees that,if the anonial system of the surfae is birational, then no urve with hyperellipti normalizationan move, f. e.g. [33℄. On the other hand, taking any surfae S admitting a (generially) 2 : 1 maponto a rational surfae R and pulling bak the families of rational urves on R, we obtain families ofarbitrarily high dimensions of urves on S having hyperellipti normalizations. Moreover, the in�niteseries of examples in Proposition 7.2 of general, primitively polarized K3 surfaes (S,H) suh that
S[2] ontains a P2 shows that one annot even hope, in general, to �nd a bound in the simplest aseof Piard number one: in fat, the (3m− 1)-dimensional family of rational urves in |OP2(m)| yieldsa (3m− 1)-dimensional family of irreduible urves in |mH| having hyperellipti normalizations, f.� 7.1. Nevertheless, for a large lass of surfaes, it is possible to derive a geometri onsequene onthe family V , when its dimension is greater than two:



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 5Theorem 4.6'. Let S be a smooth, projetive surfae with pg(S) > 0. Let V be a redued andirreduible sheme parametrizing a �at family of irreduible urves on S with hyperellipti normal-izations (of genus ≥ 2) suh that dim(V ) ≥ 3. Then the algebrai equivalene lass [C] of the urvesparametrized by V has a deomposition [C] = [D1] + [D2] into algebraially moving lasses suhthat [D1 + D2] ∈ V . Moreover the rational urves in S[2] orresponding to the irreduible urvesparametrized by V over only a (rational) surfae R ⊂ S[2].In fat we prove a stronger result, f. Theorem 4.6, that in partiular relates the deomposition
[C] = [D1] + [D2] to the g

1
2s on the normalizations of the urves parametrized by V . This additionalpoint will in fat be the ruial one in our appliation in the proof of Theorem 5.2. An immediateorollary is that the �naïve� dimension bound one may hope for, thinking about the fat that rationalurves in S[2] arising from urves on S of geometri genera ≤ 2 move in dimension at most two, isin fat true under additional hypotheses on V , f. Corollary 4.7. These are satis�ed if e.g. theNéron-Severi group of S is of rank 1 and generated by the lass of a urve in V , and seem quitenatural, taking into aount the examples of large families mentioned above.The idea of the proof of Theorem 4.6 is rather simple and geometri and illustrates well the rihinterplay between the properties of urves on S and those of subvarieties of S[2]. The proof relies onthe following two fundamental results:The �rst is Mori's bend-and-break tehnique (see Lemma 2.10 for the preise version we need),whih gives a breaking into reduible members of a family of rational urves of dimension ≥ 3 overinga surfae.The seond is a suitable version of Mumford's well-known theorem on 0-yles on surfaes with

pg > 0 (f. Corollaries 3.2 and 3.4). The onsequene of partiular interest to us is that any threefoldin S[2] an only arry a two-dimensional overing family of rational urves when pg(S) > 0, f.Proposition 3.6.Combining those two ingredients, we see that any family satisfying the hypotheses of Theorem 4.6yields a family of rational urves in S[2] of the same dimension ≥ 3, that an therefore only overa surfae in S[2], on whih we an apply bend-and-break to produe a reduible member. Then wehave to show that we an also produe a deomposition of the urves on S into algebraially movinglasses, and this is arried out in Proposition 4.3.Beside the appliation in the proof of Theorem 5.2, we hope that Theorem 4.6 and the ideas behindits proof will �nd more appliations. One is a Reider-like result for families of singular urves withhyperellipti normalizations obtained in [33℄, where also more examples are given.The paper is organized as follows. We go from the more general results to those peuliar to thease of K3 surfaes. We start in � 2 with the orrespondene between urves with hyperelliptinormalizations on any smooth surfae S and rational urves on S[2] and prove other preliminaryresults, before turning to the bend-and-break lemma for families of rational urves overing a surfaein S[2]. The version of Mumford's theorem we need for our purposes is proved in � 3, and thenrephrased in terms of rational quotients. Then we prove (a stronger version of) Theorem 4.6' in � 4.We then turn to K3 surfaes and prove Theorem 5.2 along the lines of the degeneration argumentskethed above. Setion 6, apart from some known fats on the Hilbert sheme of points on a K3surfae, ontains the omputation of the lasses of rational urves in S[2] assoiated to urves in Swith rational, ellipti or hyperellipti normalizations, as explained in � 2.1. The relation between theexistene of suh a urve, its singular Brill-Noether number (an invariant introdued in [22℄) and theslope of the Mori one of S[2] is also disussed, as well as the relation between the slope of the Morione and Seshadri onstants. We end the paper presenting the two series of examples of general K3surfaes whose Hilbert square ontains a P2 (respetively a threefold birational to a P1-bundle overa K3) and disussing the numerial properties of a line (respetively a �bre) in it, as well as those of



6 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAthe assoiated singular urves in S with hyperellipti normalizations. In Appendix A by E. Sernesithe reader will �nd a general result about partial desingularizations of families of nodal urves.Aknowledgements. The authors thank L. Caporaso, O. Debarre, A. Iliev and A. Verra for usefuldisussions related to these problems. We are extremely grateful to: C. Ciliberto, for many valuableonversations and helpful omments on the subjet and for having pointed out some mistakes in apreliminary version of this paper; B. Hassett, for having pointed out the examples behind Proposition7.2; E. Sernesi, for many helpful onversations and for his Appendix A. We �nally express ourgratitude to the Department of Mathematis, Università "Roma Tre" and to the Institut de ReherheMathématique Avanée, Université L. Pasteur et CNRS, where parts of this work have been done,for the nie and warm atmosphere as well as for the kind hospitality.2. Rational urves in S[2]Let S be a smooth, projetive surfae. In this setion we gather some basi results that will beneeded in the rest of the paper. We �rst desribe the natural orrespondene between rational urvesin S[2] and urves on S with rational, ellipti or hyperellipti normalizations. Then, in � 2.2, weapply Mori's bend-and-break tehnique to rational urves in Sym2(S) overing a surfae.Reall that we have the natural Hilbert-Chow morphism µ : S[2] → Sym2(S) that resolves
Sing(Sym2(S)) ≃ S. The µ-exeptional divisor ∆ ⊂ S[2] is a P1-bundle over S. The Hilbert-Chow morphism gives an obvious one-to-one orrespondene between irreduible urves in S[2] notontained in ∆ and irreduible urves in Sym2(S) not ontained in Sing(Sym2(S)). We will thereforeoften swith bak and forth between working on S[2] and Sym2(S).2.1. Irreduible rational urves in S[2] and urves on S. Let T ⊂ S × S[2] be the inidenevariety, with projetions p2 : T → S[2] and pS : T → S. Then p2 is �nite of degree two, branhedalong ∆ ⊂ S[2]. (In partiular, T is smooth as ∆ is.)Let X ⊂ S[2] be an irreduible rational urve not ontained in ∆. We will now see how X isequivalent to one of three sets of data on S.Let νX : X̃ ≃ P1 → X be the normalization and set X ′ := p−1

2 (X) ⊂ T . By the universal propertyof blowing up, we obtain a ommutative square:(2.1) C̃X
f

//

ν̃X

��

X̃

νX

��

≃ P1

X ′
p2|X′

// X,de�ning the urve C̃X , ν̃X and f . In partiular, ν̃X is birational and C̃X admits a g
1
2 (i.e., a 2 : 1morphism onto P1, given by f), but may be singular, or even reduible. Set ν̃ := pS |X′ ◦ν̃X : C̃X → S.Assume �rst that C̃X is irreduible.We set CX := ν̃(C̃X) ⊂ S. Sine X 6⊂ ∆, CX is a urve. As C̃X arries a g

1
2, it is easily seen thatalso the normalization of CX does, that is, CX has rational, ellipti or hyperellipti normalization.Moreover, it is easily seen that ν̃ : C̃X → CX is generially of degree one. Indeed, for general x ∈ CX ,as x 6∈ pS(p−1

2 (∆)), we an write (pS |X′)−1(x) = {(x, x+ y1), . . . , (x, x+ yn)}, where n := deg ν̃. Byde�nition of p2, and sine X ′ = p−1
2 (X), we must have that eah (yi, x + yi) ∈ X ′, for i = 1, . . . , n,and eah ouple ((x, x+yi), (yi, x+yi)) is the pushdown by ν̃X of an element of the g

1
2 on C̃X . Hene,eah ouple (x, yi) is the pushdown by the normalization morphism of an element of the indued g

1
2on the normalization of CX . Sine x has been hosen general, x 6∈ Sing(CX), so that we must have

n = 1, as laimed.



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 7In partiular, by onstrution, ν̃ : C̃X → CX is a partial desingularization of CX , in fat, it is theminimal partial desingularization of CX arrying the g
1
2 in question (whih is unique, if pg(CX) ≥ 2).We have therefore obtained:(I) the data of an irreduible urve CX ⊂ S together with a partial normalization ν̃ : C̃X → CXwith a g

1
2 on C̃X (unique, if pg(CX) ≥ 2), suh that ν̃ is minimal with respet to the existeneof the g
1
2.Next we treat the ase where C̃X is reduible. In this ase, it must onsist of two irreduiblesmooth rational omponents, C̃X = C̃X,1 ∪ C̃X,2, that are identi�ed by f .If ν̃ does not ontrat any of the omponents, set CX,i := ν̃(C̃X,i) ⊂ S and nX,i := deg ν̃| eCX,i

, for
i = 1, 2. We therefore obtain:(II) the data of a urve CX = nX,1CX,1 + nX,2CX,2 ⊂ S, with nX,i ∈ N, CX,i an irreduible,rational urve, a morphism ν̃ : C̃X = C̃X,1 ∪ C̃X,2 → CX,1 ∪ CX,2 (resp. ν̃ : C̃X → CX,1 if

CX,1 = CX,2) that is nX,i : 1 on eah omponent and where C̃X,i is the normalization of CX,i,and an identi�ation morphism f : C̃X,1 ∪ C̃X,2 ≃ P1 ∪ P1 → P1.If ν̃ ontrats one of the two omponents of C̃X , say C̃X,2, to a point xX ∈ S (it is easily seenthat it annot ontrat both), then µ(X) ⊂ Sym2(S) is of the form {xX + CX}, for an irreduibleurve CX ⊂ S, whih is neessarily rational. It is easily seen that CX = ν̃(C̃X,1) and deg ν̃| eCX,1
= 1,so that we obtain:(III) the data of an irreduible rational urve CX ⊂ S together with a point xX ∈ S.Note that in all ases (I)-(III), the support of the urve CX on S is simply(2.2) Supp(CX) = one-dimensional part of {x ∈ S | x ∈ Supp(ξ) for some ξ ∈ X}and the set is already purely one-dimensional preisely unless we are in ase (III) with xX 6∈ C.Conversely from the data (I), (II) or (III) one reovers an irreduible rational urve in S[2] notontained in ∆. Indeed, in ase (I) (resp. (II)), the g

1
2 on C̃X (respetively, the identi�ation f)indues a P1 ⊂ Sym2(C̃X) and this is mapped to an irreduible rational urve in Sym2(S) by thenatural omposed morphism

Sym2(C̃X)
ν̃(2)

// Sym2(CX)
�

�

// Sym2(S).The irreduible rational urve X ⊂ S[2] is the strit transform by µ of this urve. In ase (III),
X ⊂ S[2] is the strit transform by µ of {xX + CX} ⊂ Sym2(S).We see that the data (III) orrespond preisely to rational urves of type {x0 + C} ⊂ Sym2(S),where x0 ∈ S is a point and C ⊂ S is an irreduible rational urve. Moreover, it is easily seen thatthe data (II) orrespond preisely to the images by

α : C̃1 × C̃2 ≃ P1 × P1 −→ C1 + C2 ⊂ Sym2(S),resp.
α : Sym2(C̃) ≃ P2 −→ Sym2(C) ⊂ Sym2(S),of irreduible rational urves in |n1F1 + n2F2| for n1, n2 ∈ N, resp. |nF | for an integer n ≥ 2, where

Pic(C̃1 × C̃2) ≃ Z[F1] ⊕ Z[F2], resp. Pic(Sym2(C̃)) ≃ Z[F ], and C1, C2, resp. C, are irreduiblerational urves on S and �˜� denotes normalizations. The data of type (II) will however not bestudied more in this paper, where we will fous on the other two, mostly on (I).Note that an irreduible rational urve X ⊂ Sym2(S) arising from rational (resp. ellipti) urves
C as in ase (I) moves in Sym2(C), whih is a surfae birational to P2 (resp. an ellipti ruled surfae),



8 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAand a urve X ⊂ Sym2(S) of the form {xX +C} moves in the threefold {S +C}, whih is birationalto a P1-bundle over S, and ontains Sym2(C).At the same time, it is well-known that if kod(S) ≥ 0, then rational urves on S do not move andellipti urves move in at most one-dimensional families. This follows for instane from the followinggeneral result (that we will later need in the ase pg = 2).Lemma 2.3. Let S be a smooth, projetive surfae with kod(S) ≥ 0 ontaining an n-dimensionalirreduible family of irreduible urves of geometri genus pg. Then n ≤ pg and if equality ours,then either the family onsists of a single smooth rational urve; or kod(S) ≤ 1 and n ≤ 1; or
kod(S) = 0.Proof. This is �folklore�. For a proof see [33℄. �As a onsequene, if kod(S) ≥ 0, then rational urves in Sym2(S) arising from rational or elliptiurves on S move in families of dimension at most two in Sym2(S).On the other hand, irreduible rational urves X ⊂ Sym2(S) arising from urves on S withhyperellipti normalizations of geometri genus pg ≥ 2 (neessarily of type (I)), move in a familywhose dimension equals that of the family of urves with hyperellipti normalizations in whih C ⊂ Smoves (by uniity of the g

1
2). Apart from some speial ases, it is easy to see that the onverse isalso true:Lemma 2.4. Let {Xb}b∈B be a one-dimensional irreduible family of irreduible rational urves in

Sym2(S) overing a (dense subset of a) proper, redued and irreduible surfae Y ⊂ Sym2(S) thatdoes not oinide with Sing(Sym2(S)) ∼= S.Then C = CXb
in S for every b ∈ B (notation as above) if and only if either Y = Sym2(C0), witheither C0 ⊂ S an irreduible rational urve and C ≡ nC0 for n ≥ 1, or C0 = C ⊂ S an irreduibleellipti urve; or Y = C + C ′ := {p + p′ | p ∈ C, p′ ∈ C ′}, with C an irreduible rational urveand C ′ ⊂ S any irreduible urve; or Y = C1 + C2, with C1, C2 ⊂ S irreduible rational urves and

C = n1C1 + n2C2 for n1, n2 ∈ N.Proof. The "if" part is immediate. For the onverse, we treat the three ases (I)-(III) separately.If C is as in (I), then learly Y ⊂ Sym2(C), so that Y = Sym2(C) and C must be either rationalor ellipti, as Y is uniruled.If C = n1C1 + n2C2 as in (II), then either C1 = C2 =: C0 and again Y = Sym2(C0), or C1 6= C2and Y = C1 + C2.Finally, if C is as in (III), then, for every b ∈ B, we have {Xb}b∈B = {xb+C}b∈B for some xb ∈ S,and the {xb}b∈B de�ne the desired urve C ′.
�We note that by Lemma 2.3 also the rational urves in Sym2(S) arising from singular urves ofgeometri genus 2 on S move in at most two-dimensional families. We will see below that this is ageneral phenomenon, under some additional hypotheses. We will fous our attention on urves withhyperellipti normalizations (of genus pg ≥ 2) in Setions 4-7.2.2. Bend-and-break in Sym2(S). Let V ⊆ Hom(P1,Sym2(S)) be a redued and irreduible sub-sheme (not neessarily omplete). We onsider the universal map(2.5) PV := P1 × V

ΦV
// Sym2(S)and assume that the following two onditions hold:(2.6) For any v ∈ V, ΦV (P1 × v) 6⊆ Sing(Sym2(S)) ≃ S; and(2.7) ΦV is generially �nite



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 9(the latter just means that V indues a �at family of rational urves in Sym2(S) of dimension
dim(V )). Set(2.8) RV := im(ΦV ),the Zariski losure of im(ΦV ) in Sym2(S). It is the (irreduible) uniruled subvariety of Sym2(S)overed by the urves parametrized by V . In the language of [35, Def. 2.3℄, RV is the losure of thelous of the family ΦV . Note that dim(RV ) ≥ 2 if dim(V ) ≥ 1 by (2.7). Moreover (f. e.g. [24, Prop.2.1℄),(2.9) dim(RV ) ≤ 3 if kod(S) ≥ 0.When RV is a surfae, using Mori's bend-and-break tehnique we obtain the following result. Inthe statement we underline the fat that the breaking an be made in suh a way that, for general
ξ, η ∈ RV , two omponents of the reduible (or non-redued) member at the border of the familypass through ξ and η, respetively. This will be entral in our appliations (Proposition 4.3 and � 5,where we prove Theorem 5.2). We give the proof beause we ould not �nd in literature preiselythe statement we will need.Lemma 2.10. Assume that dim(V ) ≥ 3 and dim(RV ) = 2.Let ξ and η be any two distint general points of RV . Then there is a urve Yξ,η in RV suh that
Yξ,η is algebraially equivalent to (ΦV )∗(P1

v) and either(a) there is an irreduible nonredued omponent of Yξ,η ontaing ξ and η; or(b) there are two distint, irreduible omponents of Yξ,η ontaing ξ and η, respetively.Proof. Sine dim(V ) ≥ 3 by assumption, by (2.7) we an pik a one-dimensional smooth subsheme
B = Bξ,η ⊂ V parametrizing urves in V suh that (ΦV )∗(P1 × v) ontains both ξ and η, for every
v ∈ B. We therefore have a family of rational urves:(2.11) ΦB := (ΦV )|B : P1 ×B −→ RV .and two marked (distint) points x, y ∈ P1 suh that ΦB(x×B) = ξ and ΦB(y ×B) = η, suh thateah ΦB(P1 × v) is nononstant, for any v ∈ B; in partiular ΦB(P1 ×B) is a surfae.As in the proofs of [36, Lemma 1.9℄ and [35, Cor. II.5.5℄, let B be any smooth ompati�ationof B. Consider the surfae P1 × B. Let 0 ∈ B denote a point at the boundary, P1

0 the �bre over 0of the projetion onto the seond fator and x0, y0 ∈ P1
0 ⊂ P1 ×B the orresponding marked points.By the Rigidity Lemma [36, Lemma 1.6℄, ΦB annot be de�ned at the point x0, as in the proof of[36, Cor. 1.7℄, and the same argument works for y0.Therefore, to resolve the indeterminaies of the rational map ΦB : P1 × B − − → RV , we mustat least blow up P1 × B at the points x0 and y0. Now let W be the blow-up of P1 × B suh that

ΦB : W −→ RV is an extension of ΦB , that is, we have a ommutative diagram
W

π
��

ΦB

$$I
IIIIIIII

P1 ×B
ΦB

//___ RV .Let Ex0 := π−1(x0) and Ey0 := π−1(y0). Note that neither of these an be ontrated by ΦB , forotherwise ΦB itself would be de�ned at x0 or y0.Therefore the urve ΦB(Ex0) has an irreduible omponent Γξ ontaining ξ and the urve ΦB(Ey0)has an irreduible omponent Γη ontaining η and by onstrution, Γξ + Γη ⊆ ΦB∗(π
−1(P1 × 0)) andthe latter is the desired urve Yξ,η. The two ases (a) and (b) our as Γξ = Γη or Γξ 6= Γη,respetively. �



10 F. FLAMINI, A. L. KNUTSEN, G. PACIENZA3. Rationally equivalent zero-yles on surfaes with pg > 0In this setion we extend to the singular ase a onsequene of Mumford's result on zero-yleson surfaes with pg > 0 (f. [42, Corollary p. 203℄) and reformulate the results in terms of rationalquotients.3.1. Mumford's Theorem. The main result of this subsetion, whih we prove in detail for thereader's onveniene, relies on the following generalization of Mumford's result (f. [58, Chapitre 22℄and referenes therein, for a detailed aount).Theorem 3.1. (see [58, Prop. 22.24℄) Let T and Y be smooth projetive varieties. Let Z ⊂ Y × Tbe a yle of odimension equal to dim(T ). Suppose there exists a subvariety T ′ ⊂ T of dimension k0suh that, for all y ∈ Y , the zero-yle Zy is rationally equivalent in T to a yle supported on T ′.Then, for all k > k0 and for all η ∈ H0(T,Ωk
T ), we have

[Z]∗η = 0 in H0(Y,Ωk
Y )where, as ostumary, [Z]∗η denotes the di�erential form indued on Y by the orrespondene Z.Mumford's original �sympleti� argument and the theorem above yield the following result (see[42, Corollary p. 203℄).Corollary 3.2. Let S be a smooth, irreduible projetive surfae with pg(S) > 0 and Σ ⊂ S[n] aredued, irreduible (possibly singular) omplete subsheme suh that µ(Σ) 6⊂ Sing(Symn(S)), where

µ : S[n] → Symn(S) is the Hilbert-Chow morphism.If there exists a subvariety Γ ⊂ Symn(S) suh that dim(Γ) ≤ 1, Γ 6⊂ Sing(Symn(S)) and allthe zero-yles parametrized by µ(Σ) are rationally equivalent to zero-yles supported on Γ, then
dim(Σ) ≤ n.Proof. Let π : Σ̃ → Σ ⊂ S[n] be the desingularization morphism of Σ. Let Z = Λπ ⊂ Σ̃× S[n] be thegraph of π. Then Z ∼= Σ̃, so that codim(Z) = dim(S[n]), as in Theorem 3.1. By assumption, µ(Σ)parametrizes zero-yles of length n on S that are all rationally equivalent to zero-yles supported on
Γ, with dim(Γ) ≤ 1. Sine µ(Σ) is not ontained in Sing(Symn(S)) by assumption, µ|Σ : Σ → µ(Σ)is birational. If Γ′ denotes the strit transform of Γ under µ, we get that dim(Γ′) ≤ 1.We an apply Theorem 3.1 with Z = Y = Σ̃, T = S[n] and T ′ = Γ′. Thus, for eah k > 1 and foreah η ∈ H0(Ωk

S[n]), [Z]∗η = 0 in H0(Σ̃,Ωk
eΣ
).Let ω ∈ H0(S,KS) be a non-zero 2-form on S. As in [42, Corollary℄, we de�ne:

ω(n) :=

n∑

i=1

p∗i (ω) ∈ H0(Sn,Ω2
Sn)where Sn is the nth-artesian produt and pi is the natural projetion onto the ith fator, 1 ≤ i ≤ n.The form ω(n) is Sym(n)-invariant and, sine we have that µ is surjetive, this indues a anonial

2-form ω
[n]
µ ∈ H0(S[n],Ω2

S[n]) (see [42, �1℄, where ω[n]
µ = ηµ in the notation therein). From what weobserved above, [Z]∗(ω[n]

µ ) = 0 as a form in H0(Σ̃,Ω2
eΣ
). Consider

(Symn(S))0 :=
{
ξ =

n∑

i=1

xi | xi 6= xj , 1 ≤ i 6= j ≤ n and such that ω(xi) ∈ Ω2
S,xi

is not 0
}
.Then (Symn(S))0 ⊂ Symn(S) is an open dense subsheme that is isomorphi to its preimage via µin S[n]. For eah ξ ∈ (Symn(S))0, ξ is a smooth point and

πn : Sn → Symn(S)



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 11is étale over ξ. Thus, the 2-form ω(n) ∈ H0(Sn,Ω2
Sn) is non-degenerate on the open subset (Sn)0 ofpoints in the preimage of (Symn(S))0, i.e. it de�nes a non-degenerate skew-symmetri form on thetangent spae of (Sn)0.Let π0

n := πn|(Sn)0 ; sine π0
n : (Sn)0 → (Symn(S))0 is étale, there exists a 2-form

ω
(n)
0 ∈ H0((Symn(S))0,Ω

2
(Symn(S))0

)suh that ω(n) = π∗n(ω
(n)
0 ) and ω(n)

0 is also non-degenerate. Therefore, the maximal isotropi subspaesof ω(n)
0 (ξ) are n-dimensional.Now Σ ⊂ S[n] and Σ ∩ µ−1((Symn(S))0) 6= ∅, sine µ(Σ) 6⊂ Sing(Symn(S)) by assumption. Sine

Σ is redued, let ξ ∈ Σ ∩ µ−1((Symn(S))0) be a smooth point. Then, sine Σsmooth = π−1(Σsmooth),by abuse of notation we still denote by ξ ∈ Σ̃ the orresponding point. We know that [Z]∗ω[n]
µ (ξ) = 0in the tangent spae Tξ(Σ̃). Sine

ξ ∈ Σsmooth ∩ µ−1((Symn(S))0) ⊂ (Symn(S))0,then [Z]∗(ω[n]
µ ) = ω

(n)
0 |Σsmooth∩µ−1((Symn(S))0). This implies dim(Σ) ≤ n. �3.2. The property RCC and rational quotients. Reall that a variety T (not neessarily properor smooth) is said to be rationally hain onneted (RCC, for brevity), if for eah pair of very generalpoints t1, t2 ∈ T there exists a onneted urve Λ ⊂ T suh that t1, t2 ∈ Λ and eah irreduibleomponent of Λ is rational (see [35℄). Furthermore, by [16, Remark 4.21(2)℄, if T is proper and RCC,then eah pair of points an be joined by a onneted hain of rational urves.Also reall that, for any smooth variety T , there exists a variety Q, alled the rational quotient of

T , together with a rational map(3.3) f : T −− → Q,whose very general �bres are equivalene lasses under the RCC-equivalene relation (see, for in-stane, [16, Theorem 5.13℄ or [35, IV, Thm. 5.4℄).In this language, an equivalent statement of Corollary 3.2 is:Corollary 3.4. Let S be a smooth, projetive surfae with pg(S) > 0. If Y ⊂ S[n] is a ompletesubvariety of dimension > n not ontained in Exc(µ), then any desingularization of Y has a rationalquotient of dimension at least two.Proof. Let Ỹ be any desingularization of Y and Q its rational quotient. Up to resolving the indeter-minaies of f : Ỹ −− → Q, we may assume that f is a proper morphism whose very general �bre isa RCC-equivalene lass, so that in partiular eah �bre is RCC (see [35, Thm. 3.5.3℄).If dim(Q) = 0, it follows that Ỹ (so also Y ) is RCC, ontraditing Corollary 3.2.If dim(Q) = 1, then by utting Ỹ with dim(Y ) − 1 general very ample divisors, we get a urve Γ′that intersets every �bre of f . Every point of Ỹ is onneted by a hain of rational urves to somepoint on Γ′. We thus obtain a ontradition by Corollary 3.2 (with Γ the image of Γ′ in Sym2(S)). �Let now RV be the variety overed by a family of rational urves in Sym2(S) parametrized by V ,as de�ned in (2.8), R̃V be any desingularization of RV and QV be the rational quotient of R̃V . Ofourse dim(QV ) ≤ dim(RV ) − 1, as RV is uniruled by onstrution.Lemma 3.5. If dim(V ) ≥ dim(RV ), then dim(QV ) ≤ dim(RV )−2 (for any desingularization R̃V of
RV ). In partiular, if dim(V ) ≥ 2 and dim(RV ) = 2, then any desingularization of RV is a rationalsurfae.



12 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAProof. With notation as in � 2.2, we have dim(PV ) ≥ dim(RV ) + 1, so that the general �bre of ΦVis at least one-dimensional, f. (2.5). This means that, if ξ is a general point of RV , there exists afamily of rational urves in RV passing through ξ, of dimension ≥ 1. Of ourse the same is true fora general point of R̃V . Thus, the very general �bre of f in (3.3) has dimension at least two, whene
dim(QV ) ≤ dim(RV ) − 2. The last statement follows from the fat that any smooth surfae that is
RCC is rational (f. [35, IV.3.3.5℄). �Combining Corollary 3.4 and Lemma 3.5, we then get:Proposition 3.6. If pg(S) > 0 and dim(V ) ≥ 2, then either(i) RV is a surfae with rational desingularization; or(ii) dim(V ) = 2, RV is a threefold and any desingularization of RV has a two-dimensional rationalquotient.Proof. By (2.9), dim(RV ) = 2 or 3. If dim(RV ) = 2, then (i) holds by Lemma 3.5. If dim(RV ) = 3,then dim(QV ) = 2 by Corollary 3.4. Hene dim(V ) = 2 by Lemma 3.5 and (ii) holds. �Remark 3.7. Let S be a smooth, projetive surfae with pg(S) > 0 and let Y ⊂ S[2] be a uniruledthreefold di�erent from Exc(µ), where µ : S[2] → Sym2(S) is the Hilbert-Chow morphism.Take a overing family {Cv}v∈V of rational urves on Y . By Corollary 3.4 the family must betwo-dimensional (see Lemma 3.5). Then the urves in the overing family yield, via the orrespon-dene desribed in � 2.1, urves on S with rational, ellipti or hyperellipti normalizations, and theorrespondene is one-to-one in the hyperellipti ase. We therefore see that we must be in one ofthe following ases:(a) S ontains an irreduible rational urve Γ and

Y = {ξ ∈ S[2] | Supp(ξ) ∩ Γ 6= ∅};(b) S ontains a one-dimensional irreduible family {E}v∈V of irreduible ellipti urves and
Y = {ξ ∈ E

[2]
v }v∈V ;or() S ontains a two-dimensional, irreduible family of irreduible urves with hyperellipti nor-malizations, not ontained in a higher dimensional irreduible family, and Y is the lousovered by the orresponding rational urves in S[2].(Note that in fat ase (b) an only our for kod(S) ≤ 1 by Lemma 2.3 and ase () only when |KS |is not birational. The latter fat is easy to see, f. e.g. [33℄.)In the ase of K3 surfaes, uniruled divisors play a partiularly important r�le [32, �5℄, f. � 7.Now all ases (a)-() above our on a general, projetive K3 surfae with a polarization of genus

≥ 6. In fat, ases (a) and (b) our on any projetive K3 surfae sine it neessarily ontains aone-dimensional family of irreduible, ellipti urves and a zero-dimensional family of rational urves,by a well-known theorem of Mumford (see the proof in [38, pp. 351-352℄ or [2, pp. 365-367℄). Case() ours on a general primitively polarized K3 surfae of genus p ≥ 6 by Corollary 5.3 below witha family of urves of geometri genus 3. In addition to this, in Proposition 7.7 we will see that thereis another threefold as in () arising from urves of geometri genus > 3 in the hyperplane linearsystem on general projetive K3 surfaes of in�nitely many degrees.Moreover, there is not a one-to-one orrespondene between families as in (a), (b) or () aboveand uniruled threefolds in S[2]. In fat, in Proposition 7.2 we will see that there is a two-dimensionalfamily of urves with hyperellipti normalizations, as in (), in the hyperplane linear systems ongeneral K3 surfaes of in�nitely many degrees whose assoiated rational urves over only a P2 in
S[2].



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 134. Families of urves with hyperellipti normalizationsThe purpose of this setion is to study the dimension of families of urves on a smooth projetivesurfae S with hyperellipti normalizations.We �rst remark that it is not di�ult to see that if |KS | is birational, then the dimension of suha family is fored to be zero (see e.g. [33℄). At the same time it is easy to �nd obvious examplesof surfaes, even with pg(S) > 0, with large families of urves with hyperellipti normalizations,namely surfaes admitting a �nite 2 : 1 map onto a rational surfae. (For examples of suh ases,see e.g. [26, 27, 28, 29, 48, 51, 53, 10℄ to mention a few.) In these ases one an pull bak thefamilies of rational urves on the rational surfae to obtain families of urves on S with hyperelliptinormalizations of arbitrarily high dimensions. Moreover, in Proposition 7.2 below we will see thateven a general, primitively polarized K3 surfae (S,H), for in�nitely many degrees, ontains a P2in its Hilbert square, whih is not ontained in ∆ (but the surfae is not a double over of a P2,by generality). Therefore, by the orrespondene in � 2.1, S ontains large families of urves withhyperellipti normalizations. One an see that in all these examples of large families the algebraiequivalene lass of the members breaks into nontrivial e�etive deompositions. For example, in thementioned K3 ase of Proposition 7.2, we will see that the urves in |OP2(n)| in P2 ⊂ S[2] orrespondto urves in |nH|. In this setion we will see that this is a general phenomenon, with the help ofLemma 2.10.To this end, let V be a redued and irreduible sheme parametrizing a �at family of urves on Sall having onstant geometri genus pg ≥ 2 and hyperellipti normalizations. Let ϕ : C → V be theuniversal family. Normalizing C we obtain, possibly restriting to an open dense subsheme of V , a�at family ϕ̃ : C̃ → V of smooth hyperellipti urves of genus pg ≥ 2 (f. [56, Thm. 1.3.2℄). Let ωeC/Vbe the relative dualizing sheaf. As in [37, Thm. 5.5 (iv)℄, onsider the morphism γ : C̃ → P(ϕ̃∗(ωeC/V
))over V . This morphism is �nite and of relative degree two onto its image, whih we denote by PV .We thus obtain a universal family ψ : PV → V of rational urves mapping to Sym2(S), as in (2.5),satisfying (2.6) and (2.7). (Stritly speaking, (2.5) denoted a universal family of maps, whereas itnow denotes a universal family of urves.) To summarize, realling (2.8), we have(4.1) C̃

π

����
��

��
��

ϕ̃
  @

@@
@@

@@
@

γ
// PV

ψ

��

ΦV
// RV

S V.Also note that (4.1) is ompatible with the orrespondene of ase (I) in � 2.1, in the sense that,for general v ∈ V , we have (using the same notation as in � 2.1)(4.2) π(ϕ̃−1(v)) = pS(p−1
2 Xv) = (pS)∗(p

−1
2 Xv) = CXv , with Xv = µ−1

∗
(
ΦV (ψ−1(v))

)
⊂ S[2],where µ is the Hilbert-Chow morphism (in partiular, pS and p2 are the �rst and seond projetions,respetively, from the inidene variety T ⊂ S × S[2]). Note that the seond equality in (4.2) followsas pS is generially one-to-one on the urves in question, as we saw in � 2.1. This will be entral inthe proof of the next result.We now apply Lemma 2.10 to �break� the urves on S.Proposition 4.3. Let S be a smooth, projetive surfae and V and RV as above. Assume that

dim(V ) ≥ 3 and dim(RV ) = 2 and let [C] be the algebrai equivalene lass of the membersparametrized by V .Then there is a deomposition into two e�etive, algebraially moving lasses
[C] = [D1] + [D2]



14 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAsuh that, for general ξ, η ∈ RV , there are e�etive divisors D′
1 ∼alg D1 and D′

2 ∼alg D2 suh that
ξ ⊂ D′

1 and η ⊂ D′
2 and [D′

1 +D′
2] ∈ V , where V is the losure of V in the omponent of the Hilbertsheme of S ontaining V .Proof. For general ξ, η ∈ RV , both being supported at two distint points on S, let B = Bξ,η ⊂ V beas in the proof of Lemma 2.10 and B be any smooth ompati�ation of B. By abuse of notation,we will onsider ξ and η as being points in S[2]. By (the proof of) Lemma 2.10, using the Hilbert-Chow morphism, there is a �at family {Xb}b∈B of urves in the surfae µ−1

∗ (RV ) ⊂ S[2] (where µis the Hilbert-Chow morphism as usual) parametrized by B, suh that, for general b ∈ B, Xb is anirreduible rational urve and(4.4) CXb
= (pS)∗(p

−1
2 (Xb)) = π(ϕ̃−1(b)),with notation as in � 2.1 (f. (4.2)). In partiular, {CXb

}b∈B is a one-dimensional nontrivial subfamilyof the family {CXv}v∈V given by V . Moreover, for some b0 ∈ B \B, we have Xb0 ⊇ Yξ + Yη, where
Yξ and Yη are irreduible rational urves (possibly oiniding) suh that ξ ∈ Yξ and η ∈ Yη. Alsonote that Yξ, Yη 6⊂ ∆ ⊂ S[2].Pulling bak to the inidene variety T ⊂ S × S[2], we obtain a �at family {X ′

b := p−1
2 (Xb)}b∈B ofurves in T , suh that(4.5) X ′

b0 := p−1
2 (Xb) ⊇ p−1

2 (Yξ) + p−1
2 (Yη) =: Y ′

ξ + Y ′
η .Note that the family {X ′

b}b∈B is in fat a family of urves in the inidene variety T0 ⊂ S×µ−1
∗ (RV ),whih is a surfae ontained in T . Sine pS maps this family to a family of urves overing (an opendense subset of) S, by (4.4), we see that (pS)|T0

is surjetive, in partiular generially �nite. Thus,hoosing ξ and η general enough, we an make sure they lie outside of the images by p2 of the �nitelymany urves ontrated by (pS)|T0
. Hene q−1(Yξ) and q−1(Yη) are not ontrated by pS .Therefore, realling (4.4) and (4.5) and letting b′ ∈ B be a general point, we get

C ∼alg (pS)∗X
′
b′ ∼alg (pS)∗X

′
b0 ⊇ (pS)∗Y

′
ξ + (pS)∗Y

′
η ⊇ Dξ +Dη,where Dξ := p(q−1Yξ) and Dη := p(q−1Yη).By onstrution we have Dξ ⊃ ξ and Dη ⊃ η, viewing ξ and η as length-two subshemes of S.(Note that Dξ and Dη are not neessarily distint.) Possibly after adding additional omponents to

Dξ and Dη , we an in fat assume that
C ∼alg (pS)∗X

′
b′ = Dξ +Dη,with Dξ and Dη not neessarily redued and irreduible. Sine this onstrution an be repeatedfor general ξ, η ∈ RV and the set {x ∈ S | x ∈ Supp(ξ) for some ξ ∈ RV } is dense in S, as theurves parametrized by V over the whole surfae S, the obtained urves Dξ and Dη must move inan algebrai system of dimension at least one.By onstrution, Dξ + Dη lies in the border of the family ϕ : C → V of urves on S, and assuh, [Dξ +Dη ] lies in the losure of V in the omponent of the Hilbert sheme of S ontaining V .Moreover, as the number of suh deompositions is �nite (as S is projetive and the divisors aree�etive), we an �nd one deomposition [C] = [D1] + [D2] holding for general ξ, η ∈ RV . �The next two results are immediate onsequenes:Theorem 4.6. Let S be a smooth, projetive surfae with pg(S) > 0. Then the following onditionsare equivalent:(i) S[2] ontains an irreduible surfae R with rational desingularization, suh that R 6= µ−1

∗ (C1+

C2), µ
−1
∗ (Sym2(C)) for rational urves C,C1, C2 ⊂ S and R 6⊂ Exc(µ), where µ : S[2] →

Sym2(S) is the Hilbert-Chow morphism;



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 15(ii) S ontains a �at family of irreduible urves with hyperellipti normalizations of geometrigenus pg ≥ 3, parametrized by a redued and irreduible sheme V suh that dim(V ) ≥ 3.Furthermore, if any of the above onditions holds, then(a) the rational urves in S[2] that orrespond to the irreduible urves parametrized by V , overonly the surfae R in S[2]; and(b) the algebrai equivalene lass [C] of the urves parametrized by V has an e�etive deom-position [C] = [D1] + [D2] into algebraially moving lasses suh that, for general ξ, η ∈ R,there are e�etive divisors D′
1 ∼alg D1 and D′

2 ∼alg D2 suh that ξ ⊂ D′
1, η ⊂ D′

2 and
[D′

1 + D′
2] ∈ V , where V is the losure of V in the omponent of the Hilbert sheme of Sontaining V .Proof. Assume (ii) holds. By Proposition 3.6 we have that RV ⊂ Sym2(S) is a surfae with rationaldesingularization, so that (i) holds.Assume now that (i) holds. Then R arries a family of rational urves of dimension n ≥ 3. ByLemma 2.4 and the assumptions in (i), this yields an n-dimensional family of urves on S that haverational, ellipti or hyperellipti normalizations. From Lemma 2.3, we get (ii).Finally, assume that these onditions hold. Then (a) follows from Proposition 3.6 again, where Ris the proper transform via µ of the surfae RV therein; �nally, (b) follows from Proposition 4.3. �Corollary 4.7. Let S be a smooth, projetive surfae with pg(S) > 0 and V be a redued, irreduiblesheme parametrizing a �at family of irreduible urves with hyperellipti normalizations (of geometrigenus ≥ 2). Denote by [C] the algebrai equivalene lass of the members of V .If [C] has no deomposition into e�etive, algebraially moving lasses, then dim(V ) ≤ 2.In partiular, Corollary 4.7 holds when e.g. NS(S) = Z[C].The examples with the double overs of smooth rational surfaes and the result in Proposition 7.2mentioned above, show that the results above are natural.The statement in Theorem 4.6(b) shows that in fat the length-two zero-dimensional shemes onthe urves in the family orresponding to the elements of the g

1
2s on their normalization, are in fat�generially ut out� by moving divisors in a �xed algebrai deomposition of the lass of the membersin the family. This reminds of the nowadays well-known results of Reider and their generalizations[47, 8, 9℄. In fat, Theorem 4.6(b) an be used to prove a Reider-like result involving the arithmetiand geometri genera of the urves in the family, f. [33℄. Moreover, the preise statement in Theorem4.6(b) will be ruial in the next setion, where we will prove existene of urves with hyperelliptinormalizations by degeneration methods.5. Nodal urves of geometri genus 3 with hyperellipti normalizations on K3surfaesIn the rest of the paper we will fous on the existene of urves with �Brill-Noether speial�hyperellipti normalizations (i.e. of geometri genera > 2) and in this setion we will see thatTheorem 4.6(b) is partiularly suitable to prove existene results by degeneration arguments.To do this and to disuss some onsequenes on S[2], we will in the rest of the paper fous on K3surfaes, whih in fat were one of our original motivations for this work.We start with the following observation ombining a result of Ran, already mentioned in theIntrodution, with the results from the previous setion.Lemma 5.1. Let S be a smooth, projetive K3 surfae and L be a globally generated line bundle ofsetional genus p ≥ 2 on S. Let |L|hyper ⊆ |L| be the subsheme parametrizing irreduible urves in

|L| with hyperellipti normalizations.



16 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAThen, any irreduible omponent of |L|hyper has dimension ≥ 2, with equality holding if L has nodeomposition into moving lasses.Proof. Any n-dimensional omponent of |L|hyper yields an n-dimensional family of irreduible rationalurves in S[2]. By [46, Cor. 5.1℄, we have n ≥ 2. The last statement follows from Corollary 4.7. �The main aim of this setion is to apply Theorem 4.6(b) to prove:Theorem 5.2. Let (S,H) be a general, smooth, primitively polarized K3 surfae of genus p =
pa(H) ≥ 4. Then the family of nodal urves in |H| of geometri genus 3 with hyperellipti normal-izations is nonempty, and eah of its irreduible omponents is two-dimensional.In [22℄ we studied whih linear series may appear on normalizations of irreduible urves on K3surfaes. To do so, we introdued a singular Brill-Noether number ρsing(pa, r, d, pg) whose negativity,when Pic(S) ≃ Z[H], ensures non-existene of urves in |H|, with pa = pa(H) and of geometri genus
pg, having normalizations admitting a g

r
d (we will return to this in � 6.3 below). Moreover, in [22,Examples 2.8 and 2.10℄, we already gave examples of nodal urves with hyperellipti normalizationswith geometri genus 3 and arithmeti genus 4 or 5. Theorem 5.2 shows that this is a generalphenomenon. The proof will be given in the remainders of this setion. Moreover, we will alsodetermine the dimension of the lous overed in S[2] by the rational urves assoiated to urves in aomponent of the family:Corollary 5.3. Let (S,H) be a general, smooth, primitively polarized K3 surfae of genus p =

pa(H) ≥ 6. Then the subsheme of |H| parametrizing nodal urves of geometri genus 3 with hyper-ellipti normalizations ontains a two-dimensional omponent V suh that dim(RV ) = 3.This orollary in partiular shows that all three ases in Remark 3.7 our on a general K3 surfae.In � 6.2-6.3 we will both ompute the lasses of the orresponding rational urves in S[2] (see (6.26))and disuss some of the onsequenes of Theorem 5.2 on the Mori one of S[2].Before starting on the proof of Theorem 5.2, we reall that, for any smooth surfae S and anyline bundle L on S, suh that |L| ontains smooth, irreduible urves of genus p := pa(L), and anypositive integer δ ≤ p, one denotes by V|L|,δ the loally losed and funtorially de�ned subshemeof |L| parametrizing the universal family of irreduible urves in |L| having δ nodes as the onlysingularities and, onsequently, geometri genus pg := p − δ. These are lassially alled Severivarieties of irreduible, δ-nodal urves on S in |L|.It is nowadays well-known, as a diret onsequene of Mumford's theorem on the existene of nodalrational urves on K3 surfaes (see the proof in [38, pp. 351-352℄ or [2, pp. 365-367℄) and standardresults on Severi varieties, that if (S,H) is a general, primitively polarized K3 surfae of genus p ≥ 3,then the Severi variety V|H|,δ is nonempty and regular, i.e. it is smooth and of the expeted dimension
p− δ, for eah δ ≤ p (f. [55, Lemma 2.4 and Theorem 2.6℄; see also e.g. [15, 20℄).The regularity property follows from the fat that, sine by de�nition V|L|,δ parametrizes irreduibleurves, the nodes of these urves impose independent onditions on |L| (f. [15, 20℄ and [55, Remark2.7℄). From equisingular deformation theory, this implies that suitable obstrutions to some loallytrivial deformations are zero. In other words, it implies �rst that, for any δ′ > δ, V|L|,δ′ ⊂ V |L|,δ (see[52, Anhang F℄, [59℄ and [50, Thm. 4.7.18℄ for P2 and [55, � 3℄ forK3s). Furthermore, if [C] ∈ V|L|,δ+k,
k > 0, is a general point of an irreduible omponent, the fat that the nodes impose independentonditions allows to learly desribe what V |L|,δ looks like loally around the point [C]: it is theunion of (δ+k

δ

) smooth branhes through [C], eah branh orresponding to a hoie of δ "marked"(or "assigned") nodes among the δ+ k nodes of C, and these branhes interset transversally at [C];moreover, the other k "unassigned" nodes of C disappear when one deforms [C] in the orrespondingbranh of V |L|,δ (see [52, Anhang F℄, [59℄ and [49, � 1℄ for P2 and [55, � 3℄ for K3s).



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 17The situation is slightly di�erent for reduible, nodal urves in |L|. Sine they appear in the proofof Theorem 5.2, we also have to take are of this ase. To this end, we de�ne the �degenerated�version of V|L|,δ by
W|L|,δ :=

{
C ∈ |L| | C, not neessarily irreduible, has only nodes(5.4) as singularities and at least δ nodes}.For the same reasons as above, W|L|,δ is a loally losed subsheme of |L|. Note that(5.5) W|L|,δ = ∪δ′≥δV|L|,δ′ if all the urves in |L| are irreduible,whih is a partial ompati�ation of V|L|,δ.Let [C] ∈ W|L|,δ. Choosing any subset {p1, . . . , pδ} of δ of its nodes, one obtains a pointed urve

(C; p1, . . . , pδ), where p1, . . . , pδ are also alled themarked (or assigned) nodes of C (f. [55, De�nitions3.1-(ii) and 3.6-(i)℄).Reall that there exists an algebrai sheme, whih we denote by(5.6) B(C; p1, p2, . . . , pδ),loally losed in |L|, representing the funtor of in�nitesimal deformations of C in |L| that preservethe marked nodes, i.e. the funtor of loally trivial in�nitesimal deformations of the pointed urve
(C; p1, . . . , pδ) (f. [55, Proposition 3.3℄, where we have identi�ed the shemes therein with theirprojetions into the linear system |L|). In other words, B(C; p1, p2, . . . , pδ) is the loal branh of
W|L|,δ around [C] ∈W|L|,δ, orresponding to the hoie of the δ marked nodes. We have:Theorem 5.7. (f. [55, Theorem 3.8℄) Let (C; p1, . . . , pδ) be as above. Assume that the generalelement of |L| is a smooth, irreduible urve and that the partial normalization of C at the δ markednodes p1, . . . , pδ is a onneted urve.Then B(C; p1, p2, . . . , pδ) is smooth at the point [(C; p1, p2, . . . , pδ)] of dimension dim(|L|) − δ.Proof. This follows from [55, Theorem 3.8℄ sine, by our assumptions, the pointed urve (C; p1, . . . , pδ)is virtually onneted in the language of [55, De�nition 3.6℄. �For the proof of Theorem 5.2 we need to reall other fundamental fats. We �rst de�ne, for anyglobally generated line bundle L of setional genus p := pa(L) ≥ 2, on a K3 surfae S, and anyinteger δ suh that 0 < δ ≤ p− 2, the lous in the Severi variety V|L|,δ,(5.8) V hyper

|L|,δ :=
{
C ∈ V|L|,δ | its normalization is hyperellipti}.Observe that in partiular, for any p ≥ 3, one always has V hyper

|L|,p−2 = V|L|,p−2 6= ∅ and, by regularityof V|L|,p−2, this is smooth and of dimension two.Let Mg be the moduli spae of smooth urves of genus g, whih is quasi-projetive of dimension
3g−3 for g ≥ 2. Denote by Mg its Deligne-Mumford ompati�ation. Then Mg is the moduli spaeof stable, genus g urves. Let Hg ⊂ Mg denote the lous of hyperellipti urves, whih is known tobe an irreduible variety of dimension 2g − 1 (see e.g. [1℄) and Hg ⊂ Mg be its ompati�ation.Moreover, reall from [23, Def.(3.158)℄ that a nodal urve C (not neessarily irreduible) is stablyequivalent to a stable urve C ′ if C ′ is obtained from C by ontrating to a point all smooth rationalomponents of C meeting the other omponents in only one or two points.



18 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAAs above, we de�ne the degenerated version of V hyper
|L|,δ by

W hyper
|L|,δ :=

{
C ∈W|L|,δ | there exists a desingularization C̃ of δ of the(5.9) nodes of C, suh that C̃ is stably equivalent to a(stable) urve C ′ with [C ′] ∈ Hpa(L)−δ

}
.Note that, by de�nition, any suh C̃ is onneted. Similarly as in (5.5), we have:(5.10) W hyper

|L|,δ = ∪δ′≥δV hyper
|L|,δ if all the urves in |L| are irreduible.Theorem 5.2 will be a diret onsequene of the next three results, Propositions 5.11 and 5.19 andLemma 5.20. The entral degeneration argument is given by the following:Proposition 5.11. Let p ≥ 3 and δ ≤ p− 2 be positive integers. Assume there exists a smooth K3surfae S0 with a globally generated, primitive line bundle H0 on S0 with pa(H0) = p and suh that

W hyper
|H0|,δ (S0) 6= ∅ and dim(W hyper

|H0|,δ (S0)) ≤ 2.Then, on the general, primitively marked K3 surfae (S,H) of genus p, W hyper
|H|,δ (S) is nonemptyand equidimensional of dimension two.Proof. Let Bp be the moduli spae of primitively marked K3 surfaes of genus p. It is well-knownthat Bp is smooth and irreduible of dimension 19, f. e.g. [2, Thm.VIII 7.3 and p. 366℄. We let

b0 = [(S0,H0)] ∈ Bp. Similarly as in [5℄, onsider the sheme of pairs(5.12) Wp,δ :=
{
(S,C) | [(S,H)] ∈ Bp and [C] ∈W|H|,δ(S)

}
,and the natural projetion(5.13) π : Wp,δ −→ Bp.(The fat that Wp,δ is a sheme, in fat a loally losed sheme, follows from the already mentionedproof of Mumford's theorem on the existene of nodal rational urves as in [38, pp. 351-352℄ or [2,pp. 365-367℄.)Note that for general [(Sb,Hb)] = b ∈ Bp we have

π−1(b) = ∪δ′≥δV|Hb|,δ′(Sb)by (5.5) (as Pic(Sb) ≃ Z[Hb]), so that π−1(b) is nonempty, equidimensional and of dimension g :=
p− δ, by the regularity property realled above. In partiular, π is dominant. Observe that Wp,δ issingular in odimension one, so in partiular it is not normal.For brevity, let W := Wp,δ and let C

f→ W be the universal urve. As in Theorem A.1, (i) and (ii),in Appendix A, there exists a ommutative diagram
C′

f ′

��

// C

f

��

W(δ)
α

// W,where α is a �nite, unrami�ed morphism de�ning a marking of all the δ-tuples of nodes of the �bresof f (f. Theorem A.1, with V = W, E(δ) = W(δ)). Preisely, by using notation as in Theorem A.1,if for w ∈ W the urve C(w) has δ + τ nodes, τ ∈ Z+, α−1(w) onsists of (δ+τ
δ

) elements, sine any
ηw ∈ α−1(w) parametrizes an unordered, marked δ-tuple of the δ + τ nodes of C(w).Let ηw ∈ W(δ). Then ηw is represented by a pointed urve (C; p1, p2, . . . , pδ), where (S,C) ∈ Wand where p1, p2, . . . , pδ are δ marked nodes on C.



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 19Let W(S,H) (resp. W(δ)(S,H)) be the �bre of π (resp. of α ◦ π) over [(S,H)] ∈ Bp, and let
α(S,H) : W(δ)(S,H) −→ W(S,H)be the indued morphism. For ηw ∈ W(δ)(S,H) as above, we have(5.14) T[ηw](W(δ)(S,H)) ∼= T[(C;p1,p2,...,pδ)](B(C; p1, p2, . . . , pδ)),where B(C; p1, p2, . . . , pδ) is as in (5.6). Indeed, sine α is �nite and unrami�ed, then also α(S,H)is. Therefore, it su�es to onsider the image of the di�erential dα(S,H)[ηw ]. The latter is given by�rst-order deformations of C in S (equivalently in |H|) that are loally trivial at the δ marked nodes;these are preisely given by T[(C;p1,p2,...,pδ)](B(C; p1, p2, . . . , pδ)) (f. [55, Remark 3.5℄).Let W̃(δ) be the smooth lous of W(δ). By Theorem 5.7 and by (5.14), together with the fat that

Bp is smooth, W̃(δ) ontains all the pairs (S,C) with δ marked nodes on C, suh that |C| is globallygenerated (i.e. its general element is a smooth, irreduible urve) and the partial normalization of
C at these marked nodes is a onneted urve. More preisely, by the proof of Mumford's theoremon the existene of nodal rational urves on K3 surfaes, as in [38, pp. 351-352℄ or [2, pp. 365-367℄),any irreduible omponent of W(δ) has dimension ≥ 19 + p − δ = 19 + g; furthermore, by (5.14),
dim(T[ηw ](W(δ)(S,H))) = g, where ηw represents (S,C) with C with the δ marked nodes. It alsofollows that W(δ) is smooth, of dimension 19 + g at these points.If we restrit C′ to W̃(δ), from Theorem A.1, (iv) and (v), we have a ommutative diagram

C̃

ef
��

// C

f

��

W̃(δ)
eα

// W,where α̃ = α|fW(δ)
and where f̃ is the �at family of partial normalizations at δ nodes of the urvesparametrized by α(W̃(δ)) (in the notation of Theorem A.1 in Appendix A, f̃ = f in (v) and C̃ = Cin (iii) and (iv)).There is an obvious rational map

W̃(δ)
c

//___ Mg,de�ned on the open dense subsheme W̃0
(δ) ⊂ W̃(δ) suh that, for ηw ∈ W̃0

(δ), C̃(ηw) is stably equivalentto a stable urve of genus g.Set ψ := c|fW0
(δ)

. By de�nition, for any ηw ∈ W̃0
(δ), the map ψ ontrats all possible smooth rationalomponents of C̃(ηw) meeting the other omponents in only one or two points and maps the resultingstable urve into its equivalene lass in Mg.Pik any C0 ∈ W hyper

|H0|,δ (S0) and let w0 = [(S0, C0)] ∈ W be the orresponding point. Now |H0| isglobally generated and the normalization of C0 at some δ nodes satisfying the onditions in (5.9) isa onneted urve. Therefore, letting ηw0 ∈ α−1(w0) be the point orresponding to marking these δnodes, we have that ηw0 ∈ W̃0
(δ) and the map c is de�ned at ηw0 .Let Ṽ ⊆ W̃0

(δ) be the irreduible omponent ontaining ηw0 ; then, as proved above, dim(Ṽ) = 19+g.By assumption, ψ(Ṽ) ∩ Hg 6= ∅. Hene, for any irreduible omponent K ⊆ ψ(Ṽ) ∩ Hg, we have(5.15) dim(K) ≥ dim(ψ(Ṽ)) + dim(Hg) − dim(Mg) = dim(ψ(Ṽ)) + 2 − g.



20 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAPik any K ontaining ψ(ηw0) and let I ⊆ ψ−1

|eV
(K) be any irreduible omponent ontaining ηw0 .Sine the general �bre of ψ|eV

has dimension dim(Ṽ)− dim(ψ(Ṽ)) = 19 + g − dim(ψ(Ṽ)), from (5.15)we have
dim(I) = dim(K) + 19 + g − dim(ψ(Ṽ))(5.16)

≥ dim(ψ(Ṽ)) + 2 − g + 19 + g − dim(ψ(Ṽ)) = 21.Consider now(5.17) π ◦ (α̃|I) : I −→ Bp.Sine, by assumption, the �bre over b0 = [(S0,H0)] is at most two-dimensional, we onlude from(5.16) that π◦(α̃|I) is dominant, that all the �bres are preisely two-dimensional and that dim(I) = 21.This shows that W hyper
|H|,δ 6= ∅ for general [(S,H)] ∈ Bp and Lemma 5.1 implies that in fat anyirreduible omponent of W hyper

|H|,δ (S) has dimension two. �Remark 5.18. In partiular, Lemma 5.1, Proposition 5.11 and [22, Examples 2.8 and 2.10℄ proveTheorem 5.2 for p = 4 and 5.We next onstrut the desired speial primitively marked K3 surfae:Proposition 5.19. Let d ≥ 2 and k ≥ 1 be integers. There exists a K3 surfae S0 with
Pic(S0) = Z[E] ⊕ Z[F ] ⊕ Z[R]and intersetion matrix 


E2 E.F E.R
F.E F 2 F.R
R.E R.F R2


 =




0 d k
d 0 k
k k −2


 ,and suh that the following onditions are satis�ed:(a) |E| and |F | are ellipti penils;(b) R is a smooth, irreduible rational urve.() H0 := E +F +R is globally generated, in partiular the general member of |H0| is a smooth,irreduible urve of arithmeti genus p := 2k + d;(d) the only e�etive deompositions of H0 are

H0 ∼ E + F +R ∼ (E + F ) +R ∼ (E +R) + F ∼ (F +R) + E.Proof. Sine the lattie has signature (1, 2), then, by a result of Nikulin [43℄ (see also [39, Cor.2.9(i)℄), there is a K3 surfae S0 with that as Piard lattie. Performing Piard-Lefshetz re�etionson the lattie, we an assume that H0 is nef, by [2, VIII, Prop. 3.9℄. Straightforward alulations onthe Piard lattie rules out the existene of e�etive divisors Γ satisfying Γ2 = −2 and Γ.E < 0 or
Γ.F < 0, or Γ2 = 0 and Γ.H0 = 1. Hene (a) and () follow from [48, Prop. 2.6 and (2.7)℄. Similarlyone omputes that if Γ > 0, Γ2 = −2 and Γ.R < 0, then Γ = R, proving (b).Similarly, (d) is proved by diret alulations using the nefness of E, F and H0 and realling thatby Riemann-Roh and Serre duality a divisor D on a K3 surfae is e�etive and irreduible only if
D2 ≥ −2 and D.N > 0 for some nef divisor N . �The following result, together with (5.10) and Proposition 5.11, now onludes the proof of Theo-rem 5.2 and Corollary 5.3. From Remark 5.18, we need only onsider p ≥ 6.Lemma 5.20. Let p ≥ 6 be an integer. There exists a smooth K3 surfae S0 with a globally generated,primitive line bundle H0 on S0 with p = pa(H0) suh that(a) W hyper

|H0|,p−3(S0) 6= ∅;



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 21(b) dim(W hyper
|H0|,p−3(S0)) = 2;() there exists a omponent of W hyper

|H0|,p−3(S0) whose general member deforms to a urve [Ct] ∈
V hyper
|Ht|,p−3(St), for general [(St,Ht)] ∈ Bp;(d) for general [(St,Ht)] ∈ Bp, the two-dimensional irreduible omponent Vt ⊆ V hyper

|Ht|,p−3(St)given by (), satis�es dim(RVt) = 3 (with notation as in � 2.2).Proof. Set k = 1 if p is even and k = 2 if p is odd and let d := p− 2k ≥ 2. Consider the marked K3surfae (S0,H0) in Proposition 5.19.We will onsider two general smooth ellipti urves E0 ∈ |E| and F0 ∈ |F | and urves of the form
C0 := E0 ∪ F0 ∪R,with transversal intersetions and a desingularization(5.21) C̃0 = Ẽ0 ∪ F̃0 ∪ R̃→ C0of the δ := p − 3 = d + 2k − 3 nodes marked in Figure 1 below, that is, all but one of eah of theintersetion points E0 ∩ F0, E0 ∩R and F0 ∩R.

E 0 F 0

R

−−−−−−−−−−−−−−−−>

E 0 F 0

partial
normalization

C0

C0

 
k points k points
k=1,2 k=1,2 

d points

R

Figure 1. The urves C0 and C̃0Then [C0] ∈W hyper
|H0|,p−3, as C̃0 is stably equivalent to a union of two smooth ellipti urves intersetingin two points (f. [23, Exerise (3.162)℄), proving (a). Clearly the losure of the family we have



22 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAonstruted is isomorphi to |E| × |F | ≃ P1 × P1, and is therefore two-dimensional. Denote by
W0 ⊂W hyper

|H0|,p−3 this two-dimensional subsheme.We will now show that any irreduible omponent W of W hyper
|H0|,p−3 has dimension ≤ 2.A entral observation, whih will be used together with Theorem 4.6(b), will be that, with theabove hoies of k, we have(5.22) E.H0 = F.H0 = d+ k = p− k is odd.We start by onsidering families of reduible urves. These are all lassi�ed in Proposition 5.19(d).If the general element in W is of the form D ∪R, for D ∈ |E +F |, then in order to have a partialdesingularization D̃ ∪ R̃ to be (degenerated) hyperellipti, we must have deg(D̃ ∩ R̃) = 2, so that wemust desingularize 2(k − 1) of the intersetion points of D ∩R. Finally, as pa(D̃ ∪ R̃) = 3, we musthave pa(D̃) = 2. Therefore W ⊆ WD × {R} ≃ WD, where WD ⊂ |D| is a subfamily of irreduibleurves of geometri genus ≤ 2. It follows that dim(W ) ≤ dim(WD) ≤ 2, by Lemma 2.3.If the general element in W is of the form D ∪ E, for D ∈ |F + R|, then in order to have apartial desingularization D̃ ∪ R̃ that is (degenerated) hyperellipti, we must have deg(D̃ ∩ Ẽ) = 2.If the projetion W → |E| is dominant, this means that g
1
2(D̃) ⊆ |f∗E|| eD, where f : S̃ → Sdenotes the omposition of blow-ups of S that indues the partial desingularization D̃∪ R̃→ D∪R.But this would mean that |f∗E|| eD

, whih is base point free on D̃, is omposed with the g
1
2(D̃), aontradition, as deg(O eD(f∗E)) = E.D = E.H0 is odd by (5.22). Therefore, the projetion W → |E|is not dominant, whene dim(W ) ≤ dim(|D|) = 1

2D
2 +1 = k ≤ 2, as desired. By symmetry, the asewhere the general element in W is of the form D ∪ F , for D ∈ |E +R| is treated in the same way.Finally, we have to onsider the ase of a family W ⊆ |H0| of irreduible urves.In this ase assume dim(W ) ≥ 3, and let C be a general urve parametrized by W . Then byTheorem 4.6 (b), there exists an e�etive deomposition into moving lasses H0 ∼M +N suh that

g
1
2(C̃) ⊆ |f∗M || eC

, |f∗N || eC
,where f : S̃ → S denotes the suession of blow ups of S that indues the normalization C̃ → C.From Proposition 5.19(d) we see that we must have

g
1
2(C̃) ⊆ |f∗E|| eC

, or |f∗F || eC
,whih means that either |f∗E|| eC

or |f∗F || eC
is omposed with the g

1
2(C̃), again a ontradition, asboth have odd degree by (5.22). We have therefore proved (b).To prove () we will show that any [C0] ∈W hyper

|H0|,p−3 in the two-dimensional, irreduible omponent
W0 onsidered above in fat deforms to a urve [Ct] ∈W hyper

|Ht|,p−3(St), for general [(St,Ht)] ∈ Bp, thathas preisely δ = p− 3 nodes (f. (5.10)).To this end, denote by S → Bp the universal family of K3 surfaes, f̃ : C̃ → W̃(δ) and I ⊂ W̃(δ) asin the proof of Proposition 5.11, and let ϕ : C̃I → I be the restrition of f̃ .Sine the �ber over [(S0,H0)] of I → Bp as in (5.17) ontains an open, dense subset of P1 × P1,we an �nd a smooth, irreduible urve B ⊂ I satisfying: for x ∈ B general, ϕ−1(x) is a (partial)desingularization of δ = p−3 of the nodes of a urve in W|Ht|,δ(St) (f. (5.4)), for general [(St,Ht)] ∈
Bp, and ϕ−1(x) ∈ H3 ⊂ M3; moreover B ontains a point x0 ∈ I suh that ϕ−1(x0) is C̃0 as in(5.21), for C0 general in W0.Let ϕB : C̃B → B be the indued universal urve. Sine the dualizing sheaf of ϕ−1

B (x0) = C̃0 isglobally generated (as eah omponent intersets the others in two points), we in fat have, possiblyafter substituting B with an open neighbourhood of x0, a morphism γB : C̃B → P(ϕ̃∗(ωeC/B
)) over
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B that is 2 : 1 on the general �bre ϕ−1

B (x) and ontrats the rational omponent R̃ of ϕ−1
B (x0) andmaps the two ellipti urves Ẽ0 and F̃0 eah 2 : 1 onto (di�erent) P1s (f. (5.21) and Figure 1).Let ν : C̃′

B → C̃B be the normalization and
C̃′
B

γ1
// C̃′′
B

γ2
// P(ϕ̃∗(ωeCB/B

))the Stein fatorization of γB ◦ ν. In partiular, γ2 is �nite of degree two onto its image. Moreover,
ν◦ϕB : C̃′

B → B is a �at family whose general �ber (ν◦ϕB)−1(x) is a desingularization of ϕ−1
B (x) ∈ C̃B.Let pg be the geometri genus of this general �bre.Let D ⊂ C̃′

B be the strit transform via γ1 of the losure of the branh divisor of γ2 on thesmooth lous of C̃′′
B . By Riemann-Hurwitz, for general x ∈ B, we have D.ϕ−1

B (x) = 2pg + 2,whereas D.ϕ−1
B (x0) ≥ 8, as the urve γ1(ϕ

−1
B (x0)) ontains two smooth ellipti urves, eah beingmapped 2 : 1 by γ2 onto (di�erent) P1s. This implies pg = 3. Sine, for general x ∈ B, we have

pg ≤ pa(ϕ
−1
B (x)) = p − δ = 3, we �nd that ϕ−1

B (x) is smooth. This means that the general urve in
W|Ht|,δ(St), for (St,Ht) ∈ Bp general, has preisely δ = p− 3 nodes, proving ().To prove (d), again we onsider the morphism (up to possibly restriting I as above)

γI : CI → P(ϕ∗(ωCI/I))over I whih, apart some possible ontrations of rational omponents in speial �bres over I, isrelatively 2 : 1 onto its image. We have a natural morphism h : CI → S, induing a natural map
Φ : im(γI) −− → Sym2(S),whose domain has nonempty intersetion with every �bre over Bp.Let R := im(Φ). Then R ∩ Sym2(St) = RVt , for general [(St,Ht)] ∈ Bp. One easily sees that

{Sym2(E′)}E′∈|E| ∪ {Sym2(F ′)}F ′∈|F | ⊆ R ∩ Sym2(S0).Sine the two varieties on the left are threefolds, we have dim(Φ−1(ξ0)) = 0 for general ξ0 ∈ R ∩
Sym2(S0) ⊂ R. Therefore, for general ξ ∈ R, we have dim(Φ−1(ξ)) = 0, so that dim(R) = dim(CI) =
dim(I) + 1 = 22, whene dim(RVt) = 22 − dim(Bp) = 3. �Remark 5.23. For general [(St,Ht)] ∈ Bp the obtained urves in the last proof have in fat δ = p−3non-neutral nodes (f. [22, �3℄). In fat a desingularization of less than p− 3 nodes of Ct admits no
g
1
2s, as learly a desingularization of less than p − 3 nodes of C0 is not stably equivalent to a urvein the hyperellipti lous H3 ⊂ M3.6. On the Mori one of the Hilbert square of a K3 surfaeIn this setion we �rst summarize entral results on the Hilbert square of a K3 surfae and showhow to ompute the lass of a rational urve in S[2]. Then we disuss the relations between theexistene of urves on S and the slope of the Mori one of S[2], that is, the one of e�etive lassesin N1(S

[2])R. In partiular, we show how to dedue the bound (6.28) from Theorem 5.2 and (6.22)from known results about Seshadri onstants. Finally, we disuss the relation between the existeneof a urve on S with given singular Brill-Noether number and the slope of the Mori one of S[2].6.1. Preliminaries on S[2] for a K3 surfae. Reall that for any smooth surfae S we have(6.1) H2(S[2],Z) ≃ H2(S,Z) ⊕ Ze,where ∆ := 2e is the lass of the divisor parametrizing 0-dimensional subshemes supported on asingle point (see [7℄). So we may identify a lass in H2(S,Z) with its image in H2(S[2],Z). When
S is a K3 surfae the ohomology group H2(S[2],Z) is endowed with a quadrati form q, alled



24 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAthe Beauville-Bogomolov form, suh that its restrition to H2(S,Z) is simply the up produt on
S, the two fators H2(S,Z) and Ze are orthogonal with respet to this form and q(e) = −2. Thedeomposition (6.1) indues an isomorphism(6.2) Pic(S[2]) ≃ Pic(S) ⊕ Z[e],and eah divisor D on S orresponds to the divisor on S[2], by abuse of notation also denoted by D,onsisting of length-two subshemes with some support on D.Given a primitive lass α ∈ H2(S

[2],Z), there exists a unique lass wα ∈ H2(S[2],Q) suh that
α.v = q(wα, v), for all v ∈ H2(S[2],Z), and one sets(6.3) q(α) := q(wα).We denote also by ρα ∈ H2(S[2],Z) the orresponding primitive (1, 1)-lass suh that ρα = cwα, forsome c > 0 (for further details, we refer the reader to [25℄).If now Pic(S) = Z[H], then the Néron-Severi group of S[2] has rank two. We may take as generatorsof N1(S

[2])R the lass P1
∆ of a rational urve in the ruling of the exeptional divisor ∆ ⊂ S[2], andthe lass of the urve in S[2] de�ned as follows

{ξ ∈ S[2]|Supp(ξ) = {p0, y} | y ∈ Y },where Y is a urve in |H| and p0 is a �xed point on S. By abuse of notation, we still denote the lassof the urve in S[2] by Y . Note that we always have that(6.4) P1
∆ lies on the boundary of the Mori one.Indeed, the urve P1

∆ is ontrated by the Hilbert-Chow morphism S[2] → Sym2(S), so that thepull-bak of an ample divisor on Sym2(S) is nef, but zero along P1
∆.Therefore, desribing the Mori one NE(S[2]) amounts, by (6.4), to omputing(6.5) slope(NE(S[2])) := inf

{a
b
| aY − bP1

∆ ∈ N1(S
[2]) is e�etive, a, b ∈ Q+

}
.We will also all the (possibly in�nite) number a/b assoiated to an irreduible urve X ∼alg aY −bP1

∆with a > 0 and b ≥ 0, the slope of the urve X and denote it by slope(X). Thus, the smaller slope(X)is, the nearer is X to the boundary of NE(S[2]).By a general result due to Huybrehts [32, Prop. 3.2℄ and Bouksom [11℄, a divisor D on S[2] isample if and only if q(D) > 0 and D.R > 0 for any (possibly singular) rational urve R ⊂ S[2]. Asa onsequene, if the Mori one is losed then the boundary (whih remains to be determined) isgenerated by the lass of a rational urve (the other boundary is generated by P1
∆, by (6.4)). Thismeans that one would have slope(NE(S[2])) = sloperat(NE(S[2])), where(6.6)

sloperat(NE(S[2])) := inf
{a
b
| aY − bP1

∆ ∈ N1(S
[2]) is the lass of a rational urve, a, b ∈ Q+

}
.(A priori, one only has slope(NE(S[2])) ≤ sloperat(NE(S[2])).)Hassett and Tshinkel [25℄ make a preise predition on the geometri and numerial properties ofsuh extremal rational urves in S[2]. Indeed, aording to their onjetures [25, p. 1206 and Conj.3.6℄, the extremal ray R has to be generated either by the lass of a line inside a P2, suh that

q(R) = −5
2 as in (6.3), or by the lass of a rational urve that is a �bre of a P1-bundle over a K3surfae and suh that q(R) = −2 or −1

2 .



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 256.2. The lasses of rational urves in S[2]. Assume that Pic(S) = Z[H] with pa(H) = pa ≥ 2.Let X ⊂ S[2] be an irreduible rational urve. Let CX ⊂ S be the orresponding urve as in � 2.1and assume that CX ∈ |mH| with m ≥ 1. (In partiular, m ≥ 2 if we are in ase (II)). We an write
X ∼alg a1Y + a2P

1
∆.Sine X.H = m(2pa − 2), Y.H = 2pa − 2 and P1

∆.H = 0 by the very de�nition of H as a divisor in
S[2], and Y.e = 0 and P1

∆.e = −2, we obtain, de�ning g0(X) := X.e − 1,(6.7) X ∼alg mY −
(g0(X) + 1

2

)
P1

∆.To ompute g0(X), onsider the diagram (2.1). Sine ν∗XOX(∆) ≃ (ν∗XOX(e))⊗2, the double over
f is de�ned by ν∗XOX(∆). By Riemann-Hurwitz we therefore get(6.8) g0(X) = pa(C̃X).Note that in the ases (II) and (III) in the orrespondene in � 2.1, X.e = g0(X) + 1 is preiselythe length of the intersetion sheme C̃X,1 ∩ C̃X,2, where C̃X = C̃X,1 ∪ C̃X,2. In ase (III), sine
ν̃ : C̃X → S ontrats one of the two omponents of C̃X to a point xX ∈ S, we obtain that(6.9) g0(X) = multxX

(CX) − 1 (if CX is of type (III)).One an hek that for all divisors D in S[2] one has X.D = q(wX ,D) with(6.10) wX := mH −
(g0(X) + 1

2

)
e ∈ H2(S[2],Q).In partiular, 2wX ∈ H2(S[2],Z).From (6.5) and (6.7) we see that searhing for irreduible rational urves in (or at least �near�) theboundary of the Mori one of S[2], or with negative square q(X), amounts to searhing for irreduibleurves in |mH| with (partial) hyperellipti normalizations of high genus (ase (I)), or to irreduiblerational urves in |mH| with high multipliity at a point (ase (III)), or to irreduible rational urveson S with some orrespondene between some overings of their normalizations (ase (II)). Moreover,we should searh for urves with as low m as possible. Now m ≥ 2 in ase (II), as remarked above.Moreover, any rational urve in |H| on a general S is nodal, by a result of Chen [13, Thm. 1.1℄ (thesame is also onjetured for rational urves in |mH| for m > 1, see [14, Conj. 1.2℄), so that g0(X) ≤ 1if CX is of type (III) in these ases, by (6.9). Hene, we see that the most natural andidates areirreduible urves in |H| with hyperellipti normalizations.By the above, an irreduible urve C ∈ |mH| with hyperellipti normalization de�nes, by theuniity of the g

1
2, a unique irreduible rational urve X = RC ⊂ S[2] with lass(6.11) RC ∼alg mY −

(g0(C) + 1

2

)
P1

∆,where g0(C) := g0(RC) is well-de�ned as(6.12) g0(C) := the arithmeti genus of a minimal partial desingularization of C admitting a g
1
2.(For example, if C is nodal, then we simply take the desingularization of the non-neutral nodes of C,f. [22, �3℄). From (6.5) we then get(6.13) slope(NE(S[2])) ≤ 2m

g0(C) + 1
≤ 2m

pg(C) + 1
, if there exists a C ∈ |mH| with hyp. norm.and, by (6.3) and (6.10),(6.14) q(RC) = 2m2(pa − 1) − (g0(C) + 1)2

2
≤ 2m2(pa − 1) − (pg(C) + 1)2

2
.



26 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAIn partiular, the higher g0(C) (or pg(C)) is - thus the more �unexpeted� the urve on S is from aBrill-Noether theory point of view - the lower is the bound on the slope of NE(S[2]) and the morenegative is the square q(RC) in S[2].6.3. The invariant ρsing, Seshadri onstants, the �hyperellipti existene problem� andthe slope of the Mori one. In [22℄ we introdued a singular Brill-Noether invariant(6.15) ρsing(pa, r, d, g) := ρ(g, r, d) + pa − g,in order to study linear series on the normalization of singular urves. Preisely, we provedTheorem 6.16. Let S be a K3 surfae suh that Pic(S) ≃ Z[H] with pa := pa(H) ≥ 2. Let C ∈ |H|and C̃ → C be a partial normalization of C, suh that g := pa(C̃).If ρsing(pa, r, d, g) < 0, then C̃ arries no g
r
d.Proof. One easily sees that the proof of [22, Thm. 1℄ also holds for a partial normalization of C. �For r = 1 and d = 2, we have(6.17) ρsing(pa, 1, 2, g) < 0 ⇔ g >

pa + 2

2
.In partiular, a onsequene of Theorem 6.16 is the following:Theorem 6.18. Let S be a smooth, projetive K3 surfae with Pic(S) ≃ Z[H] and pa := pa(H) ≥ 2.Let Y and P1

∆ be the generators of N1(S
[2])R with notation as in � 6.1.If X ∈ N1(S

[2])Z with X ∼alg Y − kP1
∆, then k ≤ pa+4

4 .Proof. We an assume thatX is an irreduible urve. Then, preisely as in the ase of a rational urve,
X orresponds either to the data of an irreduible urve C ∈ |H| on S, with a partial normalization
C̃ admitting a 2 : 1 morphism onto the normalization X̃ of X, or to the data of an irreduible urve
C ∈ |H| on S together with a point x0 := xX ∈ S. (The ase orresponding to ase (II) in � 2.1 doesnot our, sine the oe�ient of Y is one, preisely as in the ase of a rational X explained above.)In the latter ase µ(X) = {x0 + C} ⊂ Sym2(S), where µ : S[2] → Sym2(S) is the Hilbert-Chowmorphism as usual, and one easily omputes k = (1/2)multx0(C) as in the rational ase above. Sinelearly multx0(C) ≤ 2 if pa = 2 and multx0(C) ≤ 3 if pa = 3, we have k ≤ pa+4

4 in these two ases.If pa ≥ 4, then from dim |H| − 3 − (pa − 4) = 1 and the fat that being singular at a given pointimposes at most three independent onditions on |H|, we an �nd an irreduible urve C ′ ∈ |H|,di�erent from C, singular at x0, and passing through at least pa − 4 points of C. Therefore
2pa − 2 = H2 = C ′.C ≥ multx0(C

′) · multx0(C) + pa − 4 ≥ 2multx0(C) + pa − 4,whene multx0(C) ≤ (pa + 2)/2, so that k ≤ (pa + 2)/4.In the �rst ase, then, preisely as in the rational ase above,(6.19) k =
pa(C̃) + 1

2
− pg(X)from Riemann-Hurwitz. By Brill-Noether theory on X̃ , it follows that C̃ arries a g

1
d, with

d ≤ 2⌊pg(X) + 3

2
⌋.By Theorem 6.16 we have ρsing(pa(C), 1, d, pa(C̃)) ≥ 0, whene pa(C̃) ≤ d−1+pa(C)/2. The desiredresult now follows. �



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 27By the proof of Theorem 6.18 we see that if C ∈ |mH| is an irreduible urve and x0 ∈ C, thenthe lass of the orresponding urve µ−1
∗ {x0 +C} ⊂ S[2] is given by mY − (1/2)multx0(C)P1

∆. Hene
slope(NE(S[2])) ≤ inf

m∈N

(
inf

C∈|mH|

(
inf
x∈C

2m

multx(C)

))
= inf

m∈N

2

H2

(
inf

C∈|mH|

(
inf
x∈C

C.H

multx(C)

))
.It follows that(6.20) slope(NE(S[2])) ≤ ε(H)

pa − 1
,where

ε(H) := inf
x∈S

(
inf
C∋x

C.H

multx(C)

)(and the in�mum is taken over all irreduible urves C ⊂ S passing through x) is the (global) Seshadrionstant of H (f. [17, � 6℄, [18℄ or [4℄). These onstants are very di�ult to ompute. The only asewhere they have been omputed on general K3 surfaes is the ase of quarti surfaes, where onehas ε(H) = 2 by [3℄, yielding the bound slope(NE(S[2])) ≤ 1. As a omparison, the bound one getsfrom (6.13) using the singular urves of genus two in |H| is slope(NE(S[2])) ≤ 2/3. However, it iswell-known that ε(H) ≤
√
H2 on any surfae, see e.g. [54, Rem. 1℄. Hene, by (6.20) we obtainTheorem 6.21. Let (S,H) be a primitively polarized K3 surfae of genus pa := pa(H) ≥ 2 suhthat Pic(S) ≃ Z[H]. Then (f. (6.5))(6.22) slope(NE(S[2])) ≤ ε(H)

pa − 1
≤

√
2

pa − 1
.In partiular, (6.22) shows that there is no lower bound on the slope of the Mori one of S[2] of

K3 surfaes, as the degree of the polarization tends to in�nity, that is,(6.23) inf
{

slope(NE(S[2])) | S is a projetive K3 surfae} = 0,The same fat about sloperat(NE(S[2])) will follow from (7.4) and (7.9) below.Note that one always has ε(H) > ⌊
√
H2⌋ − 1 under the hypotheses of Theorem 6.21. Indeed, if

ε(H) <
√
H2, then there is an x ∈ S and an irreduible urve C suh that ε(H) = C.H

multx(C) , see e.g.[44, Cor. 2℄. Sine one easily omputes dim |H ⊗ I
(⌊
√
H2⌋−1)

x | ≥ 2, we an �nd a D ∈ |L| suh that
D 6⊇ C, multx(D) ≥ ⌊

√
H2⌋ − 1 and D passes through at least one additional point of C. Thus

ε(H) =
C.H

multx(C)
=

C.D

multx(C)
≥ multx(C) · multx(D) + 1

multx(C)
> multx(D) ≥ ⌊

√
H2⌋ − 1,as desired. It follows that(6.24) ε(H)

pa − 1
>

⌊√2pa − 2⌋ − 1

pa − 1
, for (S,H) as in Theorem 6.21,showing that there is a natural limit to how good a bound one an get on slope(NE(S[2])) by usingSeshadri onstants.The bound in (6.22) is not (neessarily) obtained by rational urves in S[2]. However, the preseneof pg(X) in (6.19) above tends to indiate that the better bounds will be obtained by rational urvesin S[2]. (Of ourse, if the Mori one is losed, then the bound will indeed be obtained by rationalurves, as explained at the end of � 6.1.) In fat, the bound (6.22) above will be improved, forin�nitely many values of H2, in Propositions 7.2 and 7.7 below by rational urves.We now return to the study of irreduible rational urves in S[2] and to sloperat(NE(S[2])).Given Theorem 6.16 and (6.17), a natural question to ask is the following:



28 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAHyperellipti existene problem (HEP). For 3 ≤ pg ≤ pa+2
2 , does there exist a singular urvein |H| with hyperellipti normalization of geometri genus pg?By (6.13) we have thata positive solution to (HEP) for �maximal� pg = ⌊pa + 2

2
⌋ =⇒(6.25)

sloperat(NE(S[2])) ≤
{

4
pa+4 if pa is even;

4
pa+3 if pa is oddand, by (6.14), the q-square of the assoiated rational urves would be muh less than what preditedby Hassett and Tshinkel [25, Conj. 3.1℄. Moreover, the bounds in (6.25) would be muh strongerthan the bound given by the right hand inequality in (6.22), and even stronger than the best boundsone ould obtain from Seshadri onstants (ompare the left hand side inequality in (6.22) with (6.24)).It is natural to try to solve (HEP) using nodal urves, as one has better ontrol of their deformationsand their parameter spaes (the Severi varieties onsidered in � 5). After the positive answer to thehyperellipti existene problem for the spei� values pg = 3 and pa = 4, 5 in [22, Examples 2.8 and2.10℄, Theorem 5.2 gives the �rst examples, at least as far as we know, of positive answers to thehyperellipti existene problem for primitively polarized K3 surfaes of any degree.In Remark 5.23 we showed that pg(C) = g0(C) = 3 for these onstruted urves C ∈ |H| (f.(6.12)), so that the lasses of the assoiated rational urves RC ⊂ S[2] are, using (6.10),(6.26) wRC

= H − 2e,with
q(wRC

) = q(RC) = 2p− 10 ≥ −2.Moreover, using (6.13), Theorem 5.2 yields (f. (6.6)):Corollary 6.27. Let (S,H) be a general, primitively polarized K3 surfae of genus pa(H) ≥ 4. Then(6.28) sloperat(NE(S[2])) ≤ 1

2
.Note that the existene of nodal urves of geometri genus 2 in |H|, whih was already known andfollowed from the nonemptiness of the Severi varieties on general K3 surfaes, as explained in thebeginning of � 5, leads to the less good bound of 2

3 . Therefore, again as far as we know, (6.28) is the�rst �nontrivial� bound on the slope of rational urves holding for all degrees of the polarization. Asalready mentioned, for in�nitely many degrees of the polarization we will in fat improve this boundin Propositions 7.2 and 7.7 below.Remark 6.29. One may also look for irreduible singular urves with hyperellipti normalizationsin |mH|, m ≥ 2. In [22, Corollary 4℄, we also proved that, apart from some speial numer-ial ases (where we were not able to onlude), the negativity of ρsing(pa(mH), 1, 2, g) impliesthe non-existene of irreduible nodal urves in |mH| with hyperellipti normalizations. A posi-tive solution to the hyperellipti existene problem for singular urves in |mH| would then pro-vide an even better bound on the slope of the Mori one. Namely, one would for instane get
slope(NE(S[2])) ≤ 4/[m(pa(H) + 4)] for even pa. Whereas we tend to believe that the nonnegativityof ρsing should imply existene of urves with hyperellipti normalizations for the spei� values of
pa and g in a primitive linear system |H| on a general K3, we are not sure what to expet for urvesin |mH| when m > 1. For instane, the degeneration methods to prove existene as in the proof ofTheorem 5.2 will ertainly get more di�ult, beause the irreduibility of the obtained urves afterdeformation is not automatially ensured.



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 29Remark 6.30. We do not know whether there will always be omponents in |H|hyper (whenevernonempty) of singular urves with hyperellipti normalizations suh that the singularities of thegeneral member are as nie as possible, that is, all nodes and all non-neutral [22, �3℄.7. P2s and threefolds birational to P1-bundles in the Hilbert square of a general
K3 surfaeWe now give an in�nite series of examples of general, primitively polarized K3 surfaes (S,H), ofin�nitely many degrees suh that S[2] ontains either a P2 or a threefold birational to a P1-bundle,thus showing both possibilities ourring in Proposition 3.6.Both series of examples are similar to Voisin's onstrutions in [57, � 3℄. The idea is to start witha smooth quarti surfae S0 suh that S[2]

0 ontains an �obvious� P2 or threefold birational to a P1-bundle over S0, use the involution on the quarti to produe another suh P2 or uniruled threefold,and then deform S0 keeping the latter one and loosing the �rst one in the Hilbert square.We remark that the question of existene of P2s in S[2] when S is K3 is a very interesting problembeause of the following fat: a P2 in S[2] gives rise to a birational map from S[2] onto anotherhyperkähler fourfold, and onversely any birational transformation X −− → X ′ between projetive,sympleti fourfolds an be fatorized into a �nite sequene of Mukai �ops (f. [41, Thm. 0.7℄), by[60, Thm. 2℄, see also [12, 30, 62℄. Therefore, in the ase of a K3 surfae, if S[2] ontains no P2s,then S[2] admits no other birational model than itself.Also uniruled divisors have an in�uene on the birational geometry of a hyperkähler manifold X.Indeed, Huybrehts proved in [32, Prop. 4.2℄ that a lass α in the losure of the positive one CX liesin the losure of the birational Kähler one BKX if and only if q(α,D) ≥ 0, for all uniruled divisors
D ⊂ X. (Reall that the positive one CX is the onneted omponent of {α ∈ H1,1(X,R) : q(α) ≥ 0}ontaining the one KX of all Kähler lasses of X, and the birational Kähler one BKX equals byde�nition ∪f :X−−→X′f∗KX′ , where f is a bimeromorphi map onto another hyperkähler manifold
X ′).7.1. P2s in S[2]. The �rst nontrivial ase, the ase of degree 10, is partiularly easy, so we beginwith that one.Example 7.1. (Hassett) Let S ⊂ P6 be a general K3 surfae of degree 10. By [40℄ the surfae S isa omplete intersetion S = G ∩ T ∩ Q, where G := Grass(2, 5) is the Grassmannian of lines in P4embedded in P9 by its Plüker embedding, T is a general 6-dimensional linear subspae of P9, and Qis a hyperquadri in P9. Set Y := G∩T . Then Y is a Fano 3-fold of index 2. Let F (Y ) be its varietyof lines. It is lassially known (see e.g. [19℄ for a modern proof) that F (Y ) ∼= P2. Then we mayembed this plane in S[2] by mapping the point orresponding to a line [ℓ] to ℓ ∩Q. By generality, Sdoes not ontain any line, so that this map is a morphism.The onstrution behind the following result, generalizing the previous example, was shown to usby B. Hassett.Proposition 7.2. Let (S,H) be a general primitively polarized K3 surfae of degree H2 = 2(n2 −
9n+ 19), for n ≥ 6. Then S[2] ontains a P2.The lass wℓ ∈ H2(S[2],Q) orresponding to a line ℓ ⊂ P2 is(7.3) wℓ = H − 2n − 9

2
e,In partiular(7.4) sloperat(NE(S[2])) ≤ 2

2n− 9
.



30 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAMoreover the urves C ⊂ S with hyperellipti normalizations assoiated to the lines ℓ ⊂ P2 ⊂ S[2]lie in |H|, have geometri genus pg = 2n− 10, and ρsing(pa(C), 1, 2, pg) = n(n− 13) + 42 ≥ 0.Proof. Consider the lattie ZF ⊕ ZG with intersetion matrix
[

F 2 F.G
G.F G2

]
=

[
2 n
n 4

]
, n ≥ 6.Sine it has signature (1, 1), then, by a result of Nikulin [43℄ (see also [39, Cor. 2.9(i)℄), there is analgebrai K3 surfae S0 with the given Piard lattie. Performing Piard-Lefshetz re�etions on thelattie, we an assume that G is nef, by [2, VIII, Prop. 3.9℄. By Riemann-Roh and Serre duality, wehave G > 0 and F > 0. Straightforward omputations on the Piard lattie rules out the existeneof divisors Γ satisfying Γ2 = −2 and Γ.F ≤ 0 or Γ.G ≤ 1; or Γ2 = 0 and Γ.F = 1 or Γ.G = 1, 2.By [48℄ it follows that both |F | and |G| are base point free, ϕ|F | : S0 → P2 is a double over and

ϕ|G| : S0 → P3 is an embedding onto a smooth quarti not ontaining lines. As explained in � 4, S[2]
0ontains a P2 arising from the double over.If ℓ0 is a line on the P2, the orresponding lass in H2(S

[2]
0 ,Q) is wℓ0 = 2F − 3e, whih oinideswith the orresponding integral lass ρℓ0 (f. [25, Example 5.1℄).As S0 is a quarti surfae not ontaing lines, S[2]

0 admits an involution
ι : S

[2]
0 → S

[2]
0 ; ξ 7→ (ℓξ ∩ S0) \ ξ,by [6, Prop. 11℄, where ℓξ is the line determined by ξ, and the sign \ means that we take the residualsubsheme. The orresponding involution on ohomology is given by (f. e.g. [45, (4.1.6)-(4.1.7)℄)

v 7→ q(G− e, v) · (G− e) − v.The involution sends the P2 into another P2, and the orresponding lass assoiated to a line on it is(7.5) q(G− e, 2F − 3e) · (G− e) − (2F − 3e) = 2((n − 3)G− F ) − (2n− 9)e.In order to obtain a generalK3 with the desired property we now deform S
[2]
0 . Preisely, we onsider ageneral deformation of S[2]

0 suh that (i) e remains algebrai and (ii) ι(P2) is preserved. Deformationssatisfying (i) form a ountable union of hyperplanes in the deformation spae of S[2]
0 , whih is smoothand of dimension 21, and may be haraterized as those of the form S[2], where S is a K3 surfae (see[7, Thm. 6 and Rem. 2℄). Deformations preserving ι(P2) an be haraterized as those preservingthe image in H2(S[2],Z) of the lass of the line in ι(P2) as an algebrai lass (see [25, Thm. 4.1 andCor. 4.2℄ or [57℄), that is, using (7.5), those deformations keeping H := (n− 3)G−F ∈ Pic(S

[2]
0 ), or,equivalently, H ∈ Pic(S), by (6.2). As H2 = [(n− 3)G−F ]2 = 2(n2 − 9n+ 19) ≥ 2 for n ≥ 6 and His primitive, those deformations form a divisor in the 20-dimensional spae of deformations keeping

e algebrai, by [34, Thm. 14℄.We therefore obtain a 19-dimensional spae of deformations of S[2]
0 , whose general member is S[2],where (S,H) is a general primitively polarized (algebrai) K3 surfae of degree H2 = 2(n2−9n+19),

n ≥ 6, and S[2] ontains a plane.The lass wℓ ∈ H2(S[2],Q) orresponding to the line ℓ is as in (7.3), yielding (7.4).As S is general, it does not ontain smooth rational urves, so that the P2 is not of the form
C [2], for a smooth rational urve C on S. By Lemma 2.4, the lines in the P2 in S[2] give rise toa two-dimensional family V of urves on S with hyperellipti normalizations, so that RV = µ(P2),where µ : S[2] → Sym2(S) is the Hilbert-Chow morphism. By (7.3) we have ℓ.H = H2, so that, bythe very de�nition of the divisor H in H2(S[2],Z), the lines in the P2 orrespond to urves C ∈ |H|.Comparing (6.10) and (7.3), we see that g0(C) = 2n − 10, f. (6.12). Now we note that the generalline in the P2 is not tangent to ∆ = 2e. (Indeed, this follows by deformation sine in S[2]

0 we have



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 31that ι(P2) ∩ ∆ is a smooth plane sexti, sine we have a omposite map S0 → P2 → ι(P2) that is�nite of degree two, whene rami�ed along a smooth sexti, as S0 is a smooth K3.) Therefore wehave pg(C) = 2n− 10. We ompute ρsing = n(n− 13) + 42 ≥ 0 (reall that n ≥ 6). �The examples ontained in the above proposition is interesting in several regards.Notie �rst that q(ℓ) = −5/2, f. (6.3), in aordane with the predition in [25, Conj. 3.6℄.The proposition shows in partiular that the orrespondene in Remark 3.7 is not one-to-one andalso shows that the ase dim(V ) = dim(RV ) = 2 of Proposition 3.6 atually ours.The result also gives nontrivial examples of urves in |H| with hyperellipti normalizations andpositively answers the hyperellipti existene problem for pa = n2−9n+20 and pg = 2n−10, n ≥ 6.Moreover (7.4) shows that there is no lower bound on sloperat(NE(S[2])) as the degree of thepolarization tends to in�nity. The same follows from (7.9) in Proposition 7.7 below. Both thebounds (7.4) and (7.9) below in fat yield better bounds on slope(NE(S[2])) than (6.22).Finally, the onis on the P2 give a �ve-dimensional family V (2) of irreduible urves with hyperel-lipti normalizations on S. Of ourse this family has obvious non-integral members, orresponding tonon-integral onis. More generally, for any m ≥ 3, the (3m−1)-dimensional family of nodal rationalurves in |OP2(m)| (f. [15, Thm. 1.1℄) yields orresponding families V (m) of urves in |mH| withhyperellipti normalizations with dimV (m) = 3m − 1 ≥ 5 and dim(RV ) = 2, showing in partiularthat the ase dim(V ) > dim(RV ) = 2 of Proposition 3.6 atually ours.In the ase of the onis, we ompute pg = 4n− 19 as above and as pa(2H) = 4n2 − 36n+ 77, weget ρsing = 4n(n− 11) + 117 ≥ −3 in these ases. This does not ontradit [22, Thm. 1℄.7.2. Threefolds birational to P1-bundles in S[2]. We start with an expliit example in the speialase of a quarti surfae.Example 7.6. In the ase of a general quarti S in P3 we an �nd a P1-bundle over S in S[2], arisingfrom the two-dimensional family of hyperplane setions of geometri genus two. In fat, taking thetangent plane through the general point of S we get a nodal urve of geometri genus 2. We obtain inthis way a family V of nodal urves with hyperellipti normalizations in the hyperplane linear system.This family is parametrized by an open subset of S, and the lous in S[2] overed by the assoiatedrational urves is birational to a P1-bundle over this open subset. To see this, set Cp := (S ∩ TpS),and let C̃p be the normalization of Cp. Note that the g
1
2 on C̃p, viewed on Cp, is given by the penilof lines in TpS through the node p. If, for two distint points p, q ∈ S, the g

1
2s on C̃p and C̃q had twoommon points, say x and y (so that the map ΦV in (2.5) sends (p, x+ y) and (q, x+ y) to the samepoint x+ y in Sym2(S)), then the line TpS ∩ TqS, whih is bitangent to S, would also pass through

x and y. This is absurd, as deg(S) = 4.By (6.10), the lass w ∈ H2(S[2],Q) orresponding to the urves of geometri genus 2 is w = H− 3
2e,whene q(w) = −1/2, as predited by [25, Conj. 3.6℄. Moreover, performing the usual involution onthe quarti, we send the onstruted uniruled threefold to another one, with orresponding �bre lassgiven by e, so that it simply is the P1-bundle ∆ over S. This shows that also our original threefoldwas smooth, so in fat a P1-bundle over S.We now give an in�nite series of examples of general K3s whose Hilbert squares ontain threefoldsbirational to P1-bundles.Proposition 7.7. Let (S,H) be a general primitively polarized K3 surfae of degree H2 = 2(d2 −1),for d ≥ 2. Then S[2] ontains a threefold birational to a P1-bundle over a K3 surfae.The lass wf ∈ H2(S[2],Q) orresponding to a �bre is(7.8) wf = H − de ∈ H2(S[2],Z).



32 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAIn partiular(7.9) sloperat(NE(S[2])) ≤ 1

d
.Moreover the urves C ⊂ S with hyperellipti normalizations assoiated to the �bres of the threefoldlie in |H|, have geometri genus pg = 2d− 1, and ρsing(pa(C), 1, 2, pg) = d(d − 4) + 4 ≥ 0.Proof. This time we start with the lattie ZF ⊕ ZG with intersetion matrix

[
F 2 F.G
G.F G2

]
=

[
−2 d
d 4

]
, d ≥ 2.As in Proposition 7.2 one easily shows that there is an algebrai K3 surfae S0 with Pic(S0) =

ZF ⊕ ZG and that ϕ|G| : S0 → P3 is an embedding onto a smooth quarti not ontaining lines and
F is a smooth, irreduible rational urve. (Note that F [2] = P2 and performing the same proedureon this plane as in the proof of Proposition 7.2, one gets preisely the same series of examples asabove.)We now onsider the divisor F ⊂ S

[2]
0 , de�ned as the length-two shemes with some support along

F . One easily sees that this is a threefold birational to a P1-bundle over S0 and that the lass in
H2(S

[2]
0 ,Z) orresponding to the �bres f is ρf = F , f. [25, Example 4.6℄.The involution on the quarti sends this threefold to another threefold birational to a P1-bundleover S0 and the orresponding lass of the �bres is(7.10) q(G− e, F ) · (G− e) − F = dG− F − de.Note that this threefold satis�es the onditions in [25, Thm. 4.1℄ by [25, Example 4.6℄, so that,as in the previous example, we an deform S

[2]
0 , keeping e algebrai and H := dG − F . We thusobtain a 19-dimensional spae of deformations of S[2]

0 , whose general member is S[2], where (S,H) isa general, primitively polarized (algebrai) K3 surfae of degree H2 = 2(d2−1) ≥ 6 and S[2] ontainsa threefold birational to a P1-bundle, again over a K3 surfae (see also [25, Thm. 4.3℄).The unique lass wf ∈ H2(S[2],Q) orresponding to a �bre f is as in (7.8) and yields (7.9).By (7.8) we have f.H = H2, so that, by the very de�nition of the divisorH inH2(S[2],Z), the �bres
f of Y orrespond to urves C ∈ |H|. Comparing (6.10) and (7.8), we see that g0(C) = 2d − 1 ≥ 3,f. (6.12). As in the proof of Proposition 7.2, one an see that the general �bre of Y is not tangentto ∆ = 2e, so that in fat we have pg(C) = 2d−1. In partiular, Y is not one of the obvious uniruledthreefolds arising from the rational urves on S, or the one-dimensional families of ellipti urves on
S. A omputation shows that ρsing = d(d − 4) + 4 ≥ 0. �Again, a few omments are in order.The square of the lass of the �bres of the uniruled threefolds onstruted above is q(f) = −2, aspredited in [25, Conj. 3.6℄.The obtained family V of urves on S with hyperellipti normalizations has dim(V ) = 2 and
dim(RV ) = 3, showing that also this ase of Proposition 3.6 atually ours. This family givesnontrivial examples of urves in |H| with hyperellipti normalizations and positively answers thehyperellipti existene problem for pa = 2(d2 − 1) and pg = 2d − 1 for every d ≥ 2. Note that thease d = 2 is the ase desribed in [22, Example 2.8℄.Referenes[1℄ E. Arbarello, M. Cornalba, Su una ongettura di Petri, Comment. Math. Helvetii 56 (1981), 1�38.[2℄ W. Barth, K. Hulek, C. Peters, A. Van de Ven, Compat omplex surfaes, Seond edition, Springer-Verlag,Berlin, 2004.[3℄ T. Bauer, Seshadri onstants of quarti surfaes, Math. Ann. 309 (1997), 475�481.
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EDOARDO SERNESI: PARTIAL DESINGULARIZATIONS OF FAMILIES OF NODAL CURVES 35Appendix APARTIAL DESINGULARIZATIONS OF FAMILIES OF NODAL CURVESEDOARDO SERNESI1In this Appendix we show how to onstrut simultaneous partial desingularizations of familiesof nodal urves, generalizing a well known proedure of simultaneous total desingularization, asdesribed in [4℄.We work over an algebraially losed �eld k of harateristi 0. For every morphism X → Y , andfor every y ∈ Y , we denote by X(y) the sheme-theoreti �bre of y.Theorem A.1. Let
f : C // Vbe a �at projetive family of urves, with C and V algebrai shemes, suh that all �bres have at mostordinary double points (nodes) as singularities. Let δ ≥ 1 be an integer. Then there is a ommutativediagram:

Dδ
�

�

//

q
""E

EE
EE

EE
E C′

f ′

��

// C

f

��
E(δ)

α
// Vwith the following properties:(i) α is �nite and unrami�ed, the square is artesian, and q is an étale over of degree δ.(ii) The left triangle de�nes a marking of all δ-tuples of nodes of �bres of f . In partiular f ′parametrizes all urves of the family f having ≥ δ nodes and, for eah η ∈ E(δ), Dδ(η) ⊂ C′(η)is a set of δ nodes of the urve C′(η).(iii) The diagram is universal with respet to properties (i) and (ii). Preisely, if
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//

q̃
##G

GG
GGG
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GG

Ẽ ×V C

f̃
��

// C

f

��

Ẽ // Vis a diagram having the properties analogous to (i) and (ii), then there is a unique fatorization
Ẽ

ϕ
// E(δ)

α
// Vsuh that q̃ and f̃ are obtained by pulling bak q and f ′ by ϕ.If moreover E(δ) is normal, then the above diagram an be enlarged as follows:1Work done during a visit to the Institut Mittag-Le�er (Djursholm, Sweden), whose support is gratefully aknowl-edged. I am grateful to F. Flamini, A. L. Knutsen and G. Paienza for aepting this note as an Appendix to theirpaper, and to F. Flamini for some useful remarks.
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C

β

��

Dδ
�

�

//

q
""E

EE
EE

EE
E C′

f ′

��

// C

f

��
E(δ)

α
// Vwhere:(iv) β is a birational morphism suh that, for eah η ∈ E(δ), the restrition:

β(η) : C(η) // C′(η)is the partial normalization at the nodes Dδ(η).(v) The omposition f̄ := f ′ ◦ β is �at.Proof. Consider the �rst relative otangent sheaf T1
C/V . Sine all �bres of f are nodal, T1

C/V ommuteswith base hange ([3, Lemma 4.7.5℄ or [5℄), thus on every �bre C(v), v ∈ V , it restrits to T1
C(v), whihis the struture sheaf of the sheme of nodes of C(v). It follows that we have

T
1
C/V = OEfor a losed subsheme E ⊂ C supported on the nodes of the �bres of f . Consider the omposition

fE : E ⊂ C
f

// VBy onstrution it follows that fE is �nite and unrami�ed. Now �x δ ≥ 1 and onsider the �breprodut:
E ×V · · · ×V E︸ ︷︷ ︸

δSine fE is �nite and unrami�ed, it follows from [1, Exp.1, Prop. 3.1℄, and by indution on δ (see [3,Lemma 4.7.11(i)℄), that we have a disjoint union deomposition:
E ×V · · · ×V E = ∆

∐
Eδwhere ∆ is the union of all the diagonals, and Eδ onsists of all the ordered δ-tuples of distint pointsof E mapping to the same point of V ; moreover the natural projetion morphism

Eδ // Vis �nite and unrami�ed.There is a natural ation of the symmetri group Σδ on Eδ that ommutes with the projetion to
V . We denote the quotient Eδ/Σδ by E(δ). Sine the omposition

Eδ // E(δ) // Vis �nite and unrami�ed and the �rst morphism is an étale over, the morphism α : E(δ) → V is �niteand unrami�ed. Note that if, for a losed point v ∈ V , C(v) has δ+ t nodes as the only singularities,with t > 0, then α−1(v) has degree (
δ+t
t

). Now let
Dδ = {(η, e) : e ∈ Supp(η)} ⊂ E(δ) ×V E
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q

��

⊂ E(δ) ×V E ⊂ E(δ) ×V C

E(δ)whih is an étale over of degree δ. The �bre Dδ(η) is the δ-tuple parametrized by η, for eah
η ∈ E(δ)

2. We therefore have the following diagram:
Dδ

�

�

//

q
""E

EE
EE

EE
E C′

f ′

��

// C

f

��
E(δ)

α
// Vwhere we have denoted by C′ = E(δ) ×V C. The �bres of f ′ are all the urves of the family f having

≥ δ nodes. For eah η ∈ E(δ) the divisor Dδ(η) ⊂ C′(η) marks the set of δ nodes parametrized by η.This proves (i) and (ii).(iii) follows from the fat that α : E(δ) → V is the relative Hilbert sheme of degree δ of fE : E → V ,and (A.2) is the universal family.Assume that E(δ) is normal. Then we an normalize C′ loally around Dδ as in [4, Theorem 1.3.2℄,to obtain a birational morphism β having the required properties (iv) and (v). �A typial example of the situation onsidered in the theorem is when V parametrizes a ompletelinear system of urves on an algebrai surfae. If the morphism fE is self-transverse of odimension1 (see [3, De�nition 4.7.13℄) then the Severi variety of irreduible δ-nodal urves is nonsingular andof odimension δ, and E(δ) is nonsingular (see [3, Lemma 4.7.14℄), so that the theorem applies andthe simultaneous partial desingularization exists. This happens for example for the linear systems ofplane urves [3, Proposition 4.7.17℄. Referenes[1℄ Revêtements étales et groupe fondamentale, Séminaire de Géométrie Algébrique du Bois Marie 1960-61(SGA1), Leture Notes in Math. 224. Springer, Berlin, 1971.[2℄ R. Hartshorne, Algebrai Geometry, Graduate Texts in Mathematis 52. Springer-Verlag, New York-Heidelberg, 1977.[3℄ E. Sernesi, Deformations of Algebrai Shemes, Grundlehren der Mathematishen Wissenshaften 334.Springer-Verlag, Berlin, 2006.[4℄ B. Tessier, Résolution simultanée I, II. Leture Notes in Math. 777, 71�146. Springer, Berlin, 1980.[5℄ J. Wahl, Deformations of plane urves with nodes and usps, Amer. J. of Math. 96 (1974), 529�577.Edoardo Sernesi, Dipartimento di Matematia, Università di Roma Tre, Largo San Leonardo Murialdo 1,00146, Roma, Italy. e-mail sernesi�mat.uniroma3.it.
2If δ = 1 then E(1) = E and D1 ⊂ E ×V E is the diagonal.


