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7 ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF ASURFACE(WITH AN APPENDIX BY EDOARDO SERNESI)FLAMINIO FLAMINI*, ANDREAS LEOPOLD KNUTSEN** AND GIANLUCA PACIENZA***Abstra
t. Under natural hypotheses we give an upper bound on the dimension of families ofsingular 
urves with hyperellipti
 normalizations on a surfa
e S with pg > 0 via the study of theasso
iated families of rational 
urves in S[2]. We use this result to prove the existen
e of nodal 
urvesof geometri
 genus 3 with hyperellipti
 normalizations, on a general K3 surfa
e, thus obtainingspe
i�
 2-dimensional families of rational 
urves in S[2]. We give two in�nite series of examplesof general, primitively polarized K3s su
h that their Hilbert squares 
ontain a P2 or a threefoldbirational to a P1-bundle over a K3. We dis
uss the 
onsequen
es on the Mori 
one of the Hilbertsquare. 1. Introdu
tionFor any smooth surfa
e S, the Hilbert s
heme S[n] parametrizing 0-dimensional length n sub-s
hemes of S is a smooth 2n-dimensional variety whose inner geometry is naturally related to thatof S. For instan
e, if ∆ ⊂ S[n] is the ex
eptional divisor, that is, the ex
eptional lo
us of theHilbert-Chow morphism µ : S[n] → Symn(S), then irredu
ible (possibly singular) rational 
urvesnot 
ontained in ∆ roughly 
orrespond to irredu
ible (possibly singular) 
urves on S with a g

1
n′ ontheir normalizations, for some n′ ≤ n (see � 2.1 for the pre
ise 
orresponden
e when n = 2). Oneof the features of this paper is to show how ideas and te
hniques from one of the two sides of the
orresponden
e makes it possible to shed light on problems naturally arising on the other side.If S is a K3 surfa
e, S[n] is a hyperkähler manifold (
f. [31, 2.2℄) and rational 
urves play afundamental r�le in the study of the (birational) geometry of S[n]. Indeed a result due to Huybre
htsand Bou
ksom [32, 11℄ implies in parti
ular that these 
urves govern the ample 
one of S[n] (we willre
all the pre
ise statement below and in � 6.1). The presen
e of a Pn ⊂ S[n] gives rise to a birationalmap (the so-
alledMukai �op [41℄) to another hyperkähler manifold and, for n = 2, all birational mapsbetween hyperkähler fourfolds fa
tor through a sequen
e of Mukai �ops [12, 30, 60, 62℄. Moreover, asshown by Huybre
hts [32℄, uniruled divisors allow to des
ribe the birational Kähler 
one of S[n] (see� 7 for the pre
ise statement). For hyperkähler fourfolds pre
ise numeri
al and geometri
 propertiesof the rational 
urves that are extremal in the Mori 
one have been 
onje
tured by Hassett andTs
hinkel [25℄.The s
ope of this paper, and the stru
ture of it as well, is twofold: we �rst devise general methodsand tools to study families of 
urves with hyperellipti
 normalizations on a surfa
e S, mostly underthe additional hypothesis that pg(S) > 0, in � 2-� 4. Then we apply these to obtain 
on
rete resultsin the 
ase of K3 surfa
es, in � 5-� 7. In parti
ular, we have tried to develop a systemati
 way to2000 Mathemati
s Subje
t Classi�
ation : Primary 14H10, 14H51, 14J28. Se
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2 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAprodu
e rational 
urves on S[2] by showing the existen
e of nodal 
urves on S with hyperellipti
normalizations.To give an overview of the paper, we 
hoose to start with the se
ond part.Let (S,H) be a general, smooth, primitively polarizedK3 surfa
e of genus p = pa(H) ≥ 2. We have
N1(S

[2])R ≃ R[Y ] ⊕ R[P1
∆], where P1

∆ is the 
lass of a rational 
urve in the ruling of the ex
eptionaldivisor ∆ ⊂ S[2], and Y := {ξ ∈ S[2]|Supp(ξ) = {p0, y}, with p0 ∈ S and y ∈ C ∈ |H|}, where
p0 and C are 
hosen. One has that P1

∆ lies on the boundary of the Mori 
one and by the result ofHuybre
hts and Bou
ksom [32, 11℄ mentioned above, if the Mori 
one is 
losed, then also the otherboundary is generated by the 
lass of a rational 
urve. If X ∼alg aY − bP1
∆ is an irredu
ible 
urvein S[2], di�erent from a �ber of ∆, then we de�ne a/b to be the slope of the 
urve. Thus, the lowerthe slope is, the 
loser is X to the boundary of the Mori 
one. Des
ribing the Mori 
one NE(S[2])amounts to 
omputing

slope(NE(S[2])) := inf
{

slope(X) | X is an irredu
ible 
urve in S[2]
}
,and, if the Mori 
one is 
losed, then slope(NE(S[2])) = sloperat(NE(S[2])), where

sloperat(NE(S[2])) := inf
{

slope(X) | X is an irredu
ible rational 
urve in S[2]
}
.(See � 6.1, 6.2 and 6.3 for further details.)If now C ∈ |mH| is an irredu
ible 
urve of geometri
 genus pg(C) ≥ 2 and with hyperellipti
normalization, let g0(C) ≥ pg(C) be the arithmeti
 genus of the minimal partial desingularization of

C that 
arries the g
1
2 (see � 2.1 and � 6.2). By the uni
ity of the g

1
2, C de�nes a unique irredu
iblerational 
urve RC ⊂ S[2] with 
lass RC ∼alg mY − (g0(C)+1

2 )P1
∆, 
f. (6.11). (This formula is alsovalid if RC is asso
iated to a given g

1
2 on the normalization of an irredu
ible rational or ellipti
 
urve

C.) Thus, the higher g0(C) (or pg(C)) is, and the lower m is, the lower is the slope of RC . Thismotivates the sear
h for 
urves on S with hyperellipti
 normalizations of high geometri
 genus, thus�unexpe
ted� from Brill-Noether theory.It is well-known that there exist �nitely many (nodal) rational 
urves, a one-parameter familyof (nodal) ellipti
 
urves, and a two-dimensional family of (nodal) 
urves of geometri
 genus 2 in
|H| (see � 5). Every su
h family yields in a natural way a two-dimensional family of irredu
iblerational 
urves in S[2], 
f. � 2. Also note that, by a result of Ran [46℄, the expe
ted dimension ofa family of rational 
urves in a symple
ti
 fourfold, when
e a posteriori also of a family of 
urveswith hyperellipti
 normalizations lying on a K3, equals two (
f. Lemma 5.1). In [22, Examples2.8 and 2.10℄ we found two-dimensional families of nodal 
urves of geometri
 genus 3 in |H| havinghyperellipti
 normalizations when pa(H) = 4 or 5. In this paper we generalize this:Theorem 5.2. Let (S,H) be a general, smooth, primitively polarized K3 surfa
e of genus p =
pa(H) ≥ 4. Then the family of nodal 
urves in |H| of geometri
 genus 3 with hyperellipti
 normal-izations is nonempty, and ea
h of its irredu
ible 
omponents is two-dimensional.The proof takes the whole � 5 and relies on a general prin
iple of 
onstru
ting 
urves with hy-perellipti
 normalizations on general K3s outlined in Proposition 5.11: �rst 
onstru
t a marked K3surfa
e (S0,H0) of genus p su
h that |H0| 
ontains a family of dimension ≤ 2 of nodal (possiblyredu
ible) 
urves with the property that a desingularization of some δ > 0 of the nodes is a limit of ahyperellipti
 
urve in the moduli spa
e Mp−δ of stable 
urves of genus p−δ and su
h that this familyis not 
ontained in a higher-dimensional su
h family. Then 
onsider the parameter spa
e Wp,δ ofpairs ((S,H), C), where (S,H) is a smooth, primitively marked K3 surfa
e of genus p and C ∈ |H|is a nodal 
urve with at least δ nodes. Now map (the lo
al bran
hes of) Wp,δ into Mp−δ by partially
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urves at δ of the nodes and mapping them to their respe
tive 
lasses. The existen
eof the parti
ular family in |H0| ensures that the image of this map interse
ts the hyperellipti
 lo
us
Hp−δ ⊂ Mp−δ. A dimension 
ount then shows that the dimension of the parameter spa
e I ⊂ Wp,δ
onsisting of ((S,H), C) su
h that a desingularization of some δ > 0 of the nodes of C is a limitof a hyperellipti
 
urve is at least 21. Now the dominan
e on the 19-dimensional moduli spa
e ofprimitively marked K3 surfa
es of genus p follows as the dimension of the spe
ial family on S0 was
≤ 2.The te
hni
al di�
ulties in the proof of Proposition 5.11 mostly arise be
ause the 
urves in thespe
ial family on S0 may be redu
ible (in fa
t, as in all arguments by degeneration, in pra
ti
alappli
ations they will very often be). Therefore we need to partially desingularize families of nodal
urves, and this tool is provided in Appendix A by E. Sernesi. Moreover, we need a 
areful study ofthe Severi varieties of redu
ible nodal 
urves on K3s, and here we use results of Tannenbaum [55℄.Given Proposition 5.11, the proof of Theorem 5.2 is then a

omplished by 
onstru
ting a suitable
(S0,H0) in Proposition 5.19 with |H0| 
ontaining a desired two-dimensional family of spe
ial 
urves,with δ = p− 3, and then showing that the 
urves in the spe
ial family on S0 in fa
t deform to 
urveswith pre
isely δ nodes on the general S in Lemma 5.20. As will be dis
ussed below, showing thatthe spe
ial family on S0 is not 
ontained in a family of higher dimension of 
urves with the sameproperty, is quite deli
ate.We also show that the asso
iated rational 
urves in S[2] 
over a threefold, 
f. Corollary 5.3, andthat g0 = pg = 3, 
f. Remark 5.23. Turning ba
k to the des
ription of NE(S[2]), this shows that the
lass of the asso
iated rational 
urves in S[2] is Y − 3

2P1
∆, so that we obtain (
f. Corollary 6.27):(6.28) sloperat(NE(S[2])) ≤ 1

2 .In Propositions 7.2 and 7.7 we present two in�nite series of examples of general primitively polarized
K3 surfa
es (S,H) of in�nitely many degrees su
h that S[2] 
ontains either a P2 (these exampleswere shown to us by B. Hassett) or a threefold birational to a P1-bundle over a K3 and �nd thetwo-dimensional families of 
urves with hyperellipti
 normalizations in |H| 
orresponding to the linesand the �bres respe
tively. In parti
ular, these examples show that the bound (6.28) 
an be improvedfor in�nitely many degrees of the polarization. Namely, for any n ≥ 6 and d ≥ 2, we get:(7.4) sloperat(NE(S[2])) ≤ 2

2n−9 if p = pa(H) = n2 − 9n+ 20;(7.9) sloperat(NE(S[2])) ≤ 1
d if p = pa(H) = d2.Nevertheless, to our knowledge, (6.28) is the �rst non-trivial bound valid for any genus p of thepolarization.The proofs of Propositions 7.2 and 7.7 are again by deformation, but unlike the proof of Proposition5.11, we now deform S

[2]
0 of a spe
ial K3 surfa
e S0. The idea is to start with a spe
ial quarti
 surfa
e

S0 ⊂ P3 su
h that S[2]
0 
ontains a P2 or a threefold birational to a P1-bundle over itself, performthe standard involution on S[2]

0 to produ
e a new su
h and then deform S
[2]
0 keeping the new one bykeeping a suitable polarization on the surfa
e that is di�erent from OS0(1). Here we use results ondeformations of symple
ti
 fourfolds by Hassett and Ts
hinkel [25℄ and Voisin [57℄.By a result proved in [22℄, any irredu
ible 
urve C ∈ |H| with hyperellipti
 normalization mustsatisfy g0(C) ≤ p+2

2 , where p = pa(H) (
f. Theorem 6.16 and (6.17)). It is then natural to askwhether this inequality a
tually ensures the existen
e of su
h 
urves. We 
all this �The hyperellipti




4 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAexisten
e problem� and we see that a positive solution to this problem would yield a bound on theslope of rational 
urves that is mu
h stronger than the ones obtained above, 
f. (6.25). In this sense,Theorem 5.2 is hopefully only the �rst step towards stronger existen
e results.The study of 
urves on S with hyperellipti
 normalizations is not the only way to obtain boundson the slope of the Mori 
one of S[2]. In fa
t, an irredu
ible 
urve C ∈ |mH| with a singular point xof multipli
ity multx(C) yields an irredu
ible 
urve in S[2] with 
lass mY − (1/2)multx(C) (see theproof of Theorem 6.18). In parti
ular, if p = pa(H), one has the bound (
f. Theorem 6.21)(6.22) slope(NE(S[2])) ≤
√

2
p−1 ,obtained by using well-known results on Seshadri 
onstants on S. This bound is stronger than(6.28) but weaker than the bounds on the slope of the Mori 
one obtained from (7.4) and (7.9).Moreover, one relatively easily sees that the best bound one 
an obtain by Seshadri 
onstants is inany 
ase weaker than (7.4) and (7.9) and also weaker than the ones one 
ould obtain by solving �Thehyperellipti
 existen
e problem�, 
f. (6.25). In any 
ase, note that (6.22), (7.4) and (7.9) show thatthe bounds tend to zero as the degree of the polarization tends to in�nity, that is,(6.23) inf

{
slope(NE(S[2])) | S is a proje
tive K3 surfa
e }

= 0,and likewise for sloperat(NE(S[2])).All the families of 
urves in |H| with hyperellipti
 normalizations we have seen above have in fa
tdimension equal to two, the expe
ted one. Moreover, a 
ru
ial point in the proof of Theorem 5.2is to bound the dimensions of families of irredu
ible 
urves with hyperellipti
 normalizations on thespe
ial K3 surfa
e S0. This brings us over to the des
ription of the �rst part of this paper.The problem of bounding the dimension of spe
ial families of 
urves on surfa
es, like in our 
ase of
urves with hyperellipti
 normalizations, is interesting in its own, may be studied for larger 
lasses ofsurfa
es, and may lead to further appli
ations in other 
ontexts. Whereas methods from adjun
tiontheory have proved very useful for the study of smooth hyperellipti
 
urves on surfa
es [51, 53, 10℄,these methods do not extend to the 
ase of singular 
urves, where in fa
t very little seems to beknown. Even in the relevant 
ase of nodal 
urves on smooth surfa
es, whose parameter spa
es (theso-
alled Severi varieties) have re
eived mu
h attention over the years and have been studied alsoin relation with moduli problems (see e.g. [49℄ for P2 and [21℄ for surfa
es of general type), thedimension of their sublo
i 
onsisting of 
urves with hyperellipti
 normalizations is not determined.The pre
ise question we address is whether there exists an upper bound on the dimension of familiesof irredu
ible 
urves on a proje
tive surfa
e with hyperellipti
 normalizations. One easily sees that,if the 
anoni
al system of the surfa
e is birational, then no 
urve with hyperellipti
 normalization
an move, 
f. e.g. [33℄. On the other hand, taking any surfa
e S admitting a (generi
ally) 2 : 1 maponto a rational surfa
e R and pulling ba
k the families of rational 
urves on R, we obtain families ofarbitrarily high dimensions of 
urves on S having hyperellipti
 normalizations. Moreover, the in�niteseries of examples in Proposition 7.2 of general, primitively polarized K3 surfa
es (S,H) su
h that
S[2] 
ontains a P2 shows that one 
annot even hope, in general, to �nd a bound in the simplest 
aseof Pi
ard number one: in fa
t, the (3m− 1)-dimensional family of rational 
urves in |OP2(m)| yieldsa (3m− 1)-dimensional family of irredu
ible 
urves in |mH| having hyperellipti
 normalizations, 
f.� 7.1. Nevertheless, for a large 
lass of surfa
es, it is possible to derive a geometri
 
onsequen
e onthe family V , when its dimension is greater than two:



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 5Theorem 4.6'. Let S be a smooth, proje
tive surfa
e with pg(S) > 0. Let V be a redu
ed andirredu
ible s
heme parametrizing a �at family of irredu
ible 
urves on S with hyperellipti
 normal-izations (of genus ≥ 2) su
h that dim(V ) ≥ 3. Then the algebrai
 equivalen
e 
lass [C] of the 
urvesparametrized by V has a de
omposition [C] = [D1] + [D2] into algebrai
ally moving 
lasses su
hthat [D1 + D2] ∈ V . Moreover the rational 
urves in S[2] 
orresponding to the irredu
ible 
urvesparametrized by V 
over only a (rational) surfa
e R ⊂ S[2].In fa
t we prove a stronger result, 
f. Theorem 4.6, that in parti
ular relates the de
omposition
[C] = [D1] + [D2] to the g

1
2s on the normalizations of the 
urves parametrized by V . This additionalpoint will in fa
t be the 
ru
ial one in our appli
ation in the proof of Theorem 5.2. An immediate
orollary is that the �naïve� dimension bound one may hope for, thinking about the fa
t that rational
urves in S[2] arising from 
urves on S of geometri
 genera ≤ 2 move in dimension at most two, isin fa
t true under additional hypotheses on V , 
f. Corollary 4.7. These are satis�ed if e.g. theNéron-Severi group of S is of rank 1 and generated by the 
lass of a 
urve in V , and seem quitenatural, taking into a

ount the examples of large families mentioned above.The idea of the proof of Theorem 4.6 is rather simple and geometri
 and illustrates well the ri
hinterplay between the properties of 
urves on S and those of subvarieties of S[2]. The proof relies onthe following two fundamental results:The �rst is Mori's bend-and-break te
hnique (see Lemma 2.10 for the pre
ise version we need),whi
h gives a breaking into redu
ible members of a family of rational 
urves of dimension ≥ 3 
overinga surfa
e.The se
ond is a suitable version of Mumford's well-known theorem on 0-
y
les on surfa
es with

pg > 0 (
f. Corollaries 3.2 and 3.4). The 
onsequen
e of parti
ular interest to us is that any threefoldin S[2] 
an only 
arry a two-dimensional 
overing family of rational 
urves when pg(S) > 0, 
f.Proposition 3.6.Combining those two ingredients, we see that any family satisfying the hypotheses of Theorem 4.6yields a family of rational 
urves in S[2] of the same dimension ≥ 3, that 
an therefore only 
overa surfa
e in S[2], on whi
h we 
an apply bend-and-break to produ
e a redu
ible member. Then wehave to show that we 
an also produ
e a de
omposition of the 
urves on S into algebrai
ally moving
lasses, and this is 
arried out in Proposition 4.3.Beside the appli
ation in the proof of Theorem 5.2, we hope that Theorem 4.6 and the ideas behindits proof will �nd more appli
ations. One is a Reider-like result for families of singular 
urves withhyperellipti
 normalizations obtained in [33℄, where also more examples are given.The paper is organized as follows. We go from the more general results to those pe
uliar to the
ase of K3 surfa
es. We start in � 2 with the 
orresponden
e between 
urves with hyperellipti
normalizations on any smooth surfa
e S and rational 
urves on S[2] and prove other preliminaryresults, before turning to the bend-and-break lemma for families of rational 
urves 
overing a surfa
ein S[2]. The version of Mumford's theorem we need for our purposes is proved in � 3, and thenrephrased in terms of rational quotients. Then we prove (a stronger version of) Theorem 4.6' in � 4.We then turn to K3 surfa
es and prove Theorem 5.2 along the lines of the degeneration argumentsket
hed above. Se
tion 6, apart from some known fa
ts on the Hilbert s
heme of points on a K3surfa
e, 
ontains the 
omputation of the 
lasses of rational 
urves in S[2] asso
iated to 
urves in Swith rational, ellipti
 or hyperellipti
 normalizations, as explained in � 2.1. The relation between theexisten
e of su
h a 
urve, its singular Brill-Noether number (an invariant introdu
ed in [22℄) and theslope of the Mori 
one of S[2] is also dis
ussed, as well as the relation between the slope of the Mori
one and Seshadri 
onstants. We end the paper presenting the two series of examples of general K3surfa
es whose Hilbert square 
ontains a P2 (respe
tively a threefold birational to a P1-bundle overa K3) and dis
ussing the numeri
al properties of a line (respe
tively a �bre) in it, as well as those of



6 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAthe asso
iated singular 
urves in S with hyperellipti
 normalizations. In Appendix A by E. Sernesithe reader will �nd a general result about partial desingularizations of families of nodal 
urves.A
knowledgements. The authors thank L. Caporaso, O. Debarre, A. Iliev and A. Verra for usefuldis
ussions related to these problems. We are extremely grateful to: C. Ciliberto, for many valuable
onversations and helpful 
omments on the subje
t and for having pointed out some mistakes in apreliminary version of this paper; B. Hassett, for having pointed out the examples behind Proposition7.2; E. Sernesi, for many helpful 
onversations and for his Appendix A. We �nally express ourgratitude to the Department of Mathemati
s, Università "Roma Tre" and to the Institut de Re
her
heMathématique Avan
ée, Université L. Pasteur et CNRS, where parts of this work have been done,for the ni
e and warm atmosphere as well as for the kind hospitality.2. Rational 
urves in S[2]Let S be a smooth, proje
tive surfa
e. In this se
tion we gather some basi
 results that will beneeded in the rest of the paper. We �rst des
ribe the natural 
orresponden
e between rational 
urvesin S[2] and 
urves on S with rational, ellipti
 or hyperellipti
 normalizations. Then, in � 2.2, weapply Mori's bend-and-break te
hnique to rational 
urves in Sym2(S) 
overing a surfa
e.Re
all that we have the natural Hilbert-Chow morphism µ : S[2] → Sym2(S) that resolves
Sing(Sym2(S)) ≃ S. The µ-ex
eptional divisor ∆ ⊂ S[2] is a P1-bundle over S. The Hilbert-Chow morphism gives an obvious one-to-one 
orresponden
e between irredu
ible 
urves in S[2] not
ontained in ∆ and irredu
ible 
urves in Sym2(S) not 
ontained in Sing(Sym2(S)). We will thereforeoften swit
h ba
k and forth between working on S[2] and Sym2(S).2.1. Irredu
ible rational 
urves in S[2] and 
urves on S. Let T ⊂ S × S[2] be the in
iden
evariety, with proje
tions p2 : T → S[2] and pS : T → S. Then p2 is �nite of degree two, bran
hedalong ∆ ⊂ S[2]. (In parti
ular, T is smooth as ∆ is.)Let X ⊂ S[2] be an irredu
ible rational 
urve not 
ontained in ∆. We will now see how X isequivalent to one of three sets of data on S.Let νX : X̃ ≃ P1 → X be the normalization and set X ′ := p−1

2 (X) ⊂ T . By the universal propertyof blowing up, we obtain a 
ommutative square:(2.1) C̃X
f

//

ν̃X

��

X̃

νX

��

≃ P1

X ′
p2|X′

// X,de�ning the 
urve C̃X , ν̃X and f . In parti
ular, ν̃X is birational and C̃X admits a g
1
2 (i.e., a 2 : 1morphism onto P1, given by f), but may be singular, or even redu
ible. Set ν̃ := pS |X′ ◦ν̃X : C̃X → S.Assume �rst that C̃X is irredu
ible.We set CX := ν̃(C̃X) ⊂ S. Sin
e X 6⊂ ∆, CX is a 
urve. As C̃X 
arries a g

1
2, it is easily seen thatalso the normalization of CX does, that is, CX has rational, ellipti
 or hyperellipti
 normalization.Moreover, it is easily seen that ν̃ : C̃X → CX is generi
ally of degree one. Indeed, for general x ∈ CX ,as x 6∈ pS(p−1

2 (∆)), we 
an write (pS |X′)−1(x) = {(x, x+ y1), . . . , (x, x+ yn)}, where n := deg ν̃. Byde�nition of p2, and sin
e X ′ = p−1
2 (X), we must have that ea
h (yi, x + yi) ∈ X ′, for i = 1, . . . , n,and ea
h 
ouple ((x, x+yi), (yi, x+yi)) is the pushdown by ν̃X of an element of the g

1
2 on C̃X . Hen
e,ea
h 
ouple (x, yi) is the pushdown by the normalization morphism of an element of the indu
ed g

1
2on the normalization of CX . Sin
e x has been 
hosen general, x 6∈ Sing(CX), so that we must have

n = 1, as 
laimed.



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 7In parti
ular, by 
onstru
tion, ν̃ : C̃X → CX is a partial desingularization of CX , in fa
t, it is theminimal partial desingularization of CX 
arrying the g
1
2 in question (whi
h is unique, if pg(CX) ≥ 2).We have therefore obtained:(I) the data of an irredu
ible 
urve CX ⊂ S together with a partial normalization ν̃ : C̃X → CXwith a g

1
2 on C̃X (unique, if pg(CX) ≥ 2), su
h that ν̃ is minimal with respe
t to the existen
eof the g
1
2.Next we treat the 
ase where C̃X is redu
ible. In this 
ase, it must 
onsist of two irredu
iblesmooth rational 
omponents, C̃X = C̃X,1 ∪ C̃X,2, that are identi�ed by f .If ν̃ does not 
ontra
t any of the 
omponents, set CX,i := ν̃(C̃X,i) ⊂ S and nX,i := deg ν̃| eCX,i

, for
i = 1, 2. We therefore obtain:(II) the data of a 
urve CX = nX,1CX,1 + nX,2CX,2 ⊂ S, with nX,i ∈ N, CX,i an irredu
ible,rational 
urve, a morphism ν̃ : C̃X = C̃X,1 ∪ C̃X,2 → CX,1 ∪ CX,2 (resp. ν̃ : C̃X → CX,1 if

CX,1 = CX,2) that is nX,i : 1 on ea
h 
omponent and where C̃X,i is the normalization of CX,i,and an identi�
ation morphism f : C̃X,1 ∪ C̃X,2 ≃ P1 ∪ P1 → P1.If ν̃ 
ontra
ts one of the two 
omponents of C̃X , say C̃X,2, to a point xX ∈ S (it is easily seenthat it 
annot 
ontra
t both), then µ(X) ⊂ Sym2(S) is of the form {xX + CX}, for an irredu
ible
urve CX ⊂ S, whi
h is ne
essarily rational. It is easily seen that CX = ν̃(C̃X,1) and deg ν̃| eCX,1
= 1,so that we obtain:(III) the data of an irredu
ible rational 
urve CX ⊂ S together with a point xX ∈ S.Note that in all 
ases (I)-(III), the support of the 
urve CX on S is simply(2.2) Supp(CX) = one-dimensional part of {x ∈ S | x ∈ Supp(ξ) for some ξ ∈ X}and the set is already purely one-dimensional pre
isely unless we are in 
ase (III) with xX 6∈ C.Conversely from the data (I), (II) or (III) one re
overs an irredu
ible rational 
urve in S[2] not
ontained in ∆. Indeed, in 
ase (I) (resp. (II)), the g

1
2 on C̃X (respe
tively, the identi�
ation f)indu
es a P1 ⊂ Sym2(C̃X) and this is mapped to an irredu
ible rational 
urve in Sym2(S) by thenatural 
omposed morphism

Sym2(C̃X)
ν̃(2)

// Sym2(CX)
�

�

// Sym2(S).The irredu
ible rational 
urve X ⊂ S[2] is the stri
t transform by µ of this 
urve. In 
ase (III),
X ⊂ S[2] is the stri
t transform by µ of {xX + CX} ⊂ Sym2(S).We see that the data (III) 
orrespond pre
isely to rational 
urves of type {x0 + C} ⊂ Sym2(S),where x0 ∈ S is a point and C ⊂ S is an irredu
ible rational 
urve. Moreover, it is easily seen thatthe data (II) 
orrespond pre
isely to the images by

α : C̃1 × C̃2 ≃ P1 × P1 −→ C1 + C2 ⊂ Sym2(S),resp.
α : Sym2(C̃) ≃ P2 −→ Sym2(C) ⊂ Sym2(S),of irredu
ible rational 
urves in |n1F1 + n2F2| for n1, n2 ∈ N, resp. |nF | for an integer n ≥ 2, where

Pic(C̃1 × C̃2) ≃ Z[F1] ⊕ Z[F2], resp. Pic(Sym2(C̃)) ≃ Z[F ], and C1, C2, resp. C, are irredu
iblerational 
urves on S and �˜� denotes normalizations. The data of type (II) will however not bestudied more in this paper, where we will fo
us on the other two, mostly on (I).Note that an irredu
ible rational 
urve X ⊂ Sym2(S) arising from rational (resp. ellipti
) 
urves
C as in 
ase (I) moves in Sym2(C), whi
h is a surfa
e birational to P2 (resp. an ellipti
 ruled surfa
e),
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urve X ⊂ Sym2(S) of the form {xX +C} moves in the threefold {S +C}, whi
h is birationalto a P1-bundle over S, and 
ontains Sym2(C).At the same time, it is well-known that if kod(S) ≥ 0, then rational 
urves on S do not move andellipti
 
urves move in at most one-dimensional families. This follows for instan
e from the followinggeneral result (that we will later need in the 
ase pg = 2).Lemma 2.3. Let S be a smooth, proje
tive surfa
e with kod(S) ≥ 0 
ontaining an n-dimensionalirredu
ible family of irredu
ible 
urves of geometri
 genus pg. Then n ≤ pg and if equality o

urs,then either the family 
onsists of a single smooth rational 
urve; or kod(S) ≤ 1 and n ≤ 1; or
kod(S) = 0.Proof. This is �folklore�. For a proof see [33℄. �As a 
onsequen
e, if kod(S) ≥ 0, then rational 
urves in Sym2(S) arising from rational or ellipti

urves on S move in families of dimension at most two in Sym2(S).On the other hand, irredu
ible rational 
urves X ⊂ Sym2(S) arising from 
urves on S withhyperellipti
 normalizations of geometri
 genus pg ≥ 2 (ne
essarily of type (I)), move in a familywhose dimension equals that of the family of 
urves with hyperellipti
 normalizations in whi
h C ⊂ Smoves (by uni
ity of the g

1
2). Apart from some spe
ial 
ases, it is easy to see that the 
onverse isalso true:Lemma 2.4. Let {Xb}b∈B be a one-dimensional irredu
ible family of irredu
ible rational 
urves in

Sym2(S) 
overing a (dense subset of a) proper, redu
ed and irredu
ible surfa
e Y ⊂ Sym2(S) thatdoes not 
oin
ide with Sing(Sym2(S)) ∼= S.Then C = CXb
in S for every b ∈ B (notation as above) if and only if either Y = Sym2(C0), witheither C0 ⊂ S an irredu
ible rational 
urve and C ≡ nC0 for n ≥ 1, or C0 = C ⊂ S an irredu
ibleellipti
 
urve; or Y = C + C ′ := {p + p′ | p ∈ C, p′ ∈ C ′}, with C an irredu
ible rational 
urveand C ′ ⊂ S any irredu
ible 
urve; or Y = C1 + C2, with C1, C2 ⊂ S irredu
ible rational 
urves and

C = n1C1 + n2C2 for n1, n2 ∈ N.Proof. The "if" part is immediate. For the 
onverse, we treat the three 
ases (I)-(III) separately.If C is as in (I), then 
learly Y ⊂ Sym2(C), so that Y = Sym2(C) and C must be either rationalor ellipti
, as Y is uniruled.If C = n1C1 + n2C2 as in (II), then either C1 = C2 =: C0 and again Y = Sym2(C0), or C1 6= C2and Y = C1 + C2.Finally, if C is as in (III), then, for every b ∈ B, we have {Xb}b∈B = {xb+C}b∈B for some xb ∈ S,and the {xb}b∈B de�ne the desired 
urve C ′.
�We note that by Lemma 2.3 also the rational 
urves in Sym2(S) arising from singular 
urves ofgeometri
 genus 2 on S move in at most two-dimensional families. We will see below that this is ageneral phenomenon, under some additional hypotheses. We will fo
us our attention on 
urves withhyperellipti
 normalizations (of genus pg ≥ 2) in Se
tions 4-7.2.2. Bend-and-break in Sym2(S). Let V ⊆ Hom(P1,Sym2(S)) be a redu
ed and irredu
ible sub-s
heme (not ne
essarily 
omplete). We 
onsider the universal map(2.5) PV := P1 × V

ΦV
// Sym2(S)and assume that the following two 
onditions hold:(2.6) For any v ∈ V, ΦV (P1 × v) 6⊆ Sing(Sym2(S)) ≃ S; and(2.7) ΦV is generi
ally �nite



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 9(the latter just means that V indu
es a �at family of rational 
urves in Sym2(S) of dimension
dim(V )). Set(2.8) RV := im(ΦV ),the Zariski 
losure of im(ΦV ) in Sym2(S). It is the (irredu
ible) uniruled subvariety of Sym2(S)
overed by the 
urves parametrized by V . In the language of [35, Def. 2.3℄, RV is the 
losure of thelo
us of the family ΦV . Note that dim(RV ) ≥ 2 if dim(V ) ≥ 1 by (2.7). Moreover (
f. e.g. [24, Prop.2.1℄),(2.9) dim(RV ) ≤ 3 if kod(S) ≥ 0.When RV is a surfa
e, using Mori's bend-and-break te
hnique we obtain the following result. Inthe statement we underline the fa
t that the breaking 
an be made in su
h a way that, for general
ξ, η ∈ RV , two 
omponents of the redu
ible (or non-redu
ed) member at the border of the familypass through ξ and η, respe
tively. This will be 
entral in our appli
ations (Proposition 4.3 and � 5,where we prove Theorem 5.2). We give the proof be
ause we 
ould not �nd in literature pre
iselythe statement we will need.Lemma 2.10. Assume that dim(V ) ≥ 3 and dim(RV ) = 2.Let ξ and η be any two distin
t general points of RV . Then there is a 
urve Yξ,η in RV su
h that
Yξ,η is algebrai
ally equivalent to (ΦV )∗(P1

v) and either(a) there is an irredu
ible nonredu
ed 
omponent of Yξ,η 
ontaing ξ and η; or(b) there are two distin
t, irredu
ible 
omponents of Yξ,η 
ontaing ξ and η, respe
tively.Proof. Sin
e dim(V ) ≥ 3 by assumption, by (2.7) we 
an pi
k a one-dimensional smooth subs
heme
B = Bξ,η ⊂ V parametrizing 
urves in V su
h that (ΦV )∗(P1 × v) 
ontains both ξ and η, for every
v ∈ B. We therefore have a family of rational 
urves:(2.11) ΦB := (ΦV )|B : P1 ×B −→ RV .and two marked (distin
t) points x, y ∈ P1 su
h that ΦB(x×B) = ξ and ΦB(y ×B) = η, su
h thatea
h ΦB(P1 × v) is non
onstant, for any v ∈ B; in parti
ular ΦB(P1 ×B) is a surfa
e.As in the proofs of [36, Lemma 1.9℄ and [35, Cor. II.5.5℄, let B be any smooth 
ompa
ti�
ationof B. Consider the surfa
e P1 × B. Let 0 ∈ B denote a point at the boundary, P1

0 the �bre over 0of the proje
tion onto the se
ond fa
tor and x0, y0 ∈ P1
0 ⊂ P1 ×B the 
orresponding marked points.By the Rigidity Lemma [36, Lemma 1.6℄, ΦB 
annot be de�ned at the point x0, as in the proof of[36, Cor. 1.7℄, and the same argument works for y0.Therefore, to resolve the indetermina
ies of the rational map ΦB : P1 × B − − → RV , we mustat least blow up P1 × B at the points x0 and y0. Now let W be the blow-up of P1 × B su
h that

ΦB : W −→ RV is an extension of ΦB , that is, we have a 
ommutative diagram
W

π
��

ΦB

$$I
IIIIIIII

P1 ×B
ΦB

//___ RV .Let Ex0 := π−1(x0) and Ey0 := π−1(y0). Note that neither of these 
an be 
ontra
ted by ΦB , forotherwise ΦB itself would be de�ned at x0 or y0.Therefore the 
urve ΦB(Ex0) has an irredu
ible 
omponent Γξ 
ontaining ξ and the 
urve ΦB(Ey0)has an irredu
ible 
omponent Γη 
ontaining η and by 
onstru
tion, Γξ + Γη ⊆ ΦB∗(π
−1(P1 × 0)) andthe latter is the desired 
urve Yξ,η. The two 
ases (a) and (b) o

ur as Γξ = Γη or Γξ 6= Γη,respe
tively. �
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y
les on surfa
es with pg > 0In this se
tion we extend to the singular 
ase a 
onsequen
e of Mumford's result on zero-
y
leson surfa
es with pg > 0 (
f. [42, Corollary p. 203℄) and reformulate the results in terms of rationalquotients.3.1. Mumford's Theorem. The main result of this subse
tion, whi
h we prove in detail for thereader's 
onvenien
e, relies on the following generalization of Mumford's result (
f. [58, Chapitre 22℄and referen
es therein, for a detailed a

ount).Theorem 3.1. (see [58, Prop. 22.24℄) Let T and Y be smooth proje
tive varieties. Let Z ⊂ Y × Tbe a 
y
le of 
odimension equal to dim(T ). Suppose there exists a subvariety T ′ ⊂ T of dimension k0su
h that, for all y ∈ Y , the zero-
y
le Zy is rationally equivalent in T to a 
y
le supported on T ′.Then, for all k > k0 and for all η ∈ H0(T,Ωk
T ), we have

[Z]∗η = 0 in H0(Y,Ωk
Y )where, as 
ostumary, [Z]∗η denotes the di�erential form indu
ed on Y by the 
orresponden
e Z.Mumford's original �symple
ti
� argument and the theorem above yield the following result (see[42, Corollary p. 203℄).Corollary 3.2. Let S be a smooth, irredu
ible proje
tive surfa
e with pg(S) > 0 and Σ ⊂ S[n] aredu
ed, irredu
ible (possibly singular) 
omplete subs
heme su
h that µ(Σ) 6⊂ Sing(Symn(S)), where

µ : S[n] → Symn(S) is the Hilbert-Chow morphism.If there exists a subvariety Γ ⊂ Symn(S) su
h that dim(Γ) ≤ 1, Γ 6⊂ Sing(Symn(S)) and allthe zero-
y
les parametrized by µ(Σ) are rationally equivalent to zero-
y
les supported on Γ, then
dim(Σ) ≤ n.Proof. Let π : Σ̃ → Σ ⊂ S[n] be the desingularization morphism of Σ. Let Z = Λπ ⊂ Σ̃× S[n] be thegraph of π. Then Z ∼= Σ̃, so that codim(Z) = dim(S[n]), as in Theorem 3.1. By assumption, µ(Σ)parametrizes zero-
y
les of length n on S that are all rationally equivalent to zero-
y
les supported on
Γ, with dim(Γ) ≤ 1. Sin
e µ(Σ) is not 
ontained in Sing(Symn(S)) by assumption, µ|Σ : Σ → µ(Σ)is birational. If Γ′ denotes the stri
t transform of Γ under µ, we get that dim(Γ′) ≤ 1.We 
an apply Theorem 3.1 with Z = Y = Σ̃, T = S[n] and T ′ = Γ′. Thus, for ea
h k > 1 and forea
h η ∈ H0(Ωk

S[n]), [Z]∗η = 0 in H0(Σ̃,Ωk
eΣ
).Let ω ∈ H0(S,KS) be a non-zero 2-form on S. As in [42, Corollary℄, we de�ne:

ω(n) :=

n∑

i=1

p∗i (ω) ∈ H0(Sn,Ω2
Sn)where Sn is the nth-
artesian produ
t and pi is the natural proje
tion onto the ith fa
tor, 1 ≤ i ≤ n.The form ω(n) is Sym(n)-invariant and, sin
e we have that µ is surje
tive, this indu
es a 
anoni
al

2-form ω
[n]
µ ∈ H0(S[n],Ω2

S[n]) (see [42, �1℄, where ω[n]
µ = ηµ in the notation therein). From what weobserved above, [Z]∗(ω[n]

µ ) = 0 as a form in H0(Σ̃,Ω2
eΣ
). Consider

(Symn(S))0 :=
{
ξ =

n∑

i=1

xi | xi 6= xj , 1 ≤ i 6= j ≤ n and such that ω(xi) ∈ Ω2
S,xi

is not 0
}
.Then (Symn(S))0 ⊂ Symn(S) is an open dense subs
heme that is isomorphi
 to its preimage via µin S[n]. For ea
h ξ ∈ (Symn(S))0, ξ is a smooth point and

πn : Sn → Symn(S)
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Sn) is non-degenerate on the open subset (Sn)0 ofpoints in the preimage of (Symn(S))0, i.e. it de�nes a non-degenerate skew-symmetri
 form on thetangent spa
e of (Sn)0.Let π0

n := πn|(Sn)0 ; sin
e π0
n : (Sn)0 → (Symn(S))0 is étale, there exists a 2-form

ω
(n)
0 ∈ H0((Symn(S))0,Ω

2
(Symn(S))0

)su
h that ω(n) = π∗n(ω
(n)
0 ) and ω(n)

0 is also non-degenerate. Therefore, the maximal isotropi
 subspa
esof ω(n)
0 (ξ) are n-dimensional.Now Σ ⊂ S[n] and Σ ∩ µ−1((Symn(S))0) 6= ∅, sin
e µ(Σ) 6⊂ Sing(Symn(S)) by assumption. Sin
e

Σ is redu
ed, let ξ ∈ Σ ∩ µ−1((Symn(S))0) be a smooth point. Then, sin
e Σsmooth = π−1(Σsmooth),by abuse of notation we still denote by ξ ∈ Σ̃ the 
orresponding point. We know that [Z]∗ω[n]
µ (ξ) = 0in the tangent spa
e Tξ(Σ̃). Sin
e

ξ ∈ Σsmooth ∩ µ−1((Symn(S))0) ⊂ (Symn(S))0,then [Z]∗(ω[n]
µ ) = ω

(n)
0 |Σsmooth∩µ−1((Symn(S))0). This implies dim(Σ) ≤ n. �3.2. The property RCC and rational quotients. Re
all that a variety T (not ne
essarily properor smooth) is said to be rationally 
hain 
onne
ted (RCC, for brevity), if for ea
h pair of very generalpoints t1, t2 ∈ T there exists a 
onne
ted 
urve Λ ⊂ T su
h that t1, t2 ∈ Λ and ea
h irredu
ible
omponent of Λ is rational (see [35℄). Furthermore, by [16, Remark 4.21(2)℄, if T is proper and RCC,then ea
h pair of points 
an be joined by a 
onne
ted 
hain of rational 
urves.Also re
all that, for any smooth variety T , there exists a variety Q, 
alled the rational quotient of

T , together with a rational map(3.3) f : T −− → Q,whose very general �bres are equivalen
e 
lasses under the RCC-equivalen
e relation (see, for in-stan
e, [16, Theorem 5.13℄ or [35, IV, Thm. 5.4℄).In this language, an equivalent statement of Corollary 3.2 is:Corollary 3.4. Let S be a smooth, proje
tive surfa
e with pg(S) > 0. If Y ⊂ S[n] is a 
ompletesubvariety of dimension > n not 
ontained in Exc(µ), then any desingularization of Y has a rationalquotient of dimension at least two.Proof. Let Ỹ be any desingularization of Y and Q its rational quotient. Up to resolving the indeter-mina
ies of f : Ỹ −− → Q, we may assume that f is a proper morphism whose very general �bre isa RCC-equivalen
e 
lass, so that in parti
ular ea
h �bre is RCC (see [35, Thm. 3.5.3℄).If dim(Q) = 0, it follows that Ỹ (so also Y ) is RCC, 
ontradi
ting Corollary 3.2.If dim(Q) = 1, then by 
utting Ỹ with dim(Y ) − 1 general very ample divisors, we get a 
urve Γ′that interse
ts every �bre of f . Every point of Ỹ is 
onne
ted by a 
hain of rational 
urves to somepoint on Γ′. We thus obtain a 
ontradi
tion by Corollary 3.2 (with Γ the image of Γ′ in Sym2(S)). �Let now RV be the variety 
overed by a family of rational 
urves in Sym2(S) parametrized by V ,as de�ned in (2.8), R̃V be any desingularization of RV and QV be the rational quotient of R̃V . Of
ourse dim(QV ) ≤ dim(RV ) − 1, as RV is uniruled by 
onstru
tion.Lemma 3.5. If dim(V ) ≥ dim(RV ), then dim(QV ) ≤ dim(RV )−2 (for any desingularization R̃V of
RV ). In parti
ular, if dim(V ) ≥ 2 and dim(RV ) = 2, then any desingularization of RV is a rationalsurfa
e.



12 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAProof. With notation as in � 2.2, we have dim(PV ) ≥ dim(RV ) + 1, so that the general �bre of ΦVis at least one-dimensional, 
f. (2.5). This means that, if ξ is a general point of RV , there exists afamily of rational 
urves in RV passing through ξ, of dimension ≥ 1. Of 
ourse the same is true fora general point of R̃V . Thus, the very general �bre of f in (3.3) has dimension at least two, when
e
dim(QV ) ≤ dim(RV ) − 2. The last statement follows from the fa
t that any smooth surfa
e that is
RCC is rational (
f. [35, IV.3.3.5℄). �Combining Corollary 3.4 and Lemma 3.5, we then get:Proposition 3.6. If pg(S) > 0 and dim(V ) ≥ 2, then either(i) RV is a surfa
e with rational desingularization; or(ii) dim(V ) = 2, RV is a threefold and any desingularization of RV has a two-dimensional rationalquotient.Proof. By (2.9), dim(RV ) = 2 or 3. If dim(RV ) = 2, then (i) holds by Lemma 3.5. If dim(RV ) = 3,then dim(QV ) = 2 by Corollary 3.4. Hen
e dim(V ) = 2 by Lemma 3.5 and (ii) holds. �Remark 3.7. Let S be a smooth, proje
tive surfa
e with pg(S) > 0 and let Y ⊂ S[2] be a uniruledthreefold di�erent from Exc(µ), where µ : S[2] → Sym2(S) is the Hilbert-Chow morphism.Take a 
overing family {Cv}v∈V of rational 
urves on Y . By Corollary 3.4 the family must betwo-dimensional (see Lemma 3.5). Then the 
urves in the 
overing family yield, via the 
orrespon-den
e des
ribed in � 2.1, 
urves on S with rational, ellipti
 or hyperellipti
 normalizations, and the
orresponden
e is one-to-one in the hyperellipti
 
ase. We therefore see that we must be in one ofthe following 
ases:(a) S 
ontains an irredu
ible rational 
urve Γ and

Y = {ξ ∈ S[2] | Supp(ξ) ∩ Γ 6= ∅};(b) S 
ontains a one-dimensional irredu
ible family {E}v∈V of irredu
ible ellipti
 
urves and
Y = {ξ ∈ E

[2]
v }v∈V ;or(
) S 
ontains a two-dimensional, irredu
ible family of irredu
ible 
urves with hyperellipti
 nor-malizations, not 
ontained in a higher dimensional irredu
ible family, and Y is the lo
us
overed by the 
orresponding rational 
urves in S[2].(Note that in fa
t 
ase (b) 
an only o

ur for kod(S) ≤ 1 by Lemma 2.3 and 
ase (
) only when |KS |is not birational. The latter fa
t is easy to see, 
f. e.g. [33℄.)In the 
ase of K3 surfa
es, uniruled divisors play a parti
ularly important r�le [32, �5℄, 
f. � 7.Now all 
ases (a)-(
) above o

ur on a general, proje
tive K3 surfa
e with a polarization of genus

≥ 6. In fa
t, 
ases (a) and (b) o

ur on any proje
tive K3 surfa
e sin
e it ne
essarily 
ontains aone-dimensional family of irredu
ible, ellipti
 
urves and a zero-dimensional family of rational 
urves,by a well-known theorem of Mumford (see the proof in [38, pp. 351-352℄ or [2, pp. 365-367℄). Case(
) o

urs on a general primitively polarized K3 surfa
e of genus p ≥ 6 by Corollary 5.3 below witha family of 
urves of geometri
 genus 3. In addition to this, in Proposition 7.7 we will see that thereis another threefold as in (
) arising from 
urves of geometri
 genus > 3 in the hyperplane linearsystem on general proje
tive K3 surfa
es of in�nitely many degrees.Moreover, there is not a one-to-one 
orresponden
e between families as in (a), (b) or (
) aboveand uniruled threefolds in S[2]. In fa
t, in Proposition 7.2 we will see that there is a two-dimensionalfamily of 
urves with hyperellipti
 normalizations, as in (
), in the hyperplane linear systems ongeneral K3 surfa
es of in�nitely many degrees whose asso
iated rational 
urves 
over only a P2 in
S[2].
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urves with hyperellipti
 normalizationsThe purpose of this se
tion is to study the dimension of families of 
urves on a smooth proje
tivesurfa
e S with hyperellipti
 normalizations.We �rst remark that it is not di�
ult to see that if |KS | is birational, then the dimension of su
ha family is for
ed to be zero (see e.g. [33℄). At the same time it is easy to �nd obvious examplesof surfa
es, even with pg(S) > 0, with large families of 
urves with hyperellipti
 normalizations,namely surfa
es admitting a �nite 2 : 1 map onto a rational surfa
e. (For examples of su
h 
ases,see e.g. [26, 27, 28, 29, 48, 51, 53, 10℄ to mention a few.) In these 
ases one 
an pull ba
k thefamilies of rational 
urves on the rational surfa
e to obtain families of 
urves on S with hyperellipti
normalizations of arbitrarily high dimensions. Moreover, in Proposition 7.2 below we will see thateven a general, primitively polarized K3 surfa
e (S,H), for in�nitely many degrees, 
ontains a P2in its Hilbert square, whi
h is not 
ontained in ∆ (but the surfa
e is not a double 
over of a P2,by generality). Therefore, by the 
orresponden
e in � 2.1, S 
ontains large families of 
urves withhyperellipti
 normalizations. One 
an see that in all these examples of large families the algebrai
equivalen
e 
lass of the members breaks into nontrivial e�e
tive de
ompositions. For example, in thementioned K3 
ase of Proposition 7.2, we will see that the 
urves in |OP2(n)| in P2 ⊂ S[2] 
orrespondto 
urves in |nH|. In this se
tion we will see that this is a general phenomenon, with the help ofLemma 2.10.To this end, let V be a redu
ed and irredu
ible s
heme parametrizing a �at family of 
urves on Sall having 
onstant geometri
 genus pg ≥ 2 and hyperellipti
 normalizations. Let ϕ : C → V be theuniversal family. Normalizing C we obtain, possibly restri
ting to an open dense subs
heme of V , a�at family ϕ̃ : C̃ → V of smooth hyperellipti
 
urves of genus pg ≥ 2 (
f. [56, Thm. 1.3.2℄). Let ωeC/Vbe the relative dualizing sheaf. As in [37, Thm. 5.5 (iv)℄, 
onsider the morphism γ : C̃ → P(ϕ̃∗(ωeC/V
))over V . This morphism is �nite and of relative degree two onto its image, whi
h we denote by PV .We thus obtain a universal family ψ : PV → V of rational 
urves mapping to Sym2(S), as in (2.5),satisfying (2.6) and (2.7). (Stri
tly speaking, (2.5) denoted a universal family of maps, whereas itnow denotes a universal family of 
urves.) To summarize, re
alling (2.8), we have(4.1) C̃

π

����
��

��
��

ϕ̃
  @

@@
@@

@@
@

γ
// PV

ψ

��

ΦV
// RV

S V.Also note that (4.1) is 
ompatible with the 
orresponden
e of 
ase (I) in � 2.1, in the sense that,for general v ∈ V , we have (using the same notation as in � 2.1)(4.2) π(ϕ̃−1(v)) = pS(p−1
2 Xv) = (pS)∗(p

−1
2 Xv) = CXv , with Xv = µ−1

∗
(
ΦV (ψ−1(v))

)
⊂ S[2],where µ is the Hilbert-Chow morphism (in parti
ular, pS and p2 are the �rst and se
ond proje
tions,respe
tively, from the in
iden
e variety T ⊂ S × S[2]). Note that the se
ond equality in (4.2) followsas pS is generi
ally one-to-one on the 
urves in question, as we saw in � 2.1. This will be 
entral inthe proof of the next result.We now apply Lemma 2.10 to �break� the 
urves on S.Proposition 4.3. Let S be a smooth, proje
tive surfa
e and V and RV as above. Assume that

dim(V ) ≥ 3 and dim(RV ) = 2 and let [C] be the algebrai
 equivalen
e 
lass of the membersparametrized by V .Then there is a de
omposition into two e�e
tive, algebrai
ally moving 
lasses
[C] = [D1] + [D2]
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h that, for general ξ, η ∈ RV , there are e�e
tive divisors D′
1 ∼alg D1 and D′

2 ∼alg D2 su
h that
ξ ⊂ D′

1 and η ⊂ D′
2 and [D′

1 +D′
2] ∈ V , where V is the 
losure of V in the 
omponent of the Hilberts
heme of S 
ontaining V .Proof. For general ξ, η ∈ RV , both being supported at two distin
t points on S, let B = Bξ,η ⊂ V beas in the proof of Lemma 2.10 and B be any smooth 
ompa
ti�
ation of B. By abuse of notation,we will 
onsider ξ and η as being points in S[2]. By (the proof of) Lemma 2.10, using the Hilbert-Chow morphism, there is a �at family {Xb}b∈B of 
urves in the surfa
e µ−1

∗ (RV ) ⊂ S[2] (where µis the Hilbert-Chow morphism as usual) parametrized by B, su
h that, for general b ∈ B, Xb is anirredu
ible rational 
urve and(4.4) CXb
= (pS)∗(p

−1
2 (Xb)) = π(ϕ̃−1(b)),with notation as in � 2.1 (
f. (4.2)). In parti
ular, {CXb

}b∈B is a one-dimensional nontrivial subfamilyof the family {CXv}v∈V given by V . Moreover, for some b0 ∈ B \B, we have Xb0 ⊇ Yξ + Yη, where
Yξ and Yη are irredu
ible rational 
urves (possibly 
oin
iding) su
h that ξ ∈ Yξ and η ∈ Yη. Alsonote that Yξ, Yη 6⊂ ∆ ⊂ S[2].Pulling ba
k to the in
iden
e variety T ⊂ S × S[2], we obtain a �at family {X ′

b := p−1
2 (Xb)}b∈B of
urves in T , su
h that(4.5) X ′

b0 := p−1
2 (Xb) ⊇ p−1

2 (Yξ) + p−1
2 (Yη) =: Y ′

ξ + Y ′
η .Note that the family {X ′

b}b∈B is in fa
t a family of 
urves in the in
iden
e variety T0 ⊂ S×µ−1
∗ (RV ),whi
h is a surfa
e 
ontained in T . Sin
e pS maps this family to a family of 
urves 
overing (an opendense subset of) S, by (4.4), we see that (pS)|T0

is surje
tive, in parti
ular generi
ally �nite. Thus,
hoosing ξ and η general enough, we 
an make sure they lie outside of the images by p2 of the �nitelymany 
urves 
ontra
ted by (pS)|T0
. Hen
e q−1(Yξ) and q−1(Yη) are not 
ontra
ted by pS .Therefore, re
alling (4.4) and (4.5) and letting b′ ∈ B be a general point, we get

C ∼alg (pS)∗X
′
b′ ∼alg (pS)∗X

′
b0 ⊇ (pS)∗Y

′
ξ + (pS)∗Y

′
η ⊇ Dξ +Dη,where Dξ := p(q−1Yξ) and Dη := p(q−1Yη).By 
onstru
tion we have Dξ ⊃ ξ and Dη ⊃ η, viewing ξ and η as length-two subs
hemes of S.(Note that Dξ and Dη are not ne
essarily distin
t.) Possibly after adding additional 
omponents to

Dξ and Dη , we 
an in fa
t assume that
C ∼alg (pS)∗X

′
b′ = Dξ +Dη,with Dξ and Dη not ne
essarily redu
ed and irredu
ible. Sin
e this 
onstru
tion 
an be repeatedfor general ξ, η ∈ RV and the set {x ∈ S | x ∈ Supp(ξ) for some ξ ∈ RV } is dense in S, as the
urves parametrized by V 
over the whole surfa
e S, the obtained 
urves Dξ and Dη must move inan algebrai
 system of dimension at least one.By 
onstru
tion, Dξ + Dη lies in the border of the family ϕ : C → V of 
urves on S, and assu
h, [Dξ +Dη ] lies in the 
losure of V in the 
omponent of the Hilbert s
heme of S 
ontaining V .Moreover, as the number of su
h de
ompositions is �nite (as S is proje
tive and the divisors aree�e
tive), we 
an �nd one de
omposition [C] = [D1] + [D2] holding for general ξ, η ∈ RV . �The next two results are immediate 
onsequen
es:Theorem 4.6. Let S be a smooth, proje
tive surfa
e with pg(S) > 0. Then the following 
onditionsare equivalent:(i) S[2] 
ontains an irredu
ible surfa
e R with rational desingularization, su
h that R 6= µ−1

∗ (C1+

C2), µ
−1
∗ (Sym2(C)) for rational 
urves C,C1, C2 ⊂ S and R 6⊂ Exc(µ), where µ : S[2] →

Sym2(S) is the Hilbert-Chow morphism;
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ontains a �at family of irredu
ible 
urves with hyperellipti
 normalizations of geometri
genus pg ≥ 3, parametrized by a redu
ed and irredu
ible s
heme V su
h that dim(V ) ≥ 3.Furthermore, if any of the above 
onditions holds, then(a) the rational 
urves in S[2] that 
orrespond to the irredu
ible 
urves parametrized by V , 
overonly the surfa
e R in S[2]; and(b) the algebrai
 equivalen
e 
lass [C] of the 
urves parametrized by V has an e�e
tive de
om-position [C] = [D1] + [D2] into algebrai
ally moving 
lasses su
h that, for general ξ, η ∈ R,there are e�e
tive divisors D′
1 ∼alg D1 and D′

2 ∼alg D2 su
h that ξ ⊂ D′
1, η ⊂ D′

2 and
[D′

1 + D′
2] ∈ V , where V is the 
losure of V in the 
omponent of the Hilbert s
heme of S
ontaining V .Proof. Assume (ii) holds. By Proposition 3.6 we have that RV ⊂ Sym2(S) is a surfa
e with rationaldesingularization, so that (i) holds.Assume now that (i) holds. Then R 
arries a family of rational 
urves of dimension n ≥ 3. ByLemma 2.4 and the assumptions in (i), this yields an n-dimensional family of 
urves on S that haverational, ellipti
 or hyperellipti
 normalizations. From Lemma 2.3, we get (ii).Finally, assume that these 
onditions hold. Then (a) follows from Proposition 3.6 again, where Ris the proper transform via µ of the surfa
e RV therein; �nally, (b) follows from Proposition 4.3. �Corollary 4.7. Let S be a smooth, proje
tive surfa
e with pg(S) > 0 and V be a redu
ed, irredu
ibles
heme parametrizing a �at family of irredu
ible 
urves with hyperellipti
 normalizations (of geometri
genus ≥ 2). Denote by [C] the algebrai
 equivalen
e 
lass of the members of V .If [C] has no de
omposition into e�e
tive, algebrai
ally moving 
lasses, then dim(V ) ≤ 2.In parti
ular, Corollary 4.7 holds when e.g. NS(S) = Z[C].The examples with the double 
overs of smooth rational surfa
es and the result in Proposition 7.2mentioned above, show that the results above are natural.The statement in Theorem 4.6(b) shows that in fa
t the length-two zero-dimensional s
hemes onthe 
urves in the family 
orresponding to the elements of the g

1
2s on their normalization, are in fa
t�generi
ally 
ut out� by moving divisors in a �xed algebrai
 de
omposition of the 
lass of the membersin the family. This reminds of the nowadays well-known results of Reider and their generalizations[47, 8, 9℄. In fa
t, Theorem 4.6(b) 
an be used to prove a Reider-like result involving the arithmeti
and geometri
 genera of the 
urves in the family, 
f. [33℄. Moreover, the pre
ise statement in Theorem4.6(b) will be 
ru
ial in the next se
tion, where we will prove existen
e of 
urves with hyperellipti
normalizations by degeneration methods.5. Nodal 
urves of geometri
 genus 3 with hyperellipti
 normalizations on K3surfa
esIn the rest of the paper we will fo
us on the existen
e of 
urves with �Brill-Noether spe
ial�hyperellipti
 normalizations (i.e. of geometri
 genera > 2) and in this se
tion we will see thatTheorem 4.6(b) is parti
ularly suitable to prove existen
e results by degeneration arguments.To do this and to dis
uss some 
onsequen
es on S[2], we will in the rest of the paper fo
us on K3surfa
es, whi
h in fa
t were one of our original motivations for this work.We start with the following observation 
ombining a result of Ran, already mentioned in theIntrodu
tion, with the results from the previous se
tion.Lemma 5.1. Let S be a smooth, proje
tive K3 surfa
e and L be a globally generated line bundle ofse
tional genus p ≥ 2 on S. Let |L|hyper ⊆ |L| be the subs
heme parametrizing irredu
ible 
urves in

|L| with hyperellipti
 normalizations.
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ible 
omponent of |L|hyper has dimension ≥ 2, with equality holding if L has node
omposition into moving 
lasses.Proof. Any n-dimensional 
omponent of |L|hyper yields an n-dimensional family of irredu
ible rational
urves in S[2]. By [46, Cor. 5.1℄, we have n ≥ 2. The last statement follows from Corollary 4.7. �The main aim of this se
tion is to apply Theorem 4.6(b) to prove:Theorem 5.2. Let (S,H) be a general, smooth, primitively polarized K3 surfa
e of genus p =
pa(H) ≥ 4. Then the family of nodal 
urves in |H| of geometri
 genus 3 with hyperellipti
 normal-izations is nonempty, and ea
h of its irredu
ible 
omponents is two-dimensional.In [22℄ we studied whi
h linear series may appear on normalizations of irredu
ible 
urves on K3surfa
es. To do so, we introdu
ed a singular Brill-Noether number ρsing(pa, r, d, pg) whose negativity,when Pic(S) ≃ Z[H], ensures non-existen
e of 
urves in |H|, with pa = pa(H) and of geometri
 genus
pg, having normalizations admitting a g

r
d (we will return to this in � 6.3 below). Moreover, in [22,Examples 2.8 and 2.10℄, we already gave examples of nodal 
urves with hyperellipti
 normalizationswith geometri
 genus 3 and arithmeti
 genus 4 or 5. Theorem 5.2 shows that this is a generalphenomenon. The proof will be given in the remainders of this se
tion. Moreover, we will alsodetermine the dimension of the lo
us 
overed in S[2] by the rational 
urves asso
iated to 
urves in a
omponent of the family:Corollary 5.3. Let (S,H) be a general, smooth, primitively polarized K3 surfa
e of genus p =

pa(H) ≥ 6. Then the subs
heme of |H| parametrizing nodal 
urves of geometri
 genus 3 with hyper-ellipti
 normalizations 
ontains a two-dimensional 
omponent V su
h that dim(RV ) = 3.This 
orollary in parti
ular shows that all three 
ases in Remark 3.7 o

ur on a general K3 surfa
e.In � 6.2-6.3 we will both 
ompute the 
lasses of the 
orresponding rational 
urves in S[2] (see (6.26))and dis
uss some of the 
onsequen
es of Theorem 5.2 on the Mori 
one of S[2].Before starting on the proof of Theorem 5.2, we re
all that, for any smooth surfa
e S and anyline bundle L on S, su
h that |L| 
ontains smooth, irredu
ible 
urves of genus p := pa(L), and anypositive integer δ ≤ p, one denotes by V|L|,δ the lo
ally 
losed and fun
torially de�ned subs
hemeof |L| parametrizing the universal family of irredu
ible 
urves in |L| having δ nodes as the onlysingularities and, 
onsequently, geometri
 genus pg := p − δ. These are 
lassi
ally 
alled Severivarieties of irredu
ible, δ-nodal 
urves on S in |L|.It is nowadays well-known, as a dire
t 
onsequen
e of Mumford's theorem on the existen
e of nodalrational 
urves on K3 surfa
es (see the proof in [38, pp. 351-352℄ or [2, pp. 365-367℄) and standardresults on Severi varieties, that if (S,H) is a general, primitively polarized K3 surfa
e of genus p ≥ 3,then the Severi variety V|H|,δ is nonempty and regular, i.e. it is smooth and of the expe
ted dimension
p− δ, for ea
h δ ≤ p (
f. [55, Lemma 2.4 and Theorem 2.6℄; see also e.g. [15, 20℄).The regularity property follows from the fa
t that, sin
e by de�nition V|L|,δ parametrizes irredu
ible
urves, the nodes of these 
urves impose independent 
onditions on |L| (
f. [15, 20℄ and [55, Remark2.7℄). From equisingular deformation theory, this implies that suitable obstru
tions to some lo
allytrivial deformations are zero. In other words, it implies �rst that, for any δ′ > δ, V|L|,δ′ ⊂ V |L|,δ (see[52, Anhang F℄, [59℄ and [50, Thm. 4.7.18℄ for P2 and [55, � 3℄ forK3s). Furthermore, if [C] ∈ V|L|,δ+k,
k > 0, is a general point of an irredu
ible 
omponent, the fa
t that the nodes impose independent
onditions allows to 
learly des
ribe what V |L|,δ looks like lo
ally around the point [C]: it is theunion of (δ+k

δ

) smooth bran
hes through [C], ea
h bran
h 
orresponding to a 
hoi
e of δ "marked"(or "assigned") nodes among the δ+ k nodes of C, and these bran
hes interse
t transversally at [C];moreover, the other k "unassigned" nodes of C disappear when one deforms [C] in the 
orrespondingbran
h of V |L|,δ (see [52, Anhang F℄, [59℄ and [49, � 1℄ for P2 and [55, � 3℄ for K3s).
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ible, nodal 
urves in |L|. Sin
e they appear in the proofof Theorem 5.2, we also have to take 
are of this 
ase. To this end, we de�ne the �degenerated�version of V|L|,δ by
W|L|,δ :=

{
C ∈ |L| | C, not ne
essarily irredu
ible, has only nodes(5.4) as singularities and at least δ nodes}.For the same reasons as above, W|L|,δ is a lo
ally 
losed subs
heme of |L|. Note that(5.5) W|L|,δ = ∪δ′≥δV|L|,δ′ if all the 
urves in |L| are irredu
ible,whi
h is a partial 
ompa
ti�
ation of V|L|,δ.Let [C] ∈ W|L|,δ. Choosing any subset {p1, . . . , pδ} of δ of its nodes, one obtains a pointed 
urve

(C; p1, . . . , pδ), where p1, . . . , pδ are also 
alled themarked (or assigned) nodes of C (
f. [55, De�nitions3.1-(ii) and 3.6-(i)℄).Re
all that there exists an algebrai
 s
heme, whi
h we denote by(5.6) B(C; p1, p2, . . . , pδ),lo
ally 
losed in |L|, representing the fun
tor of in�nitesimal deformations of C in |L| that preservethe marked nodes, i.e. the fun
tor of lo
ally trivial in�nitesimal deformations of the pointed 
urve
(C; p1, . . . , pδ) (
f. [55, Proposition 3.3℄, where we have identi�ed the s
hemes therein with theirproje
tions into the linear system |L|). In other words, B(C; p1, p2, . . . , pδ) is the lo
al bran
h of
W|L|,δ around [C] ∈W|L|,δ, 
orresponding to the 
hoi
e of the δ marked nodes. We have:Theorem 5.7. (
f. [55, Theorem 3.8℄) Let (C; p1, . . . , pδ) be as above. Assume that the generalelement of |L| is a smooth, irredu
ible 
urve and that the partial normalization of C at the δ markednodes p1, . . . , pδ is a 
onne
ted 
urve.Then B(C; p1, p2, . . . , pδ) is smooth at the point [(C; p1, p2, . . . , pδ)] of dimension dim(|L|) − δ.Proof. This follows from [55, Theorem 3.8℄ sin
e, by our assumptions, the pointed 
urve (C; p1, . . . , pδ)is virtually 
onne
ted in the language of [55, De�nition 3.6℄. �For the proof of Theorem 5.2 we need to re
all other fundamental fa
ts. We �rst de�ne, for anyglobally generated line bundle L of se
tional genus p := pa(L) ≥ 2, on a K3 surfa
e S, and anyinteger δ su
h that 0 < δ ≤ p− 2, the lo
us in the Severi variety V|L|,δ,(5.8) V hyper

|L|,δ :=
{
C ∈ V|L|,δ | its normalization is hyperellipti
}.Observe that in parti
ular, for any p ≥ 3, one always has V hyper

|L|,p−2 = V|L|,p−2 6= ∅ and, by regularityof V|L|,p−2, this is smooth and of dimension two.Let Mg be the moduli spa
e of smooth 
urves of genus g, whi
h is quasi-proje
tive of dimension
3g−3 for g ≥ 2. Denote by Mg its Deligne-Mumford 
ompa
ti�
ation. Then Mg is the moduli spa
eof stable, genus g 
urves. Let Hg ⊂ Mg denote the lo
us of hyperellipti
 
urves, whi
h is known tobe an irredu
ible variety of dimension 2g − 1 (see e.g. [1℄) and Hg ⊂ Mg be its 
ompa
ti�
ation.Moreover, re
all from [23, Def.(3.158)℄ that a nodal 
urve C (not ne
essarily irredu
ible) is stablyequivalent to a stable 
urve C ′ if C ′ is obtained from C by 
ontra
ting to a point all smooth rational
omponents of C meeting the other 
omponents in only one or two points.
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|L|,δ by

W hyper
|L|,δ :=

{
C ∈W|L|,δ | there exists a desingularization C̃ of δ of the(5.9) nodes of C, su
h that C̃ is stably equivalent to a(stable) 
urve C ′ with [C ′] ∈ Hpa(L)−δ

}
.Note that, by de�nition, any su
h C̃ is 
onne
ted. Similarly as in (5.5), we have:(5.10) W hyper

|L|,δ = ∪δ′≥δV hyper
|L|,δ if all the 
urves in |L| are irredu
ible.Theorem 5.2 will be a dire
t 
onsequen
e of the next three results, Propositions 5.11 and 5.19 andLemma 5.20. The 
entral degeneration argument is given by the following:Proposition 5.11. Let p ≥ 3 and δ ≤ p− 2 be positive integers. Assume there exists a smooth K3surfa
e S0 with a globally generated, primitive line bundle H0 on S0 with pa(H0) = p and su
h that

W hyper
|H0|,δ (S0) 6= ∅ and dim(W hyper

|H0|,δ (S0)) ≤ 2.Then, on the general, primitively marked K3 surfa
e (S,H) of genus p, W hyper
|H|,δ (S) is nonemptyand equidimensional of dimension two.Proof. Let Bp be the moduli spa
e of primitively marked K3 surfa
es of genus p. It is well-knownthat Bp is smooth and irredu
ible of dimension 19, 
f. e.g. [2, Thm.VIII 7.3 and p. 366℄. We let

b0 = [(S0,H0)] ∈ Bp. Similarly as in [5℄, 
onsider the s
heme of pairs(5.12) Wp,δ :=
{
(S,C) | [(S,H)] ∈ Bp and [C] ∈W|H|,δ(S)

}
,and the natural proje
tion(5.13) π : Wp,δ −→ Bp.(The fa
t that Wp,δ is a s
heme, in fa
t a lo
ally 
losed s
heme, follows from the already mentionedproof of Mumford's theorem on the existen
e of nodal rational 
urves as in [38, pp. 351-352℄ or [2,pp. 365-367℄.)Note that for general [(Sb,Hb)] = b ∈ Bp we have

π−1(b) = ∪δ′≥δV|Hb|,δ′(Sb)by (5.5) (as Pic(Sb) ≃ Z[Hb]), so that π−1(b) is nonempty, equidimensional and of dimension g :=
p− δ, by the regularity property re
alled above. In parti
ular, π is dominant. Observe that Wp,δ issingular in 
odimension one, so in parti
ular it is not normal.For brevity, let W := Wp,δ and let C

f→ W be the universal 
urve. As in Theorem A.1, (i) and (ii),in Appendix A, there exists a 
ommutative diagram
C′

f ′

��

// C

f

��

W(δ)
α

// W,where α is a �nite, unrami�ed morphism de�ning a marking of all the δ-tuples of nodes of the �bresof f (
f. Theorem A.1, with V = W, E(δ) = W(δ)). Pre
isely, by using notation as in Theorem A.1,if for w ∈ W the 
urve C(w) has δ + τ nodes, τ ∈ Z+, α−1(w) 
onsists of (δ+τ
δ

) elements, sin
e any
ηw ∈ α−1(w) parametrizes an unordered, marked δ-tuple of the δ + τ nodes of C(w).Let ηw ∈ W(δ). Then ηw is represented by a pointed 
urve (C; p1, p2, . . . , pδ), where (S,C) ∈ Wand where p1, p2, . . . , pδ are δ marked nodes on C.



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 19Let W(S,H) (resp. W(δ)(S,H)) be the �bre of π (resp. of α ◦ π) over [(S,H)] ∈ Bp, and let
α(S,H) : W(δ)(S,H) −→ W(S,H)be the indu
ed morphism. For ηw ∈ W(δ)(S,H) as above, we have(5.14) T[ηw](W(δ)(S,H)) ∼= T[(C;p1,p2,...,pδ)](B(C; p1, p2, . . . , pδ)),where B(C; p1, p2, . . . , pδ) is as in (5.6). Indeed, sin
e α is �nite and unrami�ed, then also α(S,H)is. Therefore, it su�
es to 
onsider the image of the di�erential dα(S,H)[ηw ]. The latter is given by�rst-order deformations of C in S (equivalently in |H|) that are lo
ally trivial at the δ marked nodes;these are pre
isely given by T[(C;p1,p2,...,pδ)](B(C; p1, p2, . . . , pδ)) (
f. [55, Remark 3.5℄).Let W̃(δ) be the smooth lo
us of W(δ). By Theorem 5.7 and by (5.14), together with the fa
t that

Bp is smooth, W̃(δ) 
ontains all the pairs (S,C) with δ marked nodes on C, su
h that |C| is globallygenerated (i.e. its general element is a smooth, irredu
ible 
urve) and the partial normalization of
C at these marked nodes is a 
onne
ted 
urve. More pre
isely, by the proof of Mumford's theoremon the existen
e of nodal rational 
urves on K3 surfa
es, as in [38, pp. 351-352℄ or [2, pp. 365-367℄),any irredu
ible 
omponent of W(δ) has dimension ≥ 19 + p − δ = 19 + g; furthermore, by (5.14),
dim(T[ηw ](W(δ)(S,H))) = g, where ηw represents (S,C) with C with the δ marked nodes. It alsofollows that W(δ) is smooth, of dimension 19 + g at these points.If we restri
t C′ to W̃(δ), from Theorem A.1, (iv) and (v), we have a 
ommutative diagram

C̃

ef
��

// C

f

��

W̃(δ)
eα

// W,where α̃ = α|fW(δ)
and where f̃ is the �at family of partial normalizations at δ nodes of the 
urvesparametrized by α(W̃(δ)) (in the notation of Theorem A.1 in Appendix A, f̃ = f in (v) and C̃ = Cin (iii) and (iv)).There is an obvious rational map

W̃(δ)
c

//___ Mg,de�ned on the open dense subs
heme W̃0
(δ) ⊂ W̃(δ) su
h that, for ηw ∈ W̃0

(δ), C̃(ηw) is stably equivalentto a stable 
urve of genus g.Set ψ := c|fW0
(δ)

. By de�nition, for any ηw ∈ W̃0
(δ), the map ψ 
ontra
ts all possible smooth rational
omponents of C̃(ηw) meeting the other 
omponents in only one or two points and maps the resultingstable 
urve into its equivalen
e 
lass in Mg.Pi
k any C0 ∈ W hyper

|H0|,δ (S0) and let w0 = [(S0, C0)] ∈ W be the 
orresponding point. Now |H0| isglobally generated and the normalization of C0 at some δ nodes satisfying the 
onditions in (5.9) isa 
onne
ted 
urve. Therefore, letting ηw0 ∈ α−1(w0) be the point 
orresponding to marking these δnodes, we have that ηw0 ∈ W̃0
(δ) and the map c is de�ned at ηw0 .Let Ṽ ⊆ W̃0

(δ) be the irredu
ible 
omponent 
ontaining ηw0 ; then, as proved above, dim(Ṽ) = 19+g.By assumption, ψ(Ṽ) ∩ Hg 6= ∅. Hen
e, for any irredu
ible 
omponent K ⊆ ψ(Ṽ) ∩ Hg, we have(5.15) dim(K) ≥ dim(ψ(Ṽ)) + dim(Hg) − dim(Mg) = dim(ψ(Ṽ)) + 2 − g.



20 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAPi
k any K 
ontaining ψ(ηw0) and let I ⊆ ψ−1

|eV
(K) be any irredu
ible 
omponent 
ontaining ηw0 .Sin
e the general �bre of ψ|eV

has dimension dim(Ṽ)− dim(ψ(Ṽ)) = 19 + g − dim(ψ(Ṽ)), from (5.15)we have
dim(I) = dim(K) + 19 + g − dim(ψ(Ṽ))(5.16)

≥ dim(ψ(Ṽ)) + 2 − g + 19 + g − dim(ψ(Ṽ)) = 21.Consider now(5.17) π ◦ (α̃|I) : I −→ Bp.Sin
e, by assumption, the �bre over b0 = [(S0,H0)] is at most two-dimensional, we 
on
lude from(5.16) that π◦(α̃|I) is dominant, that all the �bres are pre
isely two-dimensional and that dim(I) = 21.This shows that W hyper
|H|,δ 6= ∅ for general [(S,H)] ∈ Bp and Lemma 5.1 implies that in fa
t anyirredu
ible 
omponent of W hyper

|H|,δ (S) has dimension two. �Remark 5.18. In parti
ular, Lemma 5.1, Proposition 5.11 and [22, Examples 2.8 and 2.10℄ proveTheorem 5.2 for p = 4 and 5.We next 
onstru
t the desired spe
ial primitively marked K3 surfa
e:Proposition 5.19. Let d ≥ 2 and k ≥ 1 be integers. There exists a K3 surfa
e S0 with
Pic(S0) = Z[E] ⊕ Z[F ] ⊕ Z[R]and interse
tion matrix 


E2 E.F E.R
F.E F 2 F.R
R.E R.F R2


 =




0 d k
d 0 k
k k −2


 ,and su
h that the following 
onditions are satis�ed:(a) |E| and |F | are ellipti
 pen
ils;(b) R is a smooth, irredu
ible rational 
urve.(
) H0 := E +F +R is globally generated, in parti
ular the general member of |H0| is a smooth,irredu
ible 
urve of arithmeti
 genus p := 2k + d;(d) the only e�e
tive de
ompositions of H0 are

H0 ∼ E + F +R ∼ (E + F ) +R ∼ (E +R) + F ∼ (F +R) + E.Proof. Sin
e the latti
e has signature (1, 2), then, by a result of Nikulin [43℄ (see also [39, Cor.2.9(i)℄), there is a K3 surfa
e S0 with that as Pi
ard latti
e. Performing Pi
ard-Lefs
hetz re�e
tionson the latti
e, we 
an assume that H0 is nef, by [2, VIII, Prop. 3.9℄. Straightforward 
al
ulations onthe Pi
ard latti
e rules out the existen
e of e�e
tive divisors Γ satisfying Γ2 = −2 and Γ.E < 0 or
Γ.F < 0, or Γ2 = 0 and Γ.H0 = 1. Hen
e (a) and (
) follow from [48, Prop. 2.6 and (2.7)℄. Similarlyone 
omputes that if Γ > 0, Γ2 = −2 and Γ.R < 0, then Γ = R, proving (b).Similarly, (d) is proved by dire
t 
al
ulations using the nefness of E, F and H0 and re
alling thatby Riemann-Ro
h and Serre duality a divisor D on a K3 surfa
e is e�e
tive and irredu
ible only if
D2 ≥ −2 and D.N > 0 for some nef divisor N . �The following result, together with (5.10) and Proposition 5.11, now 
on
ludes the proof of Theo-rem 5.2 and Corollary 5.3. From Remark 5.18, we need only 
onsider p ≥ 6.Lemma 5.20. Let p ≥ 6 be an integer. There exists a smooth K3 surfa
e S0 with a globally generated,primitive line bundle H0 on S0 with p = pa(H0) su
h that(a) W hyper

|H0|,p−3(S0) 6= ∅;
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|H0|,p−3(S0)) = 2;(
) there exists a 
omponent of W hyper

|H0|,p−3(S0) whose general member deforms to a 
urve [Ct] ∈
V hyper
|Ht|,p−3(St), for general [(St,Ht)] ∈ Bp;(d) for general [(St,Ht)] ∈ Bp, the two-dimensional irredu
ible 
omponent Vt ⊆ V hyper

|Ht|,p−3(St)given by (
), satis�es dim(RVt) = 3 (with notation as in � 2.2).Proof. Set k = 1 if p is even and k = 2 if p is odd and let d := p− 2k ≥ 2. Consider the marked K3surfa
e (S0,H0) in Proposition 5.19.We will 
onsider two general smooth ellipti
 
urves E0 ∈ |E| and F0 ∈ |F | and 
urves of the form
C0 := E0 ∪ F0 ∪R,with transversal interse
tions and a desingularization(5.21) C̃0 = Ẽ0 ∪ F̃0 ∪ R̃→ C0of the δ := p − 3 = d + 2k − 3 nodes marked in Figure 1 below, that is, all but one of ea
h of theinterse
tion points E0 ∩ F0, E0 ∩R and F0 ∩R.

E 0 F 0

R

−−−−−−−−−−−−−−−−>

E 0 F 0

partial
normalization

C0

C0

 
k points k points
k=1,2 k=1,2 

d points

R

Figure 1. The 
urves C0 and C̃0Then [C0] ∈W hyper
|H0|,p−3, as C̃0 is stably equivalent to a union of two smooth ellipti
 
urves interse
tingin two points (
f. [23, Exer
ise (3.162)℄), proving (a). Clearly the 
losure of the family we have
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onstru
ted is isomorphi
 to |E| × |F | ≃ P1 × P1, and is therefore two-dimensional. Denote by
W0 ⊂W hyper

|H0|,p−3 this two-dimensional subs
heme.We will now show that any irredu
ible 
omponent W of W hyper
|H0|,p−3 has dimension ≤ 2.A 
entral observation, whi
h will be used together with Theorem 4.6(b), will be that, with theabove 
hoi
es of k, we have(5.22) E.H0 = F.H0 = d+ k = p− k is odd.We start by 
onsidering families of redu
ible 
urves. These are all 
lassi�ed in Proposition 5.19(d).If the general element in W is of the form D ∪R, for D ∈ |E +F |, then in order to have a partialdesingularization D̃ ∪ R̃ to be (degenerated) hyperellipti
, we must have deg(D̃ ∩ R̃) = 2, so that wemust desingularize 2(k − 1) of the interse
tion points of D ∩R. Finally, as pa(D̃ ∪ R̃) = 3, we musthave pa(D̃) = 2. Therefore W ⊆ WD × {R} ≃ WD, where WD ⊂ |D| is a subfamily of irredu
ible
urves of geometri
 genus ≤ 2. It follows that dim(W ) ≤ dim(WD) ≤ 2, by Lemma 2.3.If the general element in W is of the form D ∪ E, for D ∈ |F + R|, then in order to have apartial desingularization D̃ ∪ R̃ that is (degenerated) hyperellipti
, we must have deg(D̃ ∩ Ẽ) = 2.If the proje
tion W → |E| is dominant, this means that g
1
2(D̃) ⊆ |f∗E|| eD, where f : S̃ → Sdenotes the 
omposition of blow-ups of S that indu
es the partial desingularization D̃∪ R̃→ D∪R.But this would mean that |f∗E|| eD

, whi
h is base point free on D̃, is 
omposed with the g
1
2(D̃), a
ontradi
tion, as deg(O eD(f∗E)) = E.D = E.H0 is odd by (5.22). Therefore, the proje
tion W → |E|is not dominant, when
e dim(W ) ≤ dim(|D|) = 1

2D
2 +1 = k ≤ 2, as desired. By symmetry, the 
asewhere the general element in W is of the form D ∪ F , for D ∈ |E +R| is treated in the same way.Finally, we have to 
onsider the 
ase of a family W ⊆ |H0| of irredu
ible 
urves.In this 
ase assume dim(W ) ≥ 3, and let C be a general 
urve parametrized by W . Then byTheorem 4.6 (b), there exists an e�e
tive de
omposition into moving 
lasses H0 ∼M +N su
h that

g
1
2(C̃) ⊆ |f∗M || eC

, |f∗N || eC
,where f : S̃ → S denotes the su

ession of blow ups of S that indu
es the normalization C̃ → C.From Proposition 5.19(d) we see that we must have

g
1
2(C̃) ⊆ |f∗E|| eC

, or |f∗F || eC
,whi
h means that either |f∗E|| eC

or |f∗F || eC
is 
omposed with the g

1
2(C̃), again a 
ontradi
tion, asboth have odd degree by (5.22). We have therefore proved (b).To prove (
) we will show that any [C0] ∈W hyper

|H0|,p−3 in the two-dimensional, irredu
ible 
omponent
W0 
onsidered above in fa
t deforms to a 
urve [Ct] ∈W hyper

|Ht|,p−3(St), for general [(St,Ht)] ∈ Bp, thathas pre
isely δ = p− 3 nodes (
f. (5.10)).To this end, denote by S → Bp the universal family of K3 surfa
es, f̃ : C̃ → W̃(δ) and I ⊂ W̃(δ) asin the proof of Proposition 5.11, and let ϕ : C̃I → I be the restri
tion of f̃ .Sin
e the �ber over [(S0,H0)] of I → Bp as in (5.17) 
ontains an open, dense subset of P1 × P1,we 
an �nd a smooth, irredu
ible 
urve B ⊂ I satisfying: for x ∈ B general, ϕ−1(x) is a (partial)desingularization of δ = p−3 of the nodes of a 
urve in W|Ht|,δ(St) (
f. (5.4)), for general [(St,Ht)] ∈
Bp, and ϕ−1(x) ∈ H3 ⊂ M3; moreover B 
ontains a point x0 ∈ I su
h that ϕ−1(x0) is C̃0 as in(5.21), for C0 general in W0.Let ϕB : C̃B → B be the indu
ed universal 
urve. Sin
e the dualizing sheaf of ϕ−1

B (x0) = C̃0 isglobally generated (as ea
h 
omponent interse
ts the others in two points), we in fa
t have, possiblyafter substituting B with an open neighbourhood of x0, a morphism γB : C̃B → P(ϕ̃∗(ωeC/B
)) over
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B that is 2 : 1 on the general �bre ϕ−1

B (x) and 
ontra
ts the rational 
omponent R̃ of ϕ−1
B (x0) andmaps the two ellipti
 
urves Ẽ0 and F̃0 ea
h 2 : 1 onto (di�erent) P1s (
f. (5.21) and Figure 1).Let ν : C̃′

B → C̃B be the normalization and
C̃′
B

γ1
// C̃′′
B

γ2
// P(ϕ̃∗(ωeCB/B

))the Stein fa
torization of γB ◦ ν. In parti
ular, γ2 is �nite of degree two onto its image. Moreover,
ν◦ϕB : C̃′

B → B is a �at family whose general �ber (ν◦ϕB)−1(x) is a desingularization of ϕ−1
B (x) ∈ C̃B.Let pg be the geometri
 genus of this general �bre.Let D ⊂ C̃′

B be the stri
t transform via γ1 of the 
losure of the bran
h divisor of γ2 on thesmooth lo
us of C̃′′
B . By Riemann-Hurwitz, for general x ∈ B, we have D.ϕ−1

B (x) = 2pg + 2,whereas D.ϕ−1
B (x0) ≥ 8, as the 
urve γ1(ϕ

−1
B (x0)) 
ontains two smooth ellipti
 
urves, ea
h beingmapped 2 : 1 by γ2 onto (di�erent) P1s. This implies pg = 3. Sin
e, for general x ∈ B, we have

pg ≤ pa(ϕ
−1
B (x)) = p − δ = 3, we �nd that ϕ−1

B (x) is smooth. This means that the general 
urve in
W|Ht|,δ(St), for (St,Ht) ∈ Bp general, has pre
isely δ = p− 3 nodes, proving (
).To prove (d), again we 
onsider the morphism (up to possibly restri
ting I as above)

γI : CI → P(ϕ∗(ωCI/I))over I whi
h, apart some possible 
ontra
tions of rational 
omponents in spe
ial �bres over I, isrelatively 2 : 1 onto its image. We have a natural morphism h : CI → S, indu
ing a natural map
Φ : im(γI) −− → Sym2(S),whose domain has nonempty interse
tion with every �bre over Bp.Let R := im(Φ). Then R ∩ Sym2(St) = RVt , for general [(St,Ht)] ∈ Bp. One easily sees that

{Sym2(E′)}E′∈|E| ∪ {Sym2(F ′)}F ′∈|F | ⊆ R ∩ Sym2(S0).Sin
e the two varieties on the left are threefolds, we have dim(Φ−1(ξ0)) = 0 for general ξ0 ∈ R ∩
Sym2(S0) ⊂ R. Therefore, for general ξ ∈ R, we have dim(Φ−1(ξ)) = 0, so that dim(R) = dim(CI) =
dim(I) + 1 = 22, when
e dim(RVt) = 22 − dim(Bp) = 3. �Remark 5.23. For general [(St,Ht)] ∈ Bp the obtained 
urves in the last proof have in fa
t δ = p−3non-neutral nodes (
f. [22, �3℄). In fa
t a desingularization of less than p− 3 nodes of Ct admits no
g
1
2s, as 
learly a desingularization of less than p − 3 nodes of C0 is not stably equivalent to a 
urvein the hyperellipti
 lo
us H3 ⊂ M3.6. On the Mori 
one of the Hilbert square of a K3 surfa
eIn this se
tion we �rst summarize 
entral results on the Hilbert square of a K3 surfa
e and showhow to 
ompute the 
lass of a rational 
urve in S[2]. Then we dis
uss the relations between theexisten
e of 
urves on S and the slope of the Mori 
one of S[2], that is, the 
one of e�e
tive 
lassesin N1(S

[2])R. In parti
ular, we show how to dedu
e the bound (6.28) from Theorem 5.2 and (6.22)from known results about Seshadri 
onstants. Finally, we dis
uss the relation between the existen
eof a 
urve on S with given singular Brill-Noether number and the slope of the Mori 
one of S[2].6.1. Preliminaries on S[2] for a K3 surfa
e. Re
all that for any smooth surfa
e S we have(6.1) H2(S[2],Z) ≃ H2(S,Z) ⊕ Ze,where ∆ := 2e is the 
lass of the divisor parametrizing 0-dimensional subs
hemes supported on asingle point (see [7℄). So we may identify a 
lass in H2(S,Z) with its image in H2(S[2],Z). When
S is a K3 surfa
e the 
ohomology group H2(S[2],Z) is endowed with a quadrati
 form q, 
alled
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h that its restri
tion to H2(S,Z) is simply the 
up produ
t on
S, the two fa
tors H2(S,Z) and Ze are orthogonal with respe
t to this form and q(e) = −2. Thede
omposition (6.1) indu
es an isomorphism(6.2) Pic(S[2]) ≃ Pic(S) ⊕ Z[e],and ea
h divisor D on S 
orresponds to the divisor on S[2], by abuse of notation also denoted by D,
onsisting of length-two subs
hemes with some support on D.Given a primitive 
lass α ∈ H2(S

[2],Z), there exists a unique 
lass wα ∈ H2(S[2],Q) su
h that
α.v = q(wα, v), for all v ∈ H2(S[2],Z), and one sets(6.3) q(α) := q(wα).We denote also by ρα ∈ H2(S[2],Z) the 
orresponding primitive (1, 1)-
lass su
h that ρα = cwα, forsome c > 0 (for further details, we refer the reader to [25℄).If now Pic(S) = Z[H], then the Néron-Severi group of S[2] has rank two. We may take as generatorsof N1(S

[2])R the 
lass P1
∆ of a rational 
urve in the ruling of the ex
eptional divisor ∆ ⊂ S[2], andthe 
lass of the 
urve in S[2] de�ned as follows

{ξ ∈ S[2]|Supp(ξ) = {p0, y} | y ∈ Y },where Y is a 
urve in |H| and p0 is a �xed point on S. By abuse of notation, we still denote the 
lassof the 
urve in S[2] by Y . Note that we always have that(6.4) P1
∆ lies on the boundary of the Mori 
one.Indeed, the 
urve P1

∆ is 
ontra
ted by the Hilbert-Chow morphism S[2] → Sym2(S), so that thepull-ba
k of an ample divisor on Sym2(S) is nef, but zero along P1
∆.Therefore, des
ribing the Mori 
one NE(S[2]) amounts, by (6.4), to 
omputing(6.5) slope(NE(S[2])) := inf

{a
b
| aY − bP1

∆ ∈ N1(S
[2]) is e�e
tive, a, b ∈ Q+

}
.We will also 
all the (possibly in�nite) number a/b asso
iated to an irredu
ible 
urve X ∼alg aY −bP1

∆with a > 0 and b ≥ 0, the slope of the 
urve X and denote it by slope(X). Thus, the smaller slope(X)is, the nearer is X to the boundary of NE(S[2]).By a general result due to Huybre
hts [32, Prop. 3.2℄ and Bou
ksom [11℄, a divisor D on S[2] isample if and only if q(D) > 0 and D.R > 0 for any (possibly singular) rational 
urve R ⊂ S[2]. Asa 
onsequen
e, if the Mori 
one is 
losed then the boundary (whi
h remains to be determined) isgenerated by the 
lass of a rational 
urve (the other boundary is generated by P1
∆, by (6.4)). Thismeans that one would have slope(NE(S[2])) = sloperat(NE(S[2])), where(6.6)

sloperat(NE(S[2])) := inf
{a
b
| aY − bP1

∆ ∈ N1(S
[2]) is the 
lass of a rational 
urve, a, b ∈ Q+

}
.(A priori, one only has slope(NE(S[2])) ≤ sloperat(NE(S[2])).)Hassett and Ts
hinkel [25℄ make a pre
ise predi
tion on the geometri
 and numeri
al properties ofsu
h extremal rational 
urves in S[2]. Indeed, a

ording to their 
onje
tures [25, p. 1206 and Conj.3.6℄, the extremal ray R has to be generated either by the 
lass of a line inside a P2, su
h that

q(R) = −5
2 as in (6.3), or by the 
lass of a rational 
urve that is a �bre of a P1-bundle over a K3surfa
e and su
h that q(R) = −2 or −1

2 .



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 256.2. The 
lasses of rational 
urves in S[2]. Assume that Pic(S) = Z[H] with pa(H) = pa ≥ 2.Let X ⊂ S[2] be an irredu
ible rational 
urve. Let CX ⊂ S be the 
orresponding 
urve as in � 2.1and assume that CX ∈ |mH| with m ≥ 1. (In parti
ular, m ≥ 2 if we are in 
ase (II)). We 
an write
X ∼alg a1Y + a2P

1
∆.Sin
e X.H = m(2pa − 2), Y.H = 2pa − 2 and P1

∆.H = 0 by the very de�nition of H as a divisor in
S[2], and Y.e = 0 and P1

∆.e = −2, we obtain, de�ning g0(X) := X.e − 1,(6.7) X ∼alg mY −
(g0(X) + 1

2

)
P1

∆.To 
ompute g0(X), 
onsider the diagram (2.1). Sin
e ν∗XOX(∆) ≃ (ν∗XOX(e))⊗2, the double 
over
f is de�ned by ν∗XOX(∆). By Riemann-Hurwitz we therefore get(6.8) g0(X) = pa(C̃X).Note that in the 
ases (II) and (III) in the 
orresponden
e in � 2.1, X.e = g0(X) + 1 is pre
iselythe length of the interse
tion s
heme C̃X,1 ∩ C̃X,2, where C̃X = C̃X,1 ∪ C̃X,2. In 
ase (III), sin
e
ν̃ : C̃X → S 
ontra
ts one of the two 
omponents of C̃X to a point xX ∈ S, we obtain that(6.9) g0(X) = multxX

(CX) − 1 (if CX is of type (III)).One 
an 
he
k that for all divisors D in S[2] one has X.D = q(wX ,D) with(6.10) wX := mH −
(g0(X) + 1

2

)
e ∈ H2(S[2],Q).In parti
ular, 2wX ∈ H2(S[2],Z).From (6.5) and (6.7) we see that sear
hing for irredu
ible rational 
urves in (or at least �near�) theboundary of the Mori 
one of S[2], or with negative square q(X), amounts to sear
hing for irredu
ible
urves in |mH| with (partial) hyperellipti
 normalizations of high genus (
ase (I)), or to irredu
iblerational 
urves in |mH| with high multipli
ity at a point (
ase (III)), or to irredu
ible rational 
urveson S with some 
orresponden
e between some 
overings of their normalizations (
ase (II)). Moreover,we should sear
h for 
urves with as low m as possible. Now m ≥ 2 in 
ase (II), as remarked above.Moreover, any rational 
urve in |H| on a general S is nodal, by a result of Chen [13, Thm. 1.1℄ (thesame is also 
onje
tured for rational 
urves in |mH| for m > 1, see [14, Conj. 1.2℄), so that g0(X) ≤ 1if CX is of type (III) in these 
ases, by (6.9). Hen
e, we see that the most natural 
andidates areirredu
ible 
urves in |H| with hyperellipti
 normalizations.By the above, an irredu
ible 
urve C ∈ |mH| with hyperellipti
 normalization de�nes, by theuni
ity of the g

1
2, a unique irredu
ible rational 
urve X = RC ⊂ S[2] with 
lass(6.11) RC ∼alg mY −

(g0(C) + 1

2

)
P1

∆,where g0(C) := g0(RC) is well-de�ned as(6.12) g0(C) := the arithmeti
 genus of a minimal partial desingularization of C admitting a g
1
2.(For example, if C is nodal, then we simply take the desingularization of the non-neutral nodes of C,
f. [22, �3℄). From (6.5) we then get(6.13) slope(NE(S[2])) ≤ 2m

g0(C) + 1
≤ 2m

pg(C) + 1
, if there exists a C ∈ |mH| with hyp. norm.and, by (6.3) and (6.10),(6.14) q(RC) = 2m2(pa − 1) − (g0(C) + 1)2

2
≤ 2m2(pa − 1) − (pg(C) + 1)2

2
.



26 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAIn parti
ular, the higher g0(C) (or pg(C)) is - thus the more �unexpe
ted� the 
urve on S is from aBrill-Noether theory point of view - the lower is the bound on the slope of NE(S[2]) and the morenegative is the square q(RC) in S[2].6.3. The invariant ρsing, Seshadri 
onstants, the �hyperellipti
 existen
e problem� andthe slope of the Mori 
one. In [22℄ we introdu
ed a singular Brill-Noether invariant(6.15) ρsing(pa, r, d, g) := ρ(g, r, d) + pa − g,in order to study linear series on the normalization of singular 
urves. Pre
isely, we provedTheorem 6.16. Let S be a K3 surfa
e su
h that Pic(S) ≃ Z[H] with pa := pa(H) ≥ 2. Let C ∈ |H|and C̃ → C be a partial normalization of C, su
h that g := pa(C̃).If ρsing(pa, r, d, g) < 0, then C̃ 
arries no g
r
d.Proof. One easily sees that the proof of [22, Thm. 1℄ also holds for a partial normalization of C. �For r = 1 and d = 2, we have(6.17) ρsing(pa, 1, 2, g) < 0 ⇔ g >

pa + 2

2
.In parti
ular, a 
onsequen
e of Theorem 6.16 is the following:Theorem 6.18. Let S be a smooth, proje
tive K3 surfa
e with Pic(S) ≃ Z[H] and pa := pa(H) ≥ 2.Let Y and P1

∆ be the generators of N1(S
[2])R with notation as in � 6.1.If X ∈ N1(S

[2])Z with X ∼alg Y − kP1
∆, then k ≤ pa+4

4 .Proof. We 
an assume thatX is an irredu
ible 
urve. Then, pre
isely as in the 
ase of a rational 
urve,
X 
orresponds either to the data of an irredu
ible 
urve C ∈ |H| on S, with a partial normalization
C̃ admitting a 2 : 1 morphism onto the normalization X̃ of X, or to the data of an irredu
ible 
urve
C ∈ |H| on S together with a point x0 := xX ∈ S. (The 
ase 
orresponding to 
ase (II) in � 2.1 doesnot o

ur, sin
e the 
oe�
ient of Y is one, pre
isely as in the 
ase of a rational X explained above.)In the latter 
ase µ(X) = {x0 + C} ⊂ Sym2(S), where µ : S[2] → Sym2(S) is the Hilbert-Chowmorphism as usual, and one easily 
omputes k = (1/2)multx0(C) as in the rational 
ase above. Sin
e
learly multx0(C) ≤ 2 if pa = 2 and multx0(C) ≤ 3 if pa = 3, we have k ≤ pa+4

4 in these two 
ases.If pa ≥ 4, then from dim |H| − 3 − (pa − 4) = 1 and the fa
t that being singular at a given pointimposes at most three independent 
onditions on |H|, we 
an �nd an irredu
ible 
urve C ′ ∈ |H|,di�erent from C, singular at x0, and passing through at least pa − 4 points of C. Therefore
2pa − 2 = H2 = C ′.C ≥ multx0(C

′) · multx0(C) + pa − 4 ≥ 2multx0(C) + pa − 4,when
e multx0(C) ≤ (pa + 2)/2, so that k ≤ (pa + 2)/4.In the �rst 
ase, then, pre
isely as in the rational 
ase above,(6.19) k =
pa(C̃) + 1

2
− pg(X)from Riemann-Hurwitz. By Brill-Noether theory on X̃ , it follows that C̃ 
arries a g

1
d, with

d ≤ 2⌊pg(X) + 3

2
⌋.By Theorem 6.16 we have ρsing(pa(C), 1, d, pa(C̃)) ≥ 0, when
e pa(C̃) ≤ d−1+pa(C)/2. The desiredresult now follows. �



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 27By the proof of Theorem 6.18 we see that if C ∈ |mH| is an irredu
ible 
urve and x0 ∈ C, thenthe 
lass of the 
orresponding 
urve µ−1
∗ {x0 +C} ⊂ S[2] is given by mY − (1/2)multx0(C)P1

∆. Hen
e
slope(NE(S[2])) ≤ inf

m∈N

(
inf

C∈|mH|

(
inf
x∈C

2m

multx(C)

))
= inf

m∈N

2

H2

(
inf

C∈|mH|

(
inf
x∈C

C.H

multx(C)

))
.It follows that(6.20) slope(NE(S[2])) ≤ ε(H)

pa − 1
,where

ε(H) := inf
x∈S

(
inf
C∋x

C.H

multx(C)

)(and the in�mum is taken over all irredu
ible 
urves C ⊂ S passing through x) is the (global) Seshadri
onstant of H (
f. [17, � 6℄, [18℄ or [4℄). These 
onstants are very di�
ult to 
ompute. The only 
asewhere they have been 
omputed on general K3 surfa
es is the 
ase of quarti
 surfa
es, where onehas ε(H) = 2 by [3℄, yielding the bound slope(NE(S[2])) ≤ 1. As a 
omparison, the bound one getsfrom (6.13) using the singular 
urves of genus two in |H| is slope(NE(S[2])) ≤ 2/3. However, it iswell-known that ε(H) ≤
√
H2 on any surfa
e, see e.g. [54, Rem. 1℄. Hen
e, by (6.20) we obtainTheorem 6.21. Let (S,H) be a primitively polarized K3 surfa
e of genus pa := pa(H) ≥ 2 su
hthat Pic(S) ≃ Z[H]. Then (
f. (6.5))(6.22) slope(NE(S[2])) ≤ ε(H)

pa − 1
≤

√
2

pa − 1
.In parti
ular, (6.22) shows that there is no lower bound on the slope of the Mori 
one of S[2] of

K3 surfa
es, as the degree of the polarization tends to in�nity, that is,(6.23) inf
{

slope(NE(S[2])) | S is a proje
tive K3 surfa
e} = 0,The same fa
t about sloperat(NE(S[2])) will follow from (7.4) and (7.9) below.Note that one always has ε(H) > ⌊
√
H2⌋ − 1 under the hypotheses of Theorem 6.21. Indeed, if

ε(H) <
√
H2, then there is an x ∈ S and an irredu
ible 
urve C su
h that ε(H) = C.H

multx(C) , see e.g.[44, Cor. 2℄. Sin
e one easily 
omputes dim |H ⊗ I
(⌊
√
H2⌋−1)

x | ≥ 2, we 
an �nd a D ∈ |L| su
h that
D 6⊇ C, multx(D) ≥ ⌊

√
H2⌋ − 1 and D passes through at least one additional point of C. Thus

ε(H) =
C.H

multx(C)
=

C.D

multx(C)
≥ multx(C) · multx(D) + 1

multx(C)
> multx(D) ≥ ⌊

√
H2⌋ − 1,as desired. It follows that(6.24) ε(H)

pa − 1
>

⌊√2pa − 2⌋ − 1

pa − 1
, for (S,H) as in Theorem 6.21,showing that there is a natural limit to how good a bound one 
an get on slope(NE(S[2])) by usingSeshadri 
onstants.The bound in (6.22) is not (ne
essarily) obtained by rational 
urves in S[2]. However, the presen
eof pg(X) in (6.19) above tends to indi
ate that the better bounds will be obtained by rational 
urvesin S[2]. (Of 
ourse, if the Mori 
one is 
losed, then the bound will indeed be obtained by rational
urves, as explained at the end of � 6.1.) In fa
t, the bound (6.22) above will be improved, forin�nitely many values of H2, in Propositions 7.2 and 7.7 below by rational 
urves.We now return to the study of irredu
ible rational 
urves in S[2] and to sloperat(NE(S[2])).Given Theorem 6.16 and (6.17), a natural question to ask is the following:



28 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAHyperellipti
 existen
e problem (HEP). For 3 ≤ pg ≤ pa+2
2 , does there exist a singular 
urvein |H| with hyperellipti
 normalization of geometri
 genus pg?By (6.13) we have thata positive solution to (HEP) for �maximal� pg = ⌊pa + 2

2
⌋ =⇒(6.25)

sloperat(NE(S[2])) ≤
{

4
pa+4 if pa is even;

4
pa+3 if pa is oddand, by (6.14), the q-square of the asso
iated rational 
urves would be mu
h less than what predi
tedby Hassett and Ts
hinkel [25, Conj. 3.1℄. Moreover, the bounds in (6.25) would be mu
h strongerthan the bound given by the right hand inequality in (6.22), and even stronger than the best boundsone 
ould obtain from Seshadri 
onstants (
ompare the left hand side inequality in (6.22) with (6.24)).It is natural to try to solve (HEP) using nodal 
urves, as one has better 
ontrol of their deformationsand their parameter spa
es (the Severi varieties 
onsidered in � 5). After the positive answer to thehyperellipti
 existen
e problem for the spe
i�
 values pg = 3 and pa = 4, 5 in [22, Examples 2.8 and2.10℄, Theorem 5.2 gives the �rst examples, at least as far as we know, of positive answers to thehyperellipti
 existen
e problem for primitively polarized K3 surfa
es of any degree.In Remark 5.23 we showed that pg(C) = g0(C) = 3 for these 
onstru
ted 
urves C ∈ |H| (
f.(6.12)), so that the 
lasses of the asso
iated rational 
urves RC ⊂ S[2] are, using (6.10),(6.26) wRC

= H − 2e,with
q(wRC

) = q(RC) = 2p− 10 ≥ −2.Moreover, using (6.13), Theorem 5.2 yields (
f. (6.6)):Corollary 6.27. Let (S,H) be a general, primitively polarized K3 surfa
e of genus pa(H) ≥ 4. Then(6.28) sloperat(NE(S[2])) ≤ 1

2
.Note that the existen
e of nodal 
urves of geometri
 genus 2 in |H|, whi
h was already known andfollowed from the nonemptiness of the Severi varieties on general K3 surfa
es, as explained in thebeginning of � 5, leads to the less good bound of 2

3 . Therefore, again as far as we know, (6.28) is the�rst �nontrivial� bound on the slope of rational 
urves holding for all degrees of the polarization. Asalready mentioned, for in�nitely many degrees of the polarization we will in fa
t improve this boundin Propositions 7.2 and 7.7 below.Remark 6.29. One may also look for irredu
ible singular 
urves with hyperellipti
 normalizationsin |mH|, m ≥ 2. In [22, Corollary 4℄, we also proved that, apart from some spe
ial numer-i
al 
ases (where we were not able to 
on
lude), the negativity of ρsing(pa(mH), 1, 2, g) impliesthe non-existen
e of irredu
ible nodal 
urves in |mH| with hyperellipti
 normalizations. A posi-tive solution to the hyperellipti
 existen
e problem for singular 
urves in |mH| would then pro-vide an even better bound on the slope of the Mori 
one. Namely, one would for instan
e get
slope(NE(S[2])) ≤ 4/[m(pa(H) + 4)] for even pa. Whereas we tend to believe that the nonnegativityof ρsing should imply existen
e of 
urves with hyperellipti
 normalizations for the spe
i�
 values of
pa and g in a primitive linear system |H| on a general K3, we are not sure what to expe
t for 
urvesin |mH| when m > 1. For instan
e, the degeneration methods to prove existen
e as in the proof ofTheorem 5.2 will 
ertainly get more di�
ult, be
ause the irredu
ibility of the obtained 
urves afterdeformation is not automati
ally ensured.



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 29Remark 6.30. We do not know whether there will always be 
omponents in |H|hyper (whenevernonempty) of singular 
urves with hyperellipti
 normalizations su
h that the singularities of thegeneral member are as ni
e as possible, that is, all nodes and all non-neutral [22, �3℄.7. P2s and threefolds birational to P1-bundles in the Hilbert square of a general
K3 surfa
eWe now give an in�nite series of examples of general, primitively polarized K3 surfa
es (S,H), ofin�nitely many degrees su
h that S[2] 
ontains either a P2 or a threefold birational to a P1-bundle,thus showing both possibilities o

urring in Proposition 3.6.Both series of examples are similar to Voisin's 
onstru
tions in [57, � 3℄. The idea is to start witha smooth quarti
 surfa
e S0 su
h that S[2]

0 
ontains an �obvious� P2 or threefold birational to a P1-bundle over S0, use the involution on the quarti
 to produ
e another su
h P2 or uniruled threefold,and then deform S0 keeping the latter one and loosing the �rst one in the Hilbert square.We remark that the question of existen
e of P2s in S[2] when S is K3 is a very interesting problembe
ause of the following fa
t: a P2 in S[2] gives rise to a birational map from S[2] onto anotherhyperkähler fourfold, and 
onversely any birational transformation X −− → X ′ between proje
tive,symple
ti
 fourfolds 
an be fa
torized into a �nite sequen
e of Mukai �ops (
f. [41, Thm. 0.7℄), by[60, Thm. 2℄, see also [12, 30, 62℄. Therefore, in the 
ase of a K3 surfa
e, if S[2] 
ontains no P2s,then S[2] admits no other birational model than itself.Also uniruled divisors have an in�uen
e on the birational geometry of a hyperkähler manifold X.Indeed, Huybre
hts proved in [32, Prop. 4.2℄ that a 
lass α in the 
losure of the positive 
one CX liesin the 
losure of the birational Kähler 
one BKX if and only if q(α,D) ≥ 0, for all uniruled divisors
D ⊂ X. (Re
all that the positive 
one CX is the 
onne
ted 
omponent of {α ∈ H1,1(X,R) : q(α) ≥ 0}
ontaining the 
one KX of all Kähler 
lasses of X, and the birational Kähler 
one BKX equals byde�nition ∪f :X−−→X′f∗KX′ , where f is a bimeromorphi
 map onto another hyperkähler manifold
X ′).7.1. P2s in S[2]. The �rst nontrivial 
ase, the 
ase of degree 10, is parti
ularly easy, so we beginwith that one.Example 7.1. (Hassett) Let S ⊂ P6 be a general K3 surfa
e of degree 10. By [40℄ the surfa
e S isa 
omplete interse
tion S = G ∩ T ∩ Q, where G := Grass(2, 5) is the Grassmannian of lines in P4embedded in P9 by its Plü
ker embedding, T is a general 6-dimensional linear subspa
e of P9, and Qis a hyperquadri
 in P9. Set Y := G∩T . Then Y is a Fano 3-fold of index 2. Let F (Y ) be its varietyof lines. It is 
lassi
ally known (see e.g. [19℄ for a modern proof) that F (Y ) ∼= P2. Then we mayembed this plane in S[2] by mapping the point 
orresponding to a line [ℓ] to ℓ ∩Q. By generality, Sdoes not 
ontain any line, so that this map is a morphism.The 
onstru
tion behind the following result, generalizing the previous example, was shown to usby B. Hassett.Proposition 7.2. Let (S,H) be a general primitively polarized K3 surfa
e of degree H2 = 2(n2 −
9n+ 19), for n ≥ 6. Then S[2] 
ontains a P2.The 
lass wℓ ∈ H2(S[2],Q) 
orresponding to a line ℓ ⊂ P2 is(7.3) wℓ = H − 2n − 9

2
e,In parti
ular(7.4) sloperat(NE(S[2])) ≤ 2

2n− 9
.



30 F. FLAMINI, A. L. KNUTSEN, G. PACIENZAMoreover the 
urves C ⊂ S with hyperellipti
 normalizations asso
iated to the lines ℓ ⊂ P2 ⊂ S[2]lie in |H|, have geometri
 genus pg = 2n− 10, and ρsing(pa(C), 1, 2, pg) = n(n− 13) + 42 ≥ 0.Proof. Consider the latti
e ZF ⊕ ZG with interse
tion matrix
[

F 2 F.G
G.F G2

]
=

[
2 n
n 4

]
, n ≥ 6.Sin
e it has signature (1, 1), then, by a result of Nikulin [43℄ (see also [39, Cor. 2.9(i)℄), there is analgebrai
 K3 surfa
e S0 with the given Pi
ard latti
e. Performing Pi
ard-Lefs
hetz re�e
tions on thelatti
e, we 
an assume that G is nef, by [2, VIII, Prop. 3.9℄. By Riemann-Ro
h and Serre duality, wehave G > 0 and F > 0. Straightforward 
omputations on the Pi
ard latti
e rules out the existen
eof divisors Γ satisfying Γ2 = −2 and Γ.F ≤ 0 or Γ.G ≤ 1; or Γ2 = 0 and Γ.F = 1 or Γ.G = 1, 2.By [48℄ it follows that both |F | and |G| are base point free, ϕ|F | : S0 → P2 is a double 
over and

ϕ|G| : S0 → P3 is an embedding onto a smooth quarti
 not 
ontaining lines. As explained in � 4, S[2]
0
ontains a P2 arising from the double 
over.If ℓ0 is a line on the P2, the 
orresponding 
lass in H2(S

[2]
0 ,Q) is wℓ0 = 2F − 3e, whi
h 
oin
ideswith the 
orresponding integral 
lass ρℓ0 (
f. [25, Example 5.1℄).As S0 is a quarti
 surfa
e not 
ontaing lines, S[2]

0 admits an involution
ι : S

[2]
0 → S

[2]
0 ; ξ 7→ (ℓξ ∩ S0) \ ξ,by [6, Prop. 11℄, where ℓξ is the line determined by ξ, and the sign \ means that we take the residualsubs
heme. The 
orresponding involution on 
ohomology is given by (
f. e.g. [45, (4.1.6)-(4.1.7)℄)

v 7→ q(G− e, v) · (G− e) − v.The involution sends the P2 into another P2, and the 
orresponding 
lass asso
iated to a line on it is(7.5) q(G− e, 2F − 3e) · (G− e) − (2F − 3e) = 2((n − 3)G− F ) − (2n− 9)e.In order to obtain a generalK3 with the desired property we now deform S
[2]
0 . Pre
isely, we 
onsider ageneral deformation of S[2]

0 su
h that (i) e remains algebrai
 and (ii) ι(P2) is preserved. Deformationssatisfying (i) form a 
ountable union of hyperplanes in the deformation spa
e of S[2]
0 , whi
h is smoothand of dimension 21, and may be 
hara
terized as those of the form S[2], where S is a K3 surfa
e (see[7, Thm. 6 and Rem. 2℄). Deformations preserving ι(P2) 
an be 
hara
terized as those preservingthe image in H2(S[2],Z) of the 
lass of the line in ι(P2) as an algebrai
 
lass (see [25, Thm. 4.1 andCor. 4.2℄ or [57℄), that is, using (7.5), those deformations keeping H := (n− 3)G−F ∈ Pic(S

[2]
0 ), or,equivalently, H ∈ Pic(S), by (6.2). As H2 = [(n− 3)G−F ]2 = 2(n2 − 9n+ 19) ≥ 2 for n ≥ 6 and His primitive, those deformations form a divisor in the 20-dimensional spa
e of deformations keeping

e algebrai
, by [34, Thm. 14℄.We therefore obtain a 19-dimensional spa
e of deformations of S[2]
0 , whose general member is S[2],where (S,H) is a general primitively polarized (algebrai
) K3 surfa
e of degree H2 = 2(n2−9n+19),

n ≥ 6, and S[2] 
ontains a plane.The 
lass wℓ ∈ H2(S[2],Q) 
orresponding to the line ℓ is as in (7.3), yielding (7.4).As S is general, it does not 
ontain smooth rational 
urves, so that the P2 is not of the form
C [2], for a smooth rational 
urve C on S. By Lemma 2.4, the lines in the P2 in S[2] give rise toa two-dimensional family V of 
urves on S with hyperellipti
 normalizations, so that RV = µ(P2),where µ : S[2] → Sym2(S) is the Hilbert-Chow morphism. By (7.3) we have ℓ.H = H2, so that, bythe very de�nition of the divisor H in H2(S[2],Z), the lines in the P2 
orrespond to 
urves C ∈ |H|.Comparing (6.10) and (7.3), we see that g0(C) = 2n − 10, 
f. (6.12). Now we note that the generalline in the P2 is not tangent to ∆ = 2e. (Indeed, this follows by deformation sin
e in S[2]

0 we have
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, sin
e we have a 
omposite map S0 → P2 → ι(P2) that is�nite of degree two, when
e rami�ed along a smooth sexti
, as S0 is a smooth K3.) Therefore wehave pg(C) = 2n− 10. We 
ompute ρsing = n(n− 13) + 42 ≥ 0 (re
all that n ≥ 6). �The examples 
ontained in the above proposition is interesting in several regards.Noti
e �rst that q(ℓ) = −5/2, 
f. (6.3), in a

ordan
e with the predi
tion in [25, Conj. 3.6℄.The proposition shows in parti
ular that the 
orresponden
e in Remark 3.7 is not one-to-one andalso shows that the 
ase dim(V ) = dim(RV ) = 2 of Proposition 3.6 a
tually o

urs.The result also gives nontrivial examples of 
urves in |H| with hyperellipti
 normalizations andpositively answers the hyperellipti
 existen
e problem for pa = n2−9n+20 and pg = 2n−10, n ≥ 6.Moreover (7.4) shows that there is no lower bound on sloperat(NE(S[2])) as the degree of thepolarization tends to in�nity. The same follows from (7.9) in Proposition 7.7 below. Both thebounds (7.4) and (7.9) below in fa
t yield better bounds on slope(NE(S[2])) than (6.22).Finally, the 
oni
s on the P2 give a �ve-dimensional family V (2) of irredu
ible 
urves with hyperel-lipti
 normalizations on S. Of 
ourse this family has obvious non-integral members, 
orresponding tonon-integral 
oni
s. More generally, for any m ≥ 3, the (3m−1)-dimensional family of nodal rational
urves in |OP2(m)| (
f. [15, Thm. 1.1℄) yields 
orresponding families V (m) of 
urves in |mH| withhyperellipti
 normalizations with dimV (m) = 3m − 1 ≥ 5 and dim(RV ) = 2, showing in parti
ularthat the 
ase dim(V ) > dim(RV ) = 2 of Proposition 3.6 a
tually o

urs.In the 
ase of the 
oni
s, we 
ompute pg = 4n− 19 as above and as pa(2H) = 4n2 − 36n+ 77, weget ρsing = 4n(n− 11) + 117 ≥ −3 in these 
ases. This does not 
ontradi
t [22, Thm. 1℄.7.2. Threefolds birational to P1-bundles in S[2]. We start with an expli
it example in the spe
ial
ase of a quarti
 surfa
e.Example 7.6. In the 
ase of a general quarti
 S in P3 we 
an �nd a P1-bundle over S in S[2], arisingfrom the two-dimensional family of hyperplane se
tions of geometri
 genus two. In fa
t, taking thetangent plane through the general point of S we get a nodal 
urve of geometri
 genus 2. We obtain inthis way a family V of nodal 
urves with hyperellipti
 normalizations in the hyperplane linear system.This family is parametrized by an open subset of S, and the lo
us in S[2] 
overed by the asso
iatedrational 
urves is birational to a P1-bundle over this open subset. To see this, set Cp := (S ∩ TpS),and let C̃p be the normalization of Cp. Note that the g
1
2 on C̃p, viewed on Cp, is given by the pen
ilof lines in TpS through the node p. If, for two distin
t points p, q ∈ S, the g

1
2s on C̃p and C̃q had two
ommon points, say x and y (so that the map ΦV in (2.5) sends (p, x+ y) and (q, x+ y) to the samepoint x+ y in Sym2(S)), then the line TpS ∩ TqS, whi
h is bitangent to S, would also pass through

x and y. This is absurd, as deg(S) = 4.By (6.10), the 
lass w ∈ H2(S[2],Q) 
orresponding to the 
urves of geometri
 genus 2 is w = H− 3
2e,when
e q(w) = −1/2, as predi
ted by [25, Conj. 3.6℄. Moreover, performing the usual involution onthe quarti
, we send the 
onstru
ted uniruled threefold to another one, with 
orresponding �bre 
lassgiven by e, so that it simply is the P1-bundle ∆ over S. This shows that also our original threefoldwas smooth, so in fa
t a P1-bundle over S.We now give an in�nite series of examples of general K3s whose Hilbert squares 
ontain threefoldsbirational to P1-bundles.Proposition 7.7. Let (S,H) be a general primitively polarized K3 surfa
e of degree H2 = 2(d2 −1),for d ≥ 2. Then S[2] 
ontains a threefold birational to a P1-bundle over a K3 surfa
e.The 
lass wf ∈ H2(S[2],Q) 
orresponding to a �bre is(7.8) wf = H − de ∈ H2(S[2],Z).
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ular(7.9) sloperat(NE(S[2])) ≤ 1

d
.Moreover the 
urves C ⊂ S with hyperellipti
 normalizations asso
iated to the �bres of the threefoldlie in |H|, have geometri
 genus pg = 2d− 1, and ρsing(pa(C), 1, 2, pg) = d(d − 4) + 4 ≥ 0.Proof. This time we start with the latti
e ZF ⊕ ZG with interse
tion matrix

[
F 2 F.G
G.F G2

]
=

[
−2 d
d 4

]
, d ≥ 2.As in Proposition 7.2 one easily shows that there is an algebrai
 K3 surfa
e S0 with Pic(S0) =

ZF ⊕ ZG and that ϕ|G| : S0 → P3 is an embedding onto a smooth quarti
 not 
ontaining lines and
F is a smooth, irredu
ible rational 
urve. (Note that F [2] = P2 and performing the same pro
edureon this plane as in the proof of Proposition 7.2, one gets pre
isely the same series of examples asabove.)We now 
onsider the divisor F ⊂ S

[2]
0 , de�ned as the length-two s
hemes with some support along

F . One easily sees that this is a threefold birational to a P1-bundle over S0 and that the 
lass in
H2(S

[2]
0 ,Z) 
orresponding to the �bres f is ρf = F , 
f. [25, Example 4.6℄.The involution on the quarti
 sends this threefold to another threefold birational to a P1-bundleover S0 and the 
orresponding 
lass of the �bres is(7.10) q(G− e, F ) · (G− e) − F = dG− F − de.Note that this threefold satis�es the 
onditions in [25, Thm. 4.1℄ by [25, Example 4.6℄, so that,as in the previous example, we 
an deform S

[2]
0 , keeping e algebrai
 and H := dG − F . We thusobtain a 19-dimensional spa
e of deformations of S[2]

0 , whose general member is S[2], where (S,H) isa general, primitively polarized (algebrai
) K3 surfa
e of degree H2 = 2(d2−1) ≥ 6 and S[2] 
ontainsa threefold birational to a P1-bundle, again over a K3 surfa
e (see also [25, Thm. 4.3℄).The unique 
lass wf ∈ H2(S[2],Q) 
orresponding to a �bre f is as in (7.8) and yields (7.9).By (7.8) we have f.H = H2, so that, by the very de�nition of the divisorH inH2(S[2],Z), the �bres
f of Y 
orrespond to 
urves C ∈ |H|. Comparing (6.10) and (7.8), we see that g0(C) = 2d − 1 ≥ 3,
f. (6.12). As in the proof of Proposition 7.2, one 
an see that the general �bre of Y is not tangentto ∆ = 2e, so that in fa
t we have pg(C) = 2d−1. In parti
ular, Y is not one of the obvious uniruledthreefolds arising from the rational 
urves on S, or the one-dimensional families of ellipti
 
urves on
S. A 
omputation shows that ρsing = d(d − 4) + 4 ≥ 0. �Again, a few 
omments are in order.The square of the 
lass of the �bres of the uniruled threefolds 
onstru
ted above is q(f) = −2, aspredi
ted in [25, Conj. 3.6℄.The obtained family V of 
urves on S with hyperellipti
 normalizations has dim(V ) = 2 and
dim(RV ) = 3, showing that also this 
ase of Proposition 3.6 a
tually o

urs. This family givesnontrivial examples of 
urves in |H| with hyperellipti
 normalizations and positively answers thehyperellipti
 existen
e problem for pa = 2(d2 − 1) and pg = 2d − 1 for every d ≥ 2. Note that the
ase d = 2 is the 
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EDOARDO SERNESI: PARTIAL DESINGULARIZATIONS OF FAMILIES OF NODAL CURVES 35Appendix APARTIAL DESINGULARIZATIONS OF FAMILIES OF NODAL CURVESEDOARDO SERNESI1In this Appendix we show how to 
onstru
t simultaneous partial desingularizations of familiesof nodal 
urves, generalizing a well known pro
edure of simultaneous total desingularization, asdes
ribed in [4℄.We work over an algebrai
ally 
losed �eld k of 
hara
teristi
 0. For every morphism X → Y , andfor every y ∈ Y , we denote by X(y) the s
heme-theoreti
 �bre of y.Theorem A.1. Let
f : C // Vbe a �at proje
tive family of 
urves, with C and V algebrai
 s
hemes, su
h that all �bres have at mostordinary double points (nodes) as singularities. Let δ ≥ 1 be an integer. Then there is a 
ommutativediagram:

Dδ
�

�

//

q
""E

EE
EE

EE
E C′

f ′

��

// C

f

��
E(δ)

α
// Vwith the following properties:(i) α is �nite and unrami�ed, the square is 
artesian, and q is an étale 
over of degree δ.(ii) The left triangle de�nes a marking of all δ-tuples of nodes of �bres of f . In parti
ular f ′parametrizes all 
urves of the family f having ≥ δ nodes and, for ea
h η ∈ E(δ), Dδ(η) ⊂ C′(η)is a set of δ nodes of the 
urve C′(η).(iii) The diagram is universal with respe
t to properties (i) and (ii). Pre
isely, if

D̃
�

�

//

q̃
##G

GG
GGG

GG
GG

Ẽ ×V C

f̃
��

// C

f

��

Ẽ // Vis a diagram having the properties analogous to (i) and (ii), then there is a unique fa
torization
Ẽ

ϕ
// E(δ)

α
// Vsu
h that q̃ and f̃ are obtained by pulling ba
k q and f ′ by ϕ.If moreover E(δ) is normal, then the above diagram 
an be enlarged as follows:1Work done during a visit to the Institut Mittag-Le�er (Djursholm, Sweden), whose support is gratefully a
knowl-edged. I am grateful to F. Flamini, A. L. Knutsen and G. Pa
ienza for a

epting this note as an Appendix to theirpaper, and to F. Flamini for some useful remarks.
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C

β

��

Dδ
�

�

//

q
""E

EE
EE

EE
E C′

f ′

��

// C

f

��
E(δ)

α
// Vwhere:(iv) β is a birational morphism su
h that, for ea
h η ∈ E(δ), the restri
tion:

β(η) : C(η) // C′(η)is the partial normalization at the nodes Dδ(η).(v) The 
omposition f̄ := f ′ ◦ β is �at.Proof. Consider the �rst relative 
otangent sheaf T1
C/V . Sin
e all �bres of f are nodal, T1

C/V 
ommuteswith base 
hange ([3, Lemma 4.7.5℄ or [5℄), thus on every �bre C(v), v ∈ V , it restri
ts to T1
C(v), whi
his the stru
ture sheaf of the s
heme of nodes of C(v). It follows that we have

T
1
C/V = OEfor a 
losed subs
heme E ⊂ C supported on the nodes of the �bres of f . Consider the 
omposition

fE : E ⊂ C
f

// VBy 
onstru
tion it follows that fE is �nite and unrami�ed. Now �x δ ≥ 1 and 
onsider the �breprodu
t:
E ×V · · · ×V E︸ ︷︷ ︸

δSin
e fE is �nite and unrami�ed, it follows from [1, Exp.1, Prop. 3.1℄, and by indu
tion on δ (see [3,Lemma 4.7.11(i)℄), that we have a disjoint union de
omposition:
E ×V · · · ×V E = ∆

∐
Eδwhere ∆ is the union of all the diagonals, and Eδ 
onsists of all the ordered δ-tuples of distin
t pointsof E mapping to the same point of V ; moreover the natural proje
tion morphism

Eδ // Vis �nite and unrami�ed.There is a natural a
tion of the symmetri
 group Σδ on Eδ that 
ommutes with the proje
tion to
V . We denote the quotient Eδ/Σδ by E(δ). Sin
e the 
omposition

Eδ // E(δ) // Vis �nite and unrami�ed and the �rst morphism is an étale 
over, the morphism α : E(δ) → V is �niteand unrami�ed. Note that if, for a 
losed point v ∈ V , C(v) has δ+ t nodes as the only singularities,with t > 0, then α−1(v) has degree (
δ+t
t

). Now let
Dδ = {(η, e) : e ∈ Supp(η)} ⊂ E(δ) ×V E
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tion de�nes the tautologi
al family:(A.2) Dδ

q

��

⊂ E(δ) ×V E ⊂ E(δ) ×V C

E(δ)whi
h is an étale 
over of degree δ. The �bre Dδ(η) is the δ-tuple parametrized by η, for ea
h
η ∈ E(δ)

2. We therefore have the following diagram:
Dδ

�

�

//

q
""E

EE
EE

EE
E C′

f ′

��

// C

f

��
E(δ)

α
// Vwhere we have denoted by C′ = E(δ) ×V C. The �bres of f ′ are all the 
urves of the family f having

≥ δ nodes. For ea
h η ∈ E(δ) the divisor Dδ(η) ⊂ C′(η) marks the set of δ nodes parametrized by η.This proves (i) and (ii).(iii) follows from the fa
t that α : E(δ) → V is the relative Hilbert s
heme of degree δ of fE : E → V ,and (A.2) is the universal family.Assume that E(δ) is normal. Then we 
an normalize C′ lo
ally around Dδ as in [4, Theorem 1.3.2℄,to obtain a birational morphism β having the required properties (iv) and (v). �A typi
al example of the situation 
onsidered in the theorem is when V parametrizes a 
ompletelinear system of 
urves on an algebrai
 surfa
e. If the morphism fE is self-transverse of 
odimension1 (see [3, De�nition 4.7.13℄) then the Severi variety of irredu
ible δ-nodal 
urves is nonsingular andof 
odimension δ, and E(δ) is nonsingular (see [3, Lemma 4.7.14℄), so that the theorem applies andthe simultaneous partial desingularization exists. This happens for example for the linear systems ofplane 
urves [3, Proposition 4.7.17℄. Referen
es[1℄ Revêtements étales et groupe fondamentale, Séminaire de Géométrie Algébrique du Bois Marie 1960-61(SGA1), Le
ture Notes in Math. 224. Springer, Berlin, 1971.[2℄ R. Hartshorne, Algebrai
 Geometry, Graduate Texts in Mathemati
s 52. Springer-Verlag, New York-Heidelberg, 1977.[3℄ E. Sernesi, Deformations of Algebrai
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hemes, Grundlehren der Mathematis
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usps, Amer. J. of Math. 96 (1974), 529�577.Edoardo Sernesi, Dipartimento di Matemati
a, Università di Roma Tre, Largo San Leonardo Murialdo 1,00146, Roma, Italy. e-mail sernesi�mat.uniroma3.it.
2If δ = 1 then E(1) = E and D1 ⊂ E ×V E is the diagonal.


