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ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A
SURFACE
(WITH AN APPENDIX BY EDOARDO SERNESI)

FLAMINIO FLAMINI*, ANDREAS LEOPOLD KNUTSEN** AND GIANLUCA PACIENZA***

ABsTRACT. Under natural hypotheses we give an upper bound on the dimension of families of
singular curves with hyperelliptic normalizations on a surface S with py > 0 via the study of the
associated families of rational curves in S, We use this result to prove the existence of nodal curves
of geometric genus 3 with hyperelliptic normalizations, on a general K3 surface, thus obtaining
specific 2-dimensional families of rational curves in S?). We give two infinite series of examples
of general, primitively polarized K3s such that their Hilbert squares contain a P? or a threefold
birational to a P'-bundle over a K3. We discuss the consequences on the Mori cone of the Hilbert
square.

1. INTRODUCTION

For any smooth surface S, the Hilbert scheme S parametrizing 0-dimensional length n sub-
schemes of S is a smooth 2n-dimensional variety whose inner geometry is naturally related to that
of S. For instance, if A C S is the exceptional divisor, that is, the exceptional locus of the
Hilbert-Chow morphism x : S — Sym™(S), then irreducible (possibly singular) rational curves
not contained in A roughly correspond to irreducible (possibly singular) curves on S with a g,li, on
their normalizations, for some n’ < n (see § 2.1 for the precise correspondence when n = 2). One
of the features of this paper is to show how ideas and techniques from one of the two sides of the
correspondence makes it possible to shed light on problems naturally arising on the other side.

If S is a K3 surface, S is a hyperkihler manifold (cf. [31, 2.2]) and rational curves play a
fundamental role in the study of the (birational) geometry of S[". Indeed a result due to Huybrechts
and Boucksom [32, 11] implies in particular that these curves govern the ample cone of S (we will
recall the precise statement below and in § 6.1). The presence of a P C S "] gives rise to a birational
map (the so-called Mukai flop [41]) to another hyperkéhler manifold and, for n = 2, all birational maps
between hyperkihler fourfolds factor through a sequence of Mukai flops [12, 30, 60, 62]. Moreover, as
shown by Huybrechts [32], uniruled divisors allow to describe the birational Kihler cone of S (see
§ 7 for the precise statement). For hyperkihler fourfolds precise numerical and geometric properties
of the rational curves that are extremal in the Mori cone have been conjectured by Hassett and
Tschinkel |25].

The scope of this paper, and the structure of it as well, is twofold: we first devise general methods
and tools to study families of curves with hyperelliptic normalizations on a surface S, mostly under
the additional hypothesis that py(S) > 0, in § 2-§ 4. Then we apply these to obtain concrete results
in the case of K3 surfaces, in § 5-§ 7. In particular, we have tried to develop a systematic way to

2000 Mathematics Subject Classification : Primary 14H10, 14H51, 14J28. Secondary 14C05, 14C25, 14D15, 14E30.

(*) and (***) Member of MIUR-GNSAGA at INdAM "F. Severi".

(**) Research supported by a Marie Curie Intra-European Fellowship within the 6th European Community Frame-
work Programme.

(***) During the last part of the work the author benefitted from an "accueil en délégation au CNRS".


http://arXiv.org/abs/0704.1367v1

2 F. FLAMINI, A. L. KNUTSEN, G. PACIENZA

produce rational curves on S by showing the existence of nodal curves on S with hyperelliptic
normalizations.

To give an overview of the paper, we choose to start with the second part.

Let (S, H) be a general, smooth, primitively polarized K3 surface of genus p = p,(H) > 2. We have
N1 (SPhg ~ R[Y] @ R[PL], where P} is the class of a rational curve in the ruling of the exceptional
divisor A ¢ S, and Y := {¢ € S| Supp(¢) = {po,y}, with po € S and y € C € |H|}, where
po and C' are chosen. One has that IP’lA lies on the boundary of the Mori cone and by the result of
Huybrechts and Boucksom [32, 11| mentioned above, if the Mori cone is closed, then also the other
boundary is generated by the class of a rational curve. If X ~g4 aY — bIP’lA is an irreducible curve
in Sl different from a fiber of A, then we define a/b to be the slope of the curve. Thus, the lower
the slope is, the closer is X to the boundary of the Mori cone. Describing the Mori cone NE(S [2})
amounts to computing

slope(NE(S1?)) := inf { slope(X) | X is an irreducible curve in S [2]},
and, if the Mori cone is closed, then slope(NE(S?)) = slope,,,(NE(S?))), where
(NE(S?))) := inf { slope(X) | X is an irreducible rational curve in S [2]}.

(See § 6.1, 6.2 and 6.3 for further details.)

If now C € |mH]| is an irreducible curve of geometric genus py(C) > 2 and with hyperelliptic
normalization, let go(C') > py(C) be the arithmetic genus of the minimal partial desingularization of
C that carries the g5 (see § 2.1 and § 6.2). By the unicity of the g3, C defines a unique irreducible

rational curve R C SP with class R ~ay mY — (M)PZ, cf. (6.11). (This formula is also
valid if R¢ is associated to a given gi on the normalization of an irreducible rational or elliptic curve
C.) Thus, the higher go(C) (or py(C)) is, and the lower m is, the lower is the slope of Rc. This
motivates the search for curves on S with hyperelliptic normalizations of high geometric genus, thus
“unexpected” from Brill-Noether theory.

It is well-known that there exist finitely many (nodal) rational curves, a one-parameter family
of (nodal) elliptic curves, and a two-dimensional family of (nodal) curves of geometric genus 2 in
|H| (see §5). Every such family yields in a natural way a two-dimensional family of irreducible
rational curves in S, cf. §2. Also note that, by a result of Ran [46], the expected dimension of
a family of rational curves in a symplectic fourfold, whence a posteriori also of a family of curves
with hyperelliptic normalizations lying on a K3, equals two (cf. Lemma 5.1). In [22, Examples
2.8 and 2.10] we found two-dimensional families of nodal curves of geometric genus 3 in |H| having
hyperelliptic normalizations when p,(H) = 4 or 5. In this paper we generalize this:

slope, ..

Theorem 5.2. Let (S,H) be a general, smooth, primitively polarized K3 surface of genus p =
pa(H) > 4. Then the family of nodal curves in |H| of geometric genus 3 with hyperelliptic normal-
1zations s nonempty, and each of its irreducible components is two-dimensional.

The proof takes the whole § 5 and relies on a general principle of constructing curves with hy-
perelliptic normalizations on general K 3s outlined in Proposition 5.11: first construct a marked K3
surface (Sp, Hp) of genus p such that |[Hp| contains a family of dimension < 2 of nodal (possibly
reducible) curves with the property that a desingularization of some § > 0 of the nodes is a limit of a
hyperelliptic curve in the moduli space ﬁp_g of stable curves of genus p— ¢ and such that this family
is not contained in a higher-dimensional such family. Then consider the parameter space W), s of
pairs ((S, H),C), where (S, H) is a smooth, primitively marked K3 surface of genus p and C € |H|
is a nodal curve with at least 6 nodes. Now map (the local branches of) W, 5 into ﬁp_g by partially
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normalizing the curves at § of the nodes and mapping them to their respective classes. The existence
of the particular family in |Hy| ensures that the image of this map intersects the hyperelliptic locus
ﬁp_(g - ﬁp_g. A dimension count then shows that the dimension of the parameter space J C W),
consisting of ((S,H),C) such that a desingularization of some § > 0 of the nodes of C' is a limit
of a hyperelliptic curve is at least 21. Now the dominance on the 19-dimensional moduli space of
primitively marked K3 surfaces of genus p follows as the dimension of the special family on Sy was
< 2.

The technical difficulties in the proof of Proposition 5.11 mostly arise because the curves in the
special family on Sy may be reducible (in fact, as in all arguments by degeneration, in practical
applications they will very often be). Therefore we need to partially desingularize families of nodal
curves, and this tool is provided in Appendix A by E. Sernesi. Moreover, we need a careful study of
the Severi varieties of reducible nodal curves on K3s, and here we use results of Tannenbaum [55].

Given Proposition 5.11, the proof of Theorem 5.2 is then accomplished by constructing a suitable
(So, Hp) in Proposition 5.19 with |H| containing a desired two-dimensional family of special curves,
with § = p— 3, and then showing that the curves in the special family on Sy in fact deform to curves
with precisely 6 nodes on the general S in Lemma 5.20. As will be discussed below, showing that
the special family on Sy is not contained in a family of higher dimension of curves with the same
property, is quite delicate.

We also show that the associated rational curves in S? cover a threefold, cf. Corollary 5.3, and
that go = p, = 3, cf. Remark 5.23. Turning back to the description of NE(S[?), this shows that the
class of the associated rational curves in S is ¥ — %]P’lA, so that we obtain (cf. Corollary 6.27):

(6.28) slope, ., (NE(S12)) < 1.

In Propositions 7.2 and 7.7 we present two infinite series of examples of general primitively polarized
K3 surfaces (S, H) of infinitely many degrees such that S!? contains either a P? (these examples
were shown to us by B. Hassett) or a threefold birational to a P!-bundle over a K3 and find the
two-dimensional families of curves with hyperelliptic normalizations in |H| corresponding to the lines
and the fibres respectively. In particular, these examples show that the bound (6.28) can be improved
for infinitely many degrees of the polarization. Namely, for any n > 6 and d > 2, we get:

(7.4) slope,;(NE(SP)) < 525 if p=p,(H) =n?— 9In + 20;
(7.9) slope,,(NE(SE))) < L if p=p,(H) = d>

Nevertheless, to our knowledge, (6.28) is the first non-trivial bound valid for any genus p of the
polarization.
The proofs of Propositions 7.2 and 7.7 are again by deformation, but unlike the proof of Proposition

5.11, we now deform S([f] of a special K3 surface Sy. The idea is to start with a special quartic surface

So C P3 such that S([f] contains a P? or a threefold birational to a P!-bundle over itself, perform
the standard involution on S([f] to produce a new such and then deform S([)z} keeping the new one by
keeping a suitable polarization on the surface that is different from Og,(1). Here we use results on
deformations of symplectic fourfolds by Hassett and Tschinkel [25] and Voisin [57].

By a result proved in [22], any irreducible curve C' € |H| with hyperelliptic normalization must
satisfy go(C) < 1%2, where p = po(H) (cf. Theorem 6.16 and (6.17)). It is then natural to ask

whether this inequality actually ensures the existence of such curves. We call this “The hyperelliptic
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existence problem” and we see that a positive solution to this problem would yield a bound on the
slope of rational curves that is much stronger than the ones obtained above, cf. (6.25). In this sense,
Theorem 5.2 is hopefully only the first step towards stronger existence results.

The study of curves on S with hyperelliptic normalizations is not the only way to obtain bounds
on the slope of the Mori cone of S, In fact, an irreducible curve C' € |mH| with a singular point
of multiplicity mult,(C) yields an irreducible curve in S with class mY — (1/2) mult,(C) (see the
proof of Theorem 6.18). In particular, if p = p,(H), one has the bound (cf. Theorem 6.21)

(6.22) slope(NE(SP)) < p%l,

obtained by using well-known results on Seshadri constants on S. This bound is stronger than
(6.28) but weaker than the bounds on the slope of the Mori cone obtained from (7.4) and (7.9).
Moreover, one relatively easily sees that the best bound one can obtain by Seshadri constants is in
any case weaker than (7.4) and (7.9) and also weaker than the ones one could obtain by solving “The
hyperelliptic existence problem”, cf. (6.25). In any case, note that (6.22), (7.4) and (7.9) show that
the bounds tend to zero as the degree of the polarization tends to infinity, that is,

(6.23) inf { slope(NE(S™)) | S is a projective K3 surface } =0,

and likewise for slope,,,(NE(S[))).

All the families of curves in |H| with hyperelliptic normalizations we have seen above have in fact
dimension equal to two, the expected one. Moreover, a crucial point in the proof of Theorem 5.2
is to bound the dimensions of families of irreducible curves with hyperelliptic normalizations on the
special K3 surface Sg. This brings us over to the description of the first part of this paper.

The problem of bounding the dimension of special families of curves on surfaces, like in our case of
curves with hyperelliptic normalizations, is interesting in its own, may be studied for larger classes of
surfaces, and may lead to further applications in other contexts. Whereas methods from adjunction
theory have proved very useful for the study of smooth hyperelliptic curves on surfaces [51, 53, 10|,
these methods do not extend to the case of singular curves, where in fact very little seems to be
known. Even in the relevant case of nodal curves on smooth surfaces, whose parameter spaces (the
so-called Sewveri varieties) have received much attention over the years and have been studied also
in relation with moduli problems (see e.g. [49] for P? and [21] for surfaces of general type), the
dimension of their subloci consisting of curves with hyperelliptic normalizations is not determined.

The precise question we address is whether there exists an upper bound on the dimension of families
of irreducible curves on a projective surface with hyperelliptic normalizations. One easily sees that,
if the canonical system of the surface is birational, then no curve with hyperelliptic normalization
can move, cf. e.g. [33]. On the other hand, taking any surface S admitting a (generically) 2 : 1 map
onto a rational surface R and pulling back the families of rational curves on R, we obtain families of
arbitrarily high dimensions of curves on S having hyperelliptic normalizations. Moreover, the infinite
series of examples in Proposition 7.2 of general, primitively polarized K3 surfaces (S, H) such that
S contains a P? shows that one cannot even hope, in general, to find a bound in the simplest case
of Picard number one: in fact, the (3m — 1)-dimensional family of rational curves in |Opz2(m)| yields
a (3m — 1)-dimensional family of irreducible curves in |mH| having hyperelliptic normalizations, cf.
§ 7.1. Nevertheless, for a large class of surfaces, it is possible to derive a geometric consequence on
the family V', when its dimension is greater than two:
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Theorem 4.6°. Let S be a smooth, projective surface with py(S) > 0. Let V be a reduced and
irreducible scheme parametrizing o flat family of irreducible curves on S with hyperelliptic normal-
izations (of genus > 2) such that dim(V') > 3. Then the algebraic equivalence class [C] of the curves
parametrized by V has a decomposition [C| = [Di] + [D2] into algebraically moving classes such
that [D1 + D3] € V.. Moreover the rational curves in S'?I corresponding to the irreducible curves
parametrized by V cover only a (rational) surface R C St

In fact we prove a stronger result, cf. Theorem 4.6, that in particular relates the decomposition
[C] = [D1] + [D2] to the gis on the normalizations of the curves parametrized by V. This additional
point will in fact be the crucial one in our application in the proof of Theorem 5.2. An immediate
corollary is that the “naive” dimension bound one may hope for, thinking about the fact that rational
curves in S arising from curves on S of geometric genera < 2 move in dimension at most two, is
in fact true under additional hypotheses on V', cf. Corollary 4.7. These are satisfied if e.g. the
Néron-Severi group of S is of rank 1 and generated by the class of a curve in V, and seem quite
natural, taking into account the examples of large families mentioned above.

The idea of the proof of Theorem 4.6 is rather simple and geometric and illustrates well the rich
interplay between the properties of curves on S and those of subvarieties of S12. The proof relies on
the following two fundamental results:

The first is Mori’s bend-and-break technique (see Lemma 2.10 for the precise version we need),
which gives a breaking into reducible members of a family of rational curves of dimension > 3 covering
a surface.

The second is a suitable version of Mumford’s well-known theorem on O-cycles on surfaces with
pg > 0 (cf. Corollaries 3.2 and 3.4). The consequence of particular interest to us is that any threefold
in S can only carry a two-dimensional covering family of rational curves when py(S) > 0, cf.
Proposition 3.6.

Combining those two ingredients, we see that any family satisfying the hypotheses of Theorem 4.6
yields a family of rational curves in S? of the same dimension > 3, that can therefore only cover
a surface in S1?, on which we can apply bend-and-break to produce a reducible member. Then we
have to show that we can also produce a decomposition of the curves on S into algebraically moving
classes, and this is carried out in Proposition 4.3.

Beside the application in the proof of Theorem 5.2, we hope that Theorem 4.6 and the ideas behind
its proof will find more applications. One is a Reider-like result for families of singular curves with
hyperelliptic normalizations obtained in [33|, where also more examples are given.

The paper is organized as follows. We go from the more general results to those peculiar to the
case of K3 surfaces. We start in §2 with the correspondence between curves with hyperelliptic
normalizations on any smooth surface S and rational curves on S and prove other preliminary
results, before turning to the bend-and-break lemma for families of rational curves covering a surface
in S2. The version of Mumford’s theorem we need for our purposes is proved in §3, and then
rephrased in terms of rational quotients. Then we prove (a stronger version of) Theorem 4.6’ in § 4.
We then turn to K3 surfaces and prove Theorem 5.2 along the lines of the degeneration argument
sketched above. Section 6, apart from some known facts on the Hilbert scheme of points on a K3
surface, contains the computation of the classes of rational curves in S associated to curves in S
with rational, elliptic or hyperelliptic normalizations, as explained in § 2.1. The relation between the
existence of such a curve, its singular Brill-Noether number (an invariant introduced in [22]) and the
slope of the Mori cone of S is also discussed, as well as the relation between the slope of the Mori
cone and Seshadri constants. We end the paper presenting the two series of examples of general K3
surfaces whose Hilbert square contains a P? (respectively a threefold birational to a P'-bundle over
a K3) and discussing the numerical properties of a line (respectively a fibre) in it, as well as those of
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the associated singular curves in S with hyperelliptic normalizations. In Appendix A by E. Sernesi
the reader will find a general result about partial desingularizations of families of nodal curves.
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2. RATIONAL CURVES IN S[

Let S be a smooth, projective surface. In this section we gather some basic results that will be
needed in the rest of the paper. We first describe the natural correspondence between rational curves
in S and curves on S with rational, elliptic or hyperelliptic normalizations. Then, in § 2.2, we
apply Mori’s bend-and-break technique to rational curves in Sym2(S ) covering a surface.

Recall that we have the natural Hilbert-Chow morphism g : SPI — Sym?(S) that resolves
Sing(Sym?(S)) ~ S. The p-exceptional divisor A ¢ S is a P'-bundle over S. The Hilbert-
Chow morphism gives an obvious one-to-one correspondence between irreducible curves in S 2 not
contained in A and irreducible curves in Sym?(S) not contained in Sing(Sym?(S)). We will therefore
often switch back and forth between working on S and Sym?(S).

2.1. Irreducible rational curves in S and curves on S. Let T C S x S2 be the incidence
variety, with projections py : T — S and pg : T — S. Then ps is finite of degree two, branched
along A C SP. (In particular, T is smooth as A is.)

Let X ¢ S be an irreducible rational curve not contained in A. We will now see how X is
equivalent to one of three sets of data on S.

Let vy : X ~ P! — X be the normalization and set X’ := pz_l(X) C T. By the universal property
of blowing up, we obtain a commutative square:

~ f -
(2.1) Cx —=X ~P!

DX\L l/l/X
b2 x/

/
X — 4,

defining the curve 5X; vx and f. In particular, Ux is birational and éx admits a g3 (ie,a2:1
morphism onto P!, given by f), but may be singular, or even reducible. Set 7 := ps|xovx : Cx — 5.

Assume first thatNaX is irreducible. B

We set Cx := 7(Cx) C S. Since X ¢ A, Cx is a curve. As Cx carries a g3, it is easily seen that
also the normalization of Cx does, that is, Cx has rational, elliptic or hyperelliptic normalization.
Moreover, it is easily seen that v : C'x — Cx is generically of degree one. Indeed, for general x € Cx,
as = & ps(py (A)), we can write (p5|X,)_1(a:) ={(z,z+y1),...,(x,z+yyn)}, where n :=degv. By
definition of py, and since X’ = p, '(X), we must have that each (y;,z + ;) € X', fori = 1,...,n,
and each couple ((z,z+y;), (yi, x+1;)) is the pushdown by ©x of an element of the g on C'x. Hence,
each couple (z,y;) is the pushdown by the normalization morphism of an element of the induced g3
on the normalization of C'x. Since x has been chosen general, x ¢ Sing(Cx), so that we must have
n =1, as claimed.
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In particular, by construction, o : Cx > Cx isa partial desingularization of Cx, in fact, it is the
minimal partial desingularization of Cx carrying the g} in question (which is unique, if p,(Cx) > 2).
We have therefore obtained:

(I) the data of an irreducible curve Cx C S together with a partial normalization o : Cy — Cy
with a g3 on Cx (unique, if py(Cx) > 2), such that ¥ is minimal with respect to the existence
of the gi.

Next we treat the case where 6’)( is reducible. In this case, it must consist of two irreducible
smooth rational components, 5X = 5X71 U 5X72, that are identified by f.
If 7 does not contract any of the components, set Cx; := 5(5)(71') C S and nx; := deg 17|(~7X’z_, for
i =1,2. We therefore obtain:
(II) the data of a curve Cx = nx1Cx,1 +nx2Cx2 C S, with nx; € N, Cx; an irreducible,
rational curve, a morphism o : 5X = 5X71 U 5)(,2 — Cx,1 UCxy (resp. 7 : éx — Cx 1 if
Cx,1 = Cx2) that is nx; : 1 on each component and where 5X7,~ is the normalization of C'x ;,
and an identification morphism f : 5X71 U 5X72 ~PlyP! - Pl
If U contracts one of the two components of 5X; say 5X72, to a point zx € S (it is easily seen
that it cannot contract both), then u(X) C Sym?(S) is of the form {zx 4+ Cx}, for an irreducible
curve C'x C S, which is necessarily rational. It is easily seen that C'x = D(5X71) and deg D\éx,l =1,
so that we obtain:
(III) the data of an irreducible rational curve Cx C S together with a point zx € S.
Note that in all cases (I)-(III), the support of the curve C'x on S is simply

(2.2) Supp(Cx) = one-dimensional part of {x € S | x € Supp(&) for some { € X}

and the set is already purely one-dimensional precisely unless we are in case (III) with zx ¢ C.

Conversely from the data (I), (II) or (III) one recovers an irreducible rational curve in S not
contained in A. Indeed, in case (I) (resp. (II)), the g} on Cx (respectively, the identification f)
induces a P! C Symz(ax) and this is mapped to an irreducible rational curve in Sym?(S) by the
natural composed morphism

~ (2)
Sym?(Cx ) — Sym?(Cx)——= Sym?*(S).

The irreducible rational curve X C S@ is the strict transform by g of this curve. In case (IIT),
X ¢ S is the strict transform by p of {zx + Cx} C Sym?(S).

We see that the data (III) correspond precisely to rational curves of type {zo + C} C Sym?(S),
where xg € S is a point and C C S is an irreducible rational curve. Moreover, it is easily seen that
the data (II) correspond precisely to the images by

a:0; x Cy= P x P! — €y + Oy CSme(S),
resp.
a: Sym?(C) ~ P? — Sym?(C) c Sym?(S),
of irreducible rational curves in |nqFy 4+ noFy| for ny,ne € N, resp. |nF| for an integer n > 2, where
Pic(Cy x Cy) ~ Z[Fy] & Z[Fy], resp. Pic(Sym?(C)) ~ Z[F], and Cy,Cs, resp. C, are irreducible
rational curves on S and “7” denotes normalizations. The data of type (II) will however not be
studied more in this paper, where we will focus on the other two, mostly on (I).

Note that an irreducible rational curve X C Sym?(S) arising from rational (resp. elliptic) curves
C as in case (I) moves in Sym?(C), which is a surface birational to P? (resp. an elliptic ruled surface),
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and a curve X C Sym?(S) of the form {xx + C} moves in the threefold {S + C}, which is birational
to a P!-bundle over S, and contains Sym?(C').

At the same time, it is well-known that if kod(S) > 0, then rational curves on S do not move and
elliptic curves move in at most one-dimensional families. This follows for instance from the following
general result (that we will later need in the case p, = 2).

Lemma 2.3. Let S be a smooth, projective surface with kod(S) > 0 containing an n-dimensional
irreducible family of irreducible curves of geometric genus py. Then n < pgy and if equality occurs,
then either the family consists of a single smooth rational curve; or kod(S) < 1 and n < 1; or

kod(S) = 0.
Proof. This is “folklore”. For a proof see [33]. O

As a consequence, if kod(S) > 0, then rational curves in Sym?(S) arising from rational or elliptic
curves on S move in families of dimension at most two in Sym?(S).

On the other hand, irreducible rational curves X C Sym?(S) arising from curves on S with
hyperelliptic normalizations of geometric genus p, > 2 (necessarily of type (1)), move in a family
whose dimension equals that of the family of curves with hyperelliptic normalizations in which C' C §
moves (by unicity of the g}). Apart from some special cases, it is easy to see that the converse is
also true:

Lemma 2.4. Let {Xp}pep be a one-dimensional irreducible family of irreducible rational curves in
Sym?(S) covering a (dense subset of a) proper, reduced and irreducible surface Y C Sym?(S) that
does not coincide with Sing(Sym?(S)) 2 S.

Then C = Cx, in S for every b € B (notation as above) if and only if either Y = Sym?(Cy), with
either Co C S an irreducible rational curve and C = nCy forn > 1, or Co = C C S an irreducible
elliptic curve; or Y = C+C" :={p+p | pe C, p € C'}, with C an irreducible rational curve
and C' C S any irreducible curve; or Y = Cy + Cy, with Cy,Co C S irreducible rational curves and
C =n1Cy +n9Cy fOT’ ni,ngy € N.

Proof. The "if" part is immediate. For the converse, we treat the three cases (I)-(III) separately.

If C is as in (I), then clearly Y C Sym?(C), so that Y = Sym?(C) and C must be either rational
or elliptic, as Y is uniruled.

If C = niCy + noCy as in (II), then either C; = Cy =: Cy and again Y = Sym?(Cy), or C; # Cy
and Y = C7 + Cs.

Finally, if C' is as in (III), then, for every b € B, we have { X} }yep = {xp + C}pep for some xp, € S,
and the {zp}yep define the desired curve C”.

O

We note that by Lemma 2.3 also the rational curves in Sym?(S) arising from singular curves of
geometric genus 2 on S move in at most two-dimensional families. We will see below that this is a
general phenomenon, under some additional hypotheses. We will focus our attention on curves with
hyperelliptic normalizations (of genus p, > 2) in Sections 4-7.

2.2. Bend-and-break in Sym?(S). Let V' C Hom(P', Sym?(S)) be a reduced and irreducible sub-
scheme (not necessarily complete). We consider the universal map

o
(2.5) Py =Pl x V —> Sym?(S)
and assume that the following two conditions hold:
(2.6) For any v € V, ®(P! x v) Z Sing(Sym?(S)) ~ S; and

(2.7) ®y is generically finite
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(the latter just means that V induces a flat family of rational curves in Sym?(S) of dimension
dim(V)). Set

(2.8) Ry :=im(®y),

the Zariski closure of im(®y/) in Sym?(S). It is the (irreducible) uniruled subvariety of Sym?(S)
covered by the curves parametrized by V. In the language of [35, Def. 2.3], Ry is the closure of the
locus of the family ®y,. Note that dim(Ry ) > 2 if dim(V') > 1 by (2.7). Moreover (cf. e.g. [24, Prop.
2.1]),

(2.9) dim(Ry) < 3 if kod(S) > 0.

When Ry is a surface, using Mori’s bend-and-break technique we obtain the following result. In
the statement we underline the fact that the breaking can be made in such a way that, for general
&,m € Ry, two components of the reducible (or non-reduced) member at the border of the family
pass through ¢ and 7, respectively. This will be central in our applications (Proposition 4.3 and § 5,
where we prove Theorem 5.2). We give the proof because we could not find in literature precisely
the statement we will need.

Lemma 2.10. Assume that dim(V') > 3 and dim(Ry ) = 2.
Let § and n be any two distinct general points of Ry. Then there is a curve Ye, in Ry such that
Ye , is algebraically equivalent to (Pv)«(PL) and either
(a) there is an irreducible nonreduced component of Y¢ ,, containg £ and n; or
(b) there are two distinct, irreducible components of Ye , containg & and 0, respectively.

Proof. Since dim(V') > 3 by assumption, by (2.7) we can pick a one-dimensional smooth subscheme
B = Bg, C V parametrizing curves in V such that (®y).(P! x v) contains both & and 7, for every
v € B. We therefore have a family of rational curves:

(2.11) dp:= (®y)|p: P! x B— Ry.

and two marked (distinct) points x,y € P! such that ®p(x x B) = ¢ and ®p(y x B) = 7, such that
each ®5(P' x v) is nonconstant, for any v € B; in particular ®g(P! x B) is a surface.

As in the proofs of [36, Lemma 1.9] and [35, Cor. I1.5.5], let B be any smooth compactification
of B. Consider the surface P! x B. Let 0 € B denote a point at the boundary, P} the fibre over 0
of the projection onto the second factor and xq,yo € ]P’(l) C P! x B the corresponding marked points.
By the Rigidity Lemma [36, Lemma 1.6], ®p cannot be defined at the point zg, as in the proof of
[36, Cor. 1.7], and the same argument works for yg.

Therefore, to resolve the indeterminacies of the rational map ®p : P! x B — — — Ry, we must
at least blow up P' x B at the points zg and yg. Now let W be the blow-up of P' x B such that
®p: W — Ry is an extension of ®p, that is, we have a commutative diagram

w

| N
_ d
Pl x B- 2> Ry.

Let Ey, := m1(z0) and E,, := 7 1(yo). Note that neither of these can be contracted by ®p, for
otherwise ®p itself would be defined at zg or yp.

Therefore the curve ® g(Ey,,) has an irreducible component I'c containing ¢ and the curve ®5(Ey,)
has an irreducible component I';; containing 1 and by construction, I'¢ + T, C ® g, (7~ 1(P! x 0)) and
the latter is the desired curve Y¢,. The two cases (a) and (b) occur as I'c = I';y or I'¢ # I,
respectively. O
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3. RATIONALLY EQUIVALENT ZERO-CYCLES ON SURFACES WITH Pg > 0

In this section we extend to the singular case a consequence of Mumford’s result on zero-cycles
on surfaces with py > 0 (cf. |42, Corollary p. 203|) and reformulate the results in terms of rational
quotients.

3.1. Mumford’s Theorem. The main result of this subsection, which we prove in detail for the
reader’s convenience, relies on the following generalization of Mumford’s result (cf. |58, Chapitre 22|
and references therein, for a detailed account).

Theorem 3.1. (see |58, Prop. 22.24]) Let T and Y be smooth projective varieties. Let Z CY x T

be a cycle of codimension equal to dim(T). Suppose there exists a subvariety T' C T of dimension ko

such that, for all y € Y, the zero-cycle Z, is rationally equivalent in T to a cycle supported on T".
Then, for all k > ko and for all n € H(T,Q%), we have

[Z]*n = 0in HO(Y, QF)
where, as costumary, [Z]*n denotes the differential form induced on'Y by the correspondence Z.

Mumford’s original “symplectic” argument and the theorem above yield the following result (see
|42, Corollary p. 203]).

Corollary 3.2. Let S be a smooth, irreducible projective surface with py(S) > 0 and ¥ C Sl g
reduced, irreducible (possibly singular) complete subscheme such that p(X) ¢ Sing(Sym™(S)), where
w2 S — Sym™(S) is the Hilbert-Chow morphism.

If there exists a subvariety I' C Sym™(S) such that dim(I') < 1, T' ¢ Sing(Sym™(S)) and all
the zero-cycles parametrized by p(X) are rationally equivalent to zero-cycles supported on T', then
dim(X) < n.

Proof. Let 7 : > — % c S be the desingularization morphism of ¥. Let Z = A; C S x S be the
graph of 7. Then Z 2 %, so that codim(Z) = dim(S!), as in Theorem 3.1. By assumption, ()
parametrizes zero-cycles of length n on S that are all rationally equivalent to zero-cycles supported on
I, with dim(I") < 1. Since p(X) is not contained in Sing(Sym"™(S)) by assumption, uly : X — u(X)
is birational. If TV denotes the strict transform of T under p, we get that dim(T") < 1.

We can apply Theorem 3.1 with Z =Y = 3, T = S and T/ = T. Thus, for each k > 1 and for
each n € HO (Q’;[n]) [Z)*n =0 in HO(Z, Q%)

Let w € H(S, Kg) be a non-zero 2-form on S. As in [42, Corollary|, we define:

Zpl e H°(S", Q%)

where S™ is the nt’-cartesian product and p; is the natural projection onto the i factor, 1 < i < n.
The form w™ is Sym(n)-invariant and, since we have that u is surjective, this induces a canonical

2-form w),) € HO(SI", Q2

observed above, [Z]*(w M) =0 as a form in HO(S, QZ) Consider

) (see [42, §1], where wLn} = 1, in the notation therein). From what we

(Sym™(89))g := {g = Zmz | z; # xj, 1 <i# j <n and such that w(z;) € Q%xl is not 0}.
i=1
Then (Sym"™(S))o C Sym™(S) is an open dense subscheme that is isomorphic to its preimage via u
in S, For each & € (Sym™(S))o, € is a smooth point and

n:S™ — Sym"(S)



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 11

is étale over £. Thus, the 2-form w(™ € H°(S™,Q%,) is non-degenerate on the open subset (S™)q of
points in the preimage of (Sym™(S))o, i.e. it defines a non-degenerate skew-symmetric form on the
tangent space of (S™)o.

Let ) := 7 |(gn),; since 75 : (S™)o — (Sym"(S))o is étale, there exists a 2-form

w(()n) € H°((Sym™(9))o, Q%Sym”(s))o)

such that w(™ = W,’;(w(()n)) and w(()") is also non-degenerate. Therefore, the maximal isotropic subspaces

of w(()n) (&) are n-dimensional.

Now ¥ € S and ¥ N p=1((Sym™(S))o) # 0, since u(X) ¢ Sing(Sym™(S)) by assumption. Since
¥ is reduced, let ¢ € ¥ N p~1((Sym™(S))o) be a smooth point. Then, since Xgnooth = ™ H(Zsmooth),
S [n]

by abuse of notation we still denote by £ € 3 the corresponding point. We know that [Z]*w;,"(§) =0

in the tangent space T¢(X). Since
§ € Ysmooth N M—l((symn(s))o) - (Symn(s))()?
then [Z]*(wLn]) = w(()n)|Esmoothﬂu*1((Sym"(S))o)' This implies dim(X) < n. O

3.2. The property RCC and rational quotients. Recall that a variety 7' (not necessarily proper
or smooth) is said to be rationally chain connected (RCC, for brevity), if for each pair of very general
points t1,to € T there exists a connected curve A C T such that ¢1,t2 € A and each irreducible
component of A is rational (see [35]). Furthermore, by [16, Remark 4.21(2)], if T" is proper and RCC,
then each pair of points can be joined by a connected chain of rational curves.

Also recall that, for any smooth variety T, there exists a variety @Q, called the rational quotient of
T, together with a rational map

(3.3) f:T———Q,
whose very general fibres are equivalence classes under the RCC-equivalence relation (see, for in-

stance, [16, Theorem 5.13| or |35, IV, Thm. 5.4]).
In this language, an equivalent statement of Corollary 3.2 is:

Corollary 3.4. Let S be a smooth, projective surface with py(S) > 0. IfY C S s a complete
subvariety of dimension > n not contained in Exc(u), then any desingularization of Y has a rational
quotient of dimension at least two.

Proof. Let Y be any desingularization of Y and @ its rational quotient. Up to resolving the indeter-
minacies of f : Y —— = @, we may assume that f is a proper morphism whose very general fibre is
a RCC-equivalence class, so that in particular each fibre is RCC' (see |35, Thm. 3.5.3]).

If dim(Q) = 0, it follows that ¥ (so also Y) is RCC, contradicting Corollary 3.2.

If dim(Q) = 1, then by cutting Y with dim(Y") — 1 general very ample divisors, we get a curve I

that intersects every fibre of f. Every point of Y is connected by a chain of rational curves to some
point on I, We thus obtain a contradiction by Corollary 3.2 (with T' the image of T in Sym?(S)). O

Let now Ry be the variety covered by a family of rational curves in Sym?(S) parametrized by V,

as defined in (2.8), ﬁv be any desingularization of Ry and Qv be the rational quotient of Ry . Of
course dim(Qy) < dim(Ry) — 1, as Ry is uniruled by construction.

Lemma 3.5. If dim(V) > dim(Ry), then dim(Qy) < dim(Ry) —2 (for any desingularization Ry of
Ry ). In particular, if dim(V') > 2 and dim(Ry) = 2, then any desingularization of Ry is a rational
surface.
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Proof. With notation as in § 2.2, we have dim(Py) > dim(Ry) + 1, so that the general fibre of ®y
is at least one-dimensional, cf. (2.5). This means that, if £ is a general point of Ry, there exists a
family of rational curves in Ry passing through £, of dimension > 1. Of course the same is true for
a general point of Ry . Thus, the very general fibre of f in (3.3) has dimension at least two, whence
dim(Qv) < dim(Ry ) — 2. The last statement follows from the fact that any smooth surface that is
RCC is rational (cf. [35, IV.3.3.5]). O

Combining Corollary 3.4 and Lemma 3.5, we then get:

Proposition 3.6. If py(S) > 0 and dim (V') > 2, then either

(i) Ry is a surface with rational desingularization; or
(ii) dim(V') =2, Ry is a threefold and any desingularization of Ry has a two-dimensional rational

quotient.
Proof. By (2.9), dim(Ry ) = 2 or 3. If dim(Ry) = 2, then (i) holds by Lemma 3.5. If dim(Ry ) = 3,
then dim(Qyv) = 2 by Corollary 3.4. Hence dim(V') = 2 by Lemma 3.5 and (ii) holds. O

Remark 3.7. Let S be a smooth, projective surface with py(S) > 0 and let Y C 512 be a uniruled
threefold different from Exc(u), where p : S — Sym?(S) is the Hilbert-Chow morphism.

Take a covering family {C,},ey of rational curves on Y. By Corollary 3.4 the family must be
two-dimensional (see Lemma 3.5). Then the curves in the covering family yield, via the correspon-
dence described in § 2.1, curves on S with rational, elliptic or hyperelliptic normalizations, and the
correspondence is one-to-one in the hyperelliptic case. We therefore see that we must be in one of
the following cases:

(a) S contains an irreducible rational curve I" and
Y = {¢ € S| Supp(¢) NT # 0;

(b) S contains a one-dimensional irreducible family {E},cy of irreducible elliptic curves and

Y = {5 € Ez[;z}}ye\/Q

or

(¢) S contains a two-dimensional, irreducible family of irreducible curves with hyperelliptic nor-
malizations, not contained in a higher dimensional irreducible family, and Y is the locus
covered by the corresponding rational curves in S 2],

(Note that in fact case (b) can only occur for kod(S) < 1 by Lemma 2.3 and case (¢) only when |Kg]|
is not birational. The latter fact is easy to see, cf. e.g. [33].)

In the case of K3 surfaces, uniruled divisors play a particularly important role [32, §5|, cf. §7.
Now all cases (a)-(c) above occur on a general, projective K3 surface with a polarization of genus
> 6. In fact, cases (a) and (b) occur on any projective K3 surface since it necessarily contains a
one-dimensional family of irreducible, elliptic curves and a zero-dimensional family of rational curves,
by a well-known theorem of Mumford (see the proof in [38, pp. 351-352| or |2, pp. 365-367|). Case
(c) occurs on a general primitively polarized K3 surface of genus p > 6 by Corollary 5.3 below with
a family of curves of geometric genus 3. In addition to this, in Proposition 7.7 we will see that there
is another threefold as in (c) arising from curves of geometric genus > 3 in the hyperplane linear
system on general projective K3 surfaces of infinitely many degrees.

Moreover, there is not a one-to-one correspondence between families as in (a), (b) or (c) above
and uniruled threefolds in S12. In fact, in Proposition 7.2 we will see that there is a two-dimensional
family of curves with hyperelliptic normalizations, as in (c), in the hyperplane linear systems on
general K3 surfaces of infinitely many degrees whose associated rational curves cover only a P? in

S,



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 13

4. FAMILIES OF CURVES WITH HYPERELLIPTIC NORMALIZATIONS

The purpose of this section is to study the dimension of families of curves on a smooth projective
surface S with hyperelliptic normalizations.

We first remark that it is not difficult to see that if |Kg| is birational, then the dimension of such
a family is forced to be zero (see e.g. [33]|). At the same time it is easy to find obvious examples
of surfaces, even with p,(S) > 0, with large families of curves with hyperelliptic normalizations,
namely surfaces admitting a finite 2 : 1 map onto a rational surface. (For examples of such cases,
see e.g. [26, 27, 28, 29, 48, 51, 53, 10| to mention a few.) In these cases one can pull back the
families of rational curves on the rational surface to obtain families of curves on S with hyperelliptic
normalizations of arbitrarily high dimensions. Moreover, in Proposition 7.2 below we will see that
even a general, primitively polarized K3 surface (S, H), for infinitely many degrees, contains a P2
in its Hilbert square, which is not contained in A (but the surface is not a double cover of a P?,
by generality). Therefore, by the correspondence in § 2.1, S contains large families of curves with
hyperelliptic normalizations. One can see that in all these examples of large families the algebraic
equivalence class of the members breaks into nontrivial effective decompositions. For example, in the
mentioned K3 case of Proposition 7.2, we will see that the curves in |Op2(n)| in P2 ¢ S correspond
to curves in |[nH|. In this section we will see that this is a general phenomenon, with the help of
Lemma 2.10.

To this end, let V' be a reduced and irreducible scheme parametrizing a flat family of curves on S
all having constant geometric genus p, > 2 and hyperelliptic normalizations. Let ¢ : € — V be the
universal family. Normalizing € we obtain, possibly restricting to an open dense subscheme of V, a

flat family ¢ : € — V of smooth hyperelliptic curves of genus p; > 2 (cf. [56, Thm. 1.3.2]). Let We v

be the relative dualizing sheaf. Asin [37, Thm. 5.5 (iv)], consider the morphism 7 : € — P(g, (we/v))
over V. This morphism is finite and of relative degree two onto its image, which we denote by Py .
We thus obtain a universal family v : Py — V of rational curves mapping to Sym?(S), as in (2.5),
satisfying (2.6) and (2.7). (Strictly speaking, (2.5) denoted a universal family of maps, whereas it
now denotes a universal family of curves.) To summarize, recalling (2.8), we have

(4.1) t—-Py %Ry
PN

Also note that (4.1) is compatible with the correspondence of case (I) in § 2.1, in the sense that,
for general v € V', we have (using the same notation as in § 2.1)

(42)  7(@7 () = ps(pz'Xo) = (ps)(py'X,) = O, with X, = u7! (@v (7' () € SP,

where g is the Hilbert-Chow morphism (in particular, pg and po are the first and second projections,
respectively, from the incidence variety T C S x S12). Note that the second equality in (4.2) follows
as pg is generically one-to-one on the curves in question, as we saw in § 2.1. This will be central in
the proof of the next result.

We now apply Lemma 2.10 to “break” the curves on S.

Proposition 4.3. Let S be a smooth, projective surface and V and Ry as above. Assume that
dim(V) > 3 and dim(Ry) = 2 and let [C] be the algebraic equivalence class of the members
parametrized by V.

Then there is a decomposition into two effective, algebraically moving classes

[C] = [D1] + [Do]
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such that, for general £,m € Ry, there are effective divisors D} ~qg D1 and D) ~qq Do such that
¢ C Dy and n C Dy and [D} + D] € V, where V is the closure of V in the component of the Hilbert
scheme of S containing V.

Proof. For general §,n € Ry, both being supported at two distinct points on S, let B = B¢, C V be
as in the proof of Lemma 2.10 and B be any smooth compactification of B. By abuse of notation,
we will consider ¢ and 7 as being points in S, By (the proof of) Lemma 2.10, using the Hilbert-
Chow morphism, there is a flat family {X,}, 5 of curves in the surface u;'(Ry) C S 2 (where p
is the Hilbert-Chow morphism as usual) parametrized by B, such that, for general b € B, X is an
irreducible rational curve and

(4.4) COx, = (ps)«(p7 ' (Xp)) = 7(¢71 (b)),
with notation asin § 2.1 (cf. (4.2)). In particular, {C, }sep is a one-dimensional nontrivial subfamily
of the family {Cx, }vev given by V. Moreover, for some by € B\ B, we have X, O Y¢ +Y,, where
Ye and Y, are irreducible rational curves (possibly coinciding) such that £ € Ye and n € Y,,. Also
note that Y¢, Y, Z A C St

Pulling back to the incidence variety T C S x S we obtain a flat family {X} := pgl(Xb)}bEE of
curves in 7', such that

(4.5) Xpy =103 (X0) 257 (Ye) + 031 (Yy) = Y+ Y

Note that the family {X/}, 5 is in fact a family of curves in the incidence variety Ty C Sxpu;  (Ry),
which is a surface contained in T'. Since pg maps this family to a family of curves covering (an open
dense subset of) S, by (4.4), we see that (ps)|z, is surjective, in particular generically finite. Thus,
choosing ¢ and 7 general enough, we can make sure they lie outside of the images by p2 of the finitely
many curves contracted by (ps)z,. Hence ¢~ 1(Ye) and ¢~ *(Y;) are not contracted by ps.

Therefore, recalling (4.4) and (4.5) and letting V' € B be a general point, we get

C ~alg (pS)*Xl;’ ~alg (pS)*XI/)O 2 (pS)*Yg + (pS)*Yn/ 2 Df + D77’

where D¢ := p(q~'Y¢) and D,, := p(q'Y}).

By construction we have D¢ D § and D, D 7, viewing { and 7 as length-two subschemes of S.
(Note that D¢ and D, are not necessarily distinct.) Possibly after adding additional components to
D¢ and Dy, we can in fact assume that

C ~alg (pS)*Xlé/ = Dg + Dna
with D¢ and D, not necessarily reduced and irreducible. Since this construction can be repeated
for general &, € Ry and the set {x € S| x € Supp(§) for some £ € Ry} is dense in S, as the
curves parametrized by V' cover the whole surface S, the obtained curves D¢ and D, must move in
an algebraic system of dimension at least one.

By construction, D¢ + D, lies in the border of the family ¢ : € — V of curves on S, and as
such, [D¢ + Dy] lies in the closure of V' in the component of the Hilbert scheme of S containing V.
Moreover, as the number of such decompositions is finite (as S is projective and the divisors are
effective), we can find one decomposition [C] = [D1] + [D2] holding for general £,7 € Ry . O

The next two results are immediate consequences:

Theorem 4.6. Let S be a smooth, projective surface with py(S) > 0. Then the following conditions
are equivalent:
(i) S contains an irreducible surface R with rational desingularization, such that R # pH(Cr+
Cy), py (Sym2(C)) for rational curves C,C1,Cy C S and R ¢ Exc(u), where p : SP —
Sym?(S) is the Hilbert-Chow morphism;
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ii contains a flat family of irreducible curves with hyperelliptic normalizations of geometric
ii) S tas t 1 irreducibl ith h lipti lizati tri
genus pg > 3, parametrized by a reduced and irreducible scheme V such that dim(V') > 3.

Furthermore, if any of the above conditions holds, then

(a) the rational curves in S that correspond to the irreducible curves parametrized by V, cover
only the surface R in SP; and

(b) the algebraic equivalence class [C| of the curves parametrized by V has an effective decom-
position [C| = [D1] + [D2] into algebraically moving classes such that, for general £,m € R,
there are effective divisors D} ~qq D1 and Dy ~qqg Dy such that & C Dy, n C Dj and
[D} + D] € V, where V is the closure of V in the component of the Hilbert scheme of S

containing V.

Proof. Assume (ii) holds. By Proposition 3.6 we have that Ry C Sym?(S) is a surface with rational
desingularization, so that (i) holds.

Assume now that (i) holds. Then R carries a family of rational curves of dimension n > 3. By
Lemma 2.4 and the assumptions in (i), this yields an n-dimensional family of curves on S that have
rational, elliptic or hyperelliptic normalizations. From Lemma 2.3, we get (ii).

Finally, assume that these conditions hold. Then (a) follows from Proposition 3.6 again, where R
is the proper transform via p of the surface Ry therein; finally, (b) follows from Proposition 4.3. O

Corollary 4.7. Let S be a smooth, projective surface with py(S) > 0 and V be a reduced, irreducible
scheme parametrizing o flat family of irreducible curves with hyperelliptic normalizations (of geometric
genus > 2). Denote by [C] the algebraic equivalence class of the members of V.

If [C] has no decomposition into effective, algebraically moving classes, then dim(V) < 2.

In particular, Corollary 4.7 holds when e.g. NS(S) = Z[C].

The examples with the double covers of smooth rational surfaces and the result in Proposition 7.2
mentioned above, show that the results above are natural.

The statement in Theorem 4.6(b) shows that in fact the length-two zero-dimensional schemes on
the curves in the family corresponding to the elements of the gis on their normalization, are in fact
“generically cut out” by moving divisors in a fixed algebraic decomposition of the class of the members
in the family. This reminds of the nowadays well-known results of Reider and their generalizations
[47, 8, 9]. In fact, Theorem 4.6(b) can be used to prove a Reider-like result involving the arithmetic
and geometric genera of the curves in the family, cf. [33]. Moreover, the precise statement in Theorem
4.6(b) will be crucial in the next section, where we will prove existence of curves with hyperelliptic
normalizations by degeneration methods.

5. NODAL CURVES OF GEOMETRIC GENUS 3 WITH HYPERELLIPTIC NORMALIZATIONS ON K3
SURFACES

In the rest of the paper we will focus on the existence of curves with “Brill-Noether special”
hyperelliptic normalizations (i.e. of geometric genera > 2) and in this section we will see that
Theorem 4.6(b) is particularly suitable to prove existence results by degeneration arguments.

To do this and to discuss some consequences on S[2, we will in the rest of the paper focus on K3
surfaces, which in fact were one of our original motivations for this work.

We start with the following observation combining a result of Ran, already mentioned in the
Introduction, with the results from the previous section.

Lemma 5.1. Let S be a smooth, projective K3 surface and L be a globally generated line bundle of
sectional genus p > 2 on S. Let |L|"P" C |L| be the subscheme parametrizing irreducible curves in
|L| with hyperelliptic normalizations.
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Then, any irreducible component of |L|"P" has dimension > 2, with equality holding if L has no
decomposition into moving classes.

Proof. Any n-dimensional component of | L|"P¢" yields an n-dimensional family of irreducible rational
curves in S?. By [46, Cor. 5.1, we have n > 2. The last statement follows from Corollary 4.7. [

The main aim of this section is to apply Theorem 4.6(b) to prove:

Theorem 5.2. Let (S,H) be a general, smooth, primitively polarized K3 surface of genus p =
pa(H) > 4. Then the family of nodal curves in |H| of geometric genus 3 with hyperelliptic normal-
1zations s nonempty, and each of its irreducible components is two-dimensional.

In |22] we studied which linear series may appear on normalizations of irreducible curves on K3
surfaces. To do so, we introduced a singular Brill-Noether number pging(pa, 7, d, py) whose negativity,
when Pic(S) ~ Z[H], ensures non-existence of curves in |H|, with p, = p,(H) and of geometric genus
Pg, having normalizations admitting a g/; (we will return to this in § 6.3 below). Moreover, in [22,
Examples 2.8 and 2.10], we already gave examples of nodal curves with hyperelliptic normalizations
with geometric genus 3 and arithmetic genus 4 or 5. Theorem 5.2 shows that this is a general
phenomenon. The proof will be given in the remainders of this section. Moreover, we will also
determine the dimension of the locus covered in S?! by the rational curves associated to curves in a
component of the family:

Corollary 5.3. Let (S,H) be a general, smooth, primitively polarized K3 surface of genus p =
pa(H) > 6. Then the subscheme of |H| parametrizing nodal curves of geometric genus 3 with hyper-
elliptic normalizations contains a two-dimensional component V' such that dim(Ry ) = 3.

This corollary in particular shows that all three cases in Remark 3.7 occur on a general K3 surface.
In § 6.2-6.3 we will both compute the classes of the corresponding rational curves in S (see (6.26))
and discuss some of the consequences of Theorem 5.2 on the Mori cone of S[2.

Before starting on the proof of Theorem 5.2, we recall that, for any smooth surface S and any
line bundle L on S, such that |L| contains smooth, irreducible curves of genus p := p,(L), and any
positive integer § < p, one denotes by V|r s the locally closed and functorially defined subscheme
of |L| parametrizing the universal family of irreducible curves in |L| having 0 nodes as the only
singularities and, consequently, geometric genus py := p — 6. These are classically called Sever:
varieties of irreducible, é-nodal curves on S in |L|.

It is nowadays well-known, as a direct consequence of Mumford’s theorem on the existence of nodal
rational curves on K3 surfaces (see the proof in [38, pp. 351-352] or |2, pp. 365-367]) and standard
results on Severi varieties, that if (S, H) is a general, primitively polarized K3 surface of genus p > 3,
then the Severi variety Vg 5 is nonempty and regular, i.e. it is smooth and of the expected dimension
p — 9, for each § < p (cf. [55, Lemma 2.4 and Theorem 2.6]; see also e.g. [15, 20]).

The regularity property follows from the fact that, since by definition V|7 5 parametrizes irreducible
curves, the nodes of these curves impose independent conditions on |L| (cf. [15, 20| and [55, Remark
2.7]). From equisingular deformation theory, this implies that suitable obstructions to some locally
trivial deformations are zero. In other words, it implies first that, for any ¢’ > 9, Virer C V| 1,6 (see
[52, Anhang F], [59] and [50, Thm. 4.7.18] for P? and [55, § 3] for K3s). Furthermore, if [C] € V| 514,
k > 0, is a general point of an irreducible component, the fact that the nodes impose independent

conditions allows to clearly describe what V| 1|5 looks like locally around the point [C]: it is the

union of 6+k) smooth branches through [C], each branch corresponding to a choice of ¢ "marked"

(or "assigned") nodes among the § 4+ k nodes of C', and these branches intersect transversally at [C];
moreover, the other k£ "unassigned" nodes of C' disappear when one deforms [C] in the corresponding
branch of V| 5 (see [52, Anhang F], [59] and [49, § 1] for P? and [55, § 3] for K3s).
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The situation is slightly different for reducible, nodal curves in |L|. Since they appear in the proof
of Theorem 5.2, we also have to take care of this case. To this end, we define the “degenerated”
version of V|r 5 by

(5.4) Wire = {C € |L|| C, not necessarily irreducible, has only nodes

as singularities and at least & nodes}.

For the same reasons as above, W\, s is a locally closed subscheme of |L|. Note that
(5.5) W5 = Us>sV|p),s if all the curves in |L| are irreducible,

which is a partial compactification of V5.

Let [C] € W 5. Choosing any subset {p1,...,ps} of ¢ of its nodes, one obtains a pointed curve
(C;p1,...,ps), where py, ..., ps are also called the marked (or assigned) nodes of C' (cf. [55, Definitions
3.1-(ii) and 3.6-()]).

Recall that there exists an algebraic scheme, which we denote by

(56) B(C;pl7p27"'7p5)7

locally closed in |L|, representing the functor of infinitesimal deformations of C' in |L| that preserve
the marked nodes, i.e. the functor of locally trivial infinitesimal deformations of the pointed curve
(C;p1,-..,ps) (cf. [55, Proposition 3.3|, where we have identified the schemes therein with their
projections into the linear system |L|). In other words, B(C;p1,pa,...,ps) is the local branch of
Wir)s around [C] € W)p 5, corresponding to the choice of the ¢ marked nodes. We have:

Theorem 5.7. (cf. [55, Theorem 3.8|) Let (C;p1,...,ps) be as above. Assume that the general
element of |L| is a smooth, irreducible curve and that the partial normalization of C at the 6 marked
nodes pi,...,ps 1S a connected curve.

Then B(C;p1,p2,--.,ps) is smooth at the point [(C;p1,p2,...,ps)] of dimension dim(|L|) — 0.

Proof. This follows from [55, Theorem 3.8] since, by our assumptions, the pointed curve (C;p1, ..., ps)
is virtually connected in the language of [55, Definition 3.6]. O

For the proof of Theorem 5.2 we need to recall other fundamental facts. We first define, for any
globally generated line bundle L of sectional genus p := pg(L) > 2, on a K3 surface S, and any
integer d such that 0 < d < p — 2, the locus in the Severi variety V|r, s,

(5.8) V|}Ll‘l|’%er = {C € Vip|,s | its normalization is hyperelliptic}.

Observe that in particular, for any p > 3, one always has Vﬁ”; e_r2
of V|| p—2, this is smooth and of dimension two.

Let M, be the moduli space of smooth curves of genus g, which is quasi-projective of dimension
3g — 3 for g > 2. Denote by ﬁg its Deligne-Mumford compactification. Then ﬁg is the moduli space
of stable, genus g curves. Let H, C M, denote the locus of hyperelliptic curves, which is known to
be an irreducible variety of dimension 2g — 1 (see e.g. [1]) and F, C M, be its compactification.

Moreover, recall from |23, Def.(3.158)] that a nodal curve C' (not necessarily irreducible) is stably
equivalent to a stable curve C” if C” is obtained from C by contracting to a point all smooth rational
components of C' meeting the other components in only one or two points.

= Viz|p—2 # 0 and, by regularity
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As above, we define the degenerated version of V‘}L”‘”;er by

(5.9) W&%gr = {C € Wp 5 | there exists a desingularization C of § of the

nodes of C, such that C is stably equivalent to a
(stable) curve C' with [C'] € %pa(L)_(;}.

Note that, by definition, any such C is connected. Similarly as in (5.5), we have:

(5.10) VV&%” = U(;/Z(;V‘Z%GT if all the curves in |L| are irreducible.

Theorem 5.2 will be a direct consequence of the next three results, Propositions 5.11 and 5.19 and
Lemma 5.20. The central degeneration argument is given by the following:

Proposition 5.11. Let p > 3 and § < p — 2 be positive integers. Assume there exists a smooth K3
surface Sy with a globally generated, primitive line bundle Hy on Sy with pe(Hy) = p and such that

WP (50) 0 and dism(WP (S0)) < 2
hyper

Then, on the general, primitively marked K3 surface (S, H) of genus p, VV‘H| s (S) is nonempty
and equidimensional of dimension two.

Proof. Let B, be the moduli space of primitively marked K3 surfaces of genus p. It is well-known
that B, is smooth and irreducible of dimension 19, cf. e.g. |2, Thm.VIII 7.3 and p. 366]. We let
bo = [(So0, Ho)] € Bp. Similarly as in [5], consider the scheme of pairs

(5.12) W5 = {(5,0) | (S, H)] € By and [C] € Win o(9) },
and the natural projection
(5.13) T Wy s — Bp.

(The fact that W, 5 is a scheme, in fact a locally closed scheme, follows from the already mentioned
proof of Mumford’s theorem on the existence of nodal rational curves as in |38, pp. 351-352| or |2,
pp. 365-367].)

Note that for general [(Sy, Hp)] = b € B, we have

7 () = Us>5Vim,) o (Sb)

by (5.5) (as Pic(Sy) ~ Z[H)), so that 7—1(b) is nonempty, equidimensional and of dimension g :=
p — 0, by the regularity property recalled above. In particular, 7 is dominant. Observe that W, s is
singular in codimension one, so in particular it is not normal.

For brevity, let W := W, 5 and let € 7, W be the universal curve. As in Theorem A1, (i) and (ii),
in Appendix A, there exists a commutative diagram

¢ ——C

| |

W) ——=W,

where « is a finite, unramified morphism defining a marking of all the d-tuples of nodes of the fibres

of f (cf. Theorem A.1, with V' ="W, E5) = W;)). Precisely, by using notation as in Theorem A.1,

if for w € W the curve €(w) has § + 7 nodes, 7 € Z*, a~!(w) consists of (5JgT) elements, since any

Nw € a~!(w) parametrizes an unordered, marked J-tuple of the § + 7 nodes of C(w).
Let 1, € W(5). Then 7, is represented by a pointed curve (C;p1,pa,...,ps), where (5,C) € W
and where p1,ps,...,ps are 0 marked nodes on C.
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Let W(S, H) (resp. W) (S, H)) be the fibre of 7 (resp. of ao ) over [(S, H)] € By, and let
a(S, H) : W((g)(S, H) — W(S, H)
be the induced morphism. For 7, € W) (S, H) as above, we have

(514) T[nw](w(é) (57 H)) = T[(C;p1,p2,...,p5)] (B(C;pl)p27 cee ap5))7

where B(C'; p1,p2,...,ps) is as in (5.6). Indeed, since « is finite and unramified, then also (S, H)
is. Therefore, it suffices to consider the image of the differential da(S, H)j,,. The latter is given by
first-order deformations of C' in S (equivalently in |H|) that are locally trivial at the § marked nodes;
these are precisely given by Tjcip, p....ps) (B(Cip1, P2, -, p5)) (cf. [55, Remark 3.5]).

Let \7\7(5) be Ehe smooth locus of W5). By Theorem 5.7 and by (5.14), together with the fact that

B, is smooth, W3 contains all the pairs (S, C) with § marked nodes on C, such that |C| is globally
generated (i.e. its general element is a smooth, irreducible curve) and the partial normalization of
C at these marked nodes is a connected curve. More precisely, by the proof of Mumford’s theorem
on the existence of nodal rational curves on K3 surfaces, as in |38, pp. 351-352| or |2, pp. 365-367]),
any irreducible component of Ws) has dimension > 19 + p — ¢ = 19 + g; furthermore, by (5.14),
dim(T},,,,; (W5 (S, H))) = g, where n,, represents (S,C) with C' with the § marked nodes. It also
follows that W(s) is smooth, of dimension 19 + g at these points.

If we restrict €’ to Ws), from Theorem A.1, (iv) and (v), we have a commutative diagram

e——=¢

Y

Wiy —= W,
where a = O‘|W(5) and where f is the flat family of partial normalizations at é nodes of the curves

parametrized by a(\/~\7(5)) (in the notation of Theorem A.l in Appendix A, f: fin (v) and e==e
in (iii) and (iv)).
There is an obvious rational map

Wiy === My,
defined on the open dense subscheme \7\7((]5) C \7\7(5) such that, for n,, € W(()é), é(nw) is stably equivalent

to a stable curve of genus g. N
Set ¢ = C|WO . By definition, for any 7, € W?5), the map v contracts all possible smooth rational
(%)

components of é(nw) meeting the other components in only one or two points and maps the resulting
stable curve into its equivalence class in M.

Pick any Cy € W/‘}gﬁfg(So) and let wy = [(So, Cp)] € W be the corresponding point. Now |Hy| is

globally generated and the normalization of Cjy at some § nodes satisfying the conditions in (5.9) is
a connected curve. Therefore, letting 7,, € a~!(wp) be the point corresponding to marking these &

nodes, we have that n,, € W(()5) and the map c is defined at 7.

Let V C W(()é) be the irreducible component containing 7,,; then, as proved above, dim(V) = 194g.
By assumption, ¢(\~7) NH, # 0. Hence, for any irreducible component X C ¢(\~7) N H,, we have

(5.15) dim(X) > dim(¢(V)) + dim(H,) — dim(M,) = dim(¢(V)) + 2 — g.
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Pick any X containing t(n,,) and let J C wl_@l (X) be any irreducible component containing 7y, .

Since the general fibre of ¢ has dimension dim(V) — dim(¢(V)) = 19 4+ g — dim(¢)(V)), from (5.15)

we have

(5.16) dim(?) = dim(K) 419 4 g — dim((V))
> dim(y(V)) +2 — g+ 19+ g — dim(sp(V)) = 21.
Consider now

(5.17) mo (alg) : I — By.

Since, by assumption, the fibre over by = [(Sp, Hp)] is at most two-dimensional, we conclude from
(5.16) that mo(ag) is dominant, that all the fibres are precisely two-dimensional and that dim(J) = 21.

This shows that W/"“P<" £ () for general [(S, H)] € B, and Lemma 5.1 implies that in fact any

|H],6
irreducible component of W/‘}E’f) <"(S) has dimension two. O

Remark 5.18. In particular, Lemma 5.1, Proposition 5.11 and |22, Examples 2.8 and 2.10] prove
Theorem 5.2 for p =4 and 5.

We next construct the desired special primitively marked K3 surface:

Proposition 5.19. Let d > 2 and k > 1 be integers. There exists a K3 surface Sy with
Pic(So) = Z[E] ® Z|F] & Z|R]

and intersection matriz

E? E.F E.R 0 d k
FE F? FR |=|d 0 k |,
R.E RF R2? E k -2

and such that the following conditions are satisfied:
(a) |E| and |F| are elliptic pencils;
(b) R is a smooth, irreducible rational curve.
(¢c) Hy:= E+ F+ R is globally generated, in particular the general member of |Hy| is a smooth,
wreducible curve of arithmetic genus p := 2k + d;
(d) the only effective decompositions of Hy are

Hy~E+F+R~(E4+F)+R~(E+R)+F~(F+R)+E.

Proof. Since the lattice has signature (1,2), then, by a result of Nikulin [43] (see also [39, Cor.
2.9(1)]), there is a K3 surface Sy with that as Picard lattice. Performing Picard-Lefschetz reflections
on the lattice, we can assume that Hy is nef, by |2, VIIL, Prop. 3.9]. Straightforward calculations on
the Picard lattice rules out the existence of effective divisors I' satisfying I'> = —2 and I'.E < 0 or
I.F <0,0or I'?=0and I'.Hy = 1. Hence (a) and (c) follow from [48, Prop. 2.6 and (2.7)]. Similarly
one computes that if ' >0, ['? = —2 and I'.R < 0, then I' = R, proving (b).

Similarly, (d) is proved by direct calculations using the nefness of E, F' and Hy and recalling that
by Riemann-Roch and Serre duality a divisor D on a K3 surface is effective and irreducible only if
D? > —2 and D.N > 0 for some nef divisor N. O

The following result, together with (5.10) and Proposition 5.11, now concludes the proof of Theo-
rem 5.2 and Corollary 5.3. From Remark 5.18, we need only counsider p > 6.

Lemma 5.20. Letp > 6 be an integer. There exists a smooth K3 surface So with a globally generated,
primitive line bundle Hy on Sy with p = pe(Hy) such that

(a) W _(S0) # 0;



ON FAMILIES OF RATIONAL CURVES IN THE HILBERT SQUARE OF A SURFACE 21

(b) dim(W#r _(Sp)) = 2;

(c) there exists a component of V[/"hyper

H0‘7p_3

VT (S1), Jor general [(Si, Ho) € By

(d) for general [(St, Ht)] € Bp, the two-dimensional irreducible component Vi C X/I}Iﬁfzr_g(st)
given by (c), satisfies dim(Ry,) = 3 (with notation as in § 2.2).

Proof. Set k=1 if piseven and k =2 if p is odd and let d := p — 2k > 2. Consider the marked K3
surface (Sp, Hp) in Proposition 5.19.

We will consider two general smooth elliptic curves Ey € |E| and Fj € |F| and curves of the form

Co:=EyUFyUR,

with transversal intersections and a desingularization
(5.21) 50 = Eo U ﬁb U ﬁ —

of the § := p —3 = d+ 2k — 3 nodes marked in Figure 1 below, that is, all but one of each of the
intersection points Eg N Fy, Fy N R and Fy N R.

(So) whose general member deforms to a curve [Cy] €

k points k points
k=1,2 k=1,2

partial
normalization

d points

Co

F1GURE 1. The curves Cy and 50

Then [Cy] € W/‘};?(ﬁe;_g, as 50 is stably equivalent to a union of two smooth elliptic curves intersecting

in two points (cf. [23, Exercise (3.162)]), proving (a). Clearly the closure of the family we have
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constructed is isomorphic to |E| x |F| ~ P! x P!, and is therefore two-dimensional. Denote by

Wy C WP this two-dimensional subscheme.

|Hol,p—3
We will now show that any irreducible component W of W/‘}gp‘er has dimension < 2.

A central observation, which will be used together with Theorem 4.6(b), will be that, with the
above choices of k£, we have

(5.22) EHy=FHy=d+k=p—kis odd.
We start by considering families of reducible curves. These are all classified in Proposition 5.19(d).
If the general element in W is of the form DU R, for D € |E + F|, then in order to have a partial
desingularization DU R to be (degenerated) hyperelliptic, we must have deg(D N R) = 2, so that we
must desingularize 2(k — 1) of the intersection points of D N R. Finally, as p,(D U R) = 3, we must
have pa(D) = 2. Therefore W C Wp x {R} ~ Wp, where Wp C |D| is a subfamily of irreducible

curves of geometric genus < 2. It follows that dim(W) < dim(Wp) < 2, by Lemma 2.3.
If the general element in W is of the form D U E, for D € |F + R|, then in order to have a

partial desingularization D U R that is (degenerated) hyperelliptic, we must have deg(f) N E) =2
If the projection W — |E| is dominant, this means that gi(D) C |f*E\u~), where f : 5§ — §
denotes the composition of blow-ups of S that induces the partial desingularization DUR — DUR.
But this would mean that |f*FE] 5> Which is base point free on D, is composed with the gQ(D) a
contradiction, as deg(O5(f*E)) = E.D = E.Hy is odd by (5.22). Therefore, the projection W — |E|
is not dominant, Whence dim(W) < dim(|D|) = $D?+1 =k < 2, as desired. By symmetry, the case
where the general element in W is of the form D U F, for D € |E + R| is treated in the same way.
Finally, we have to consider the case of a family W C |Hy| of irreducible curves.

In this case assume dim(WW) > 3, and let C be a general curve parametrized by W. Then by
Theorem 4.6 (b), there exists an effective decomposition into moving classes Hy ~ M + N such that

63(C) C |f*M] . |f*N] g

where f : S — S denotes the succession of blow ups of S that induces the normalization C - C.
From Proposition 5.19(d) we see that we must have

63(C) C |f*El g or |/*Fl .

which means that either \f*Ehé or \f*F\‘é is composed with the g}(C), again a contradiction, as
both have odd degree by (5.22). We have therefore proved (b).

To prove (c) we will show that any [Cy] € W/‘}gp‘e; 5 in the two-dimensional, irreducible component

W) considered above in fact deforms to a curve [C}] € W/‘}E’fﬁ 5(St), for general [(Sy, Hy)] € By, that
has precisely 6 = p — 3 nodes (cf. (5.10)). o N

To this end, denote by 8 — B, the universal family of K3 surfaces, f: € — W5 and I C W) as
in the proof of Proposition 5.11, and let ¢ : ég — J be the restriction of f

Since the fiber over [(So, Ho)] of I — B, as in (5.17) contains an open, dense subset of P! x P!,
we can find a smooth, irreducible curve B C J satisfying: for x € B general, ¢~ !(z) is a (partial)
desingularization of § = p— 3 of the nodes of a curve in W g, 5(S¢) (cf. (5.4)), for general [(S;, Hy)] €
By, and ¢~ 1(z) € Hz C Ms; moreover B contains a point xg € J such that ¢~ 1(zg) is Cy as in
(5.21), for Cp general in Wj.

Let ¢p : e B — B be the induced universal curve. Since the dualizing sheaf of ¢} (a;o) = 50 is
globally generated (as each component intersects the others in two points), we in fact have, possibly

after substituting B with an open neighbourhood of z, a morphism vz : C5 — ]P’(@*(wé/B)) over
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B that is 2 : 1 on the general fibre gpgl( ) and contracts the rational component R of ¢5 (o) and
maps the two elliptic curves Eo and Fy each 2 : 1 onto (different) P's (cf. (5.21) and Figure 1).
Let v: GB — GB be the normalization and

&, e T e B(fulwg, )

the Stein factorization of yp o v. In particular, 2 is finite of degree two onto its image. Moreover,
voyp : G — Bis aflat family whose general fiber (vopp) ™! () is a desingularization of ¢3! (z) € Cx.
Let p, be the geometric genus of this general fibre.

Let D C éjg be the strict transform via ~; of the closure of the branch divisor of ~2 on the
smooth locus of é% By Riemann-Hurwitz, for general x € B, we have ﬂ).gpgl(x) = 2pg + 2,
whereas D.o 5" (29) > 8, as the curve y1(p5' (o)) contains two smooth elliptic curves, each being
mapped 2 : 1 by 2 onto (different) P's. This implies pg = 3. Since, for general x € B, we have
Py < Pa(pp () = p — 6 = 3, we find that ¢5'(z) is smooth. This means that the general curve in
Wih,,5(St), for (St, Hy) € B, general, has precisely § = p — 3 nodes, proving (c).

To prove (d), again we consider the morphism (up to possibly restricting J as above)

73 : Cg — P(px(we, /7))
over J which, apart some possible contractions of rational components in special fibres over J, is
relatively 2 : 1 onto its image. We have a natural morphism h : G5 — §, inducing a natural map
® : im(q9) — — — Sym?(8),
whose domain has nonempty intersection with every fibre over B,,.
Let R := im(®). Then RN Sym?(S;) = Ry, for general [(S;, H;)] € B,. One easily sees that

{Sym*(E")}prejp U {Sym* (F") } pre ) € RN Sym?(Sp).
Since the two varieties on the left are threefolds, we have dim(®~1(&)) = 0 for general & € RN
Sym?(Sp) C R. Therefore, for general ¢ € R, we have dim(®~1(¢)) = 0, so that dim(R) = dim(Cy) =
dim(J) + 1 = 22, whence dim(Ry;,) = 22 — dim(B,) = 3. O

Remark 5.23. For general [(S;, H;)] € B), the obtained curves in the last proof have in fact 6 = p—3
non-neutral nodes (cf. |22, §3]). In fact a desingularization of less than p — 3 nodes of C; admits no
gis, as clearly a desingularization of less than p — 3 nodes of Cj is not stably equivalent to a curve
in the hyperelliptic locus F(3 C Ms.

6. ON THE MORI CONE OF THE HILBERT SQUARE OF A K3 SURFACE

In this section we first summarize central results on the Hilbert square of a K3 surface and show
how to compute the class of a rational curve in S?/. Then we discuss the relations between the
existence of curves on S and the slope of the Mori cone of S, that is, the cone of effective classes
in Ny (SPhHg. In particular, we show how to deduce the bound (6.28) from Theorem 5.2 and (6.22)
from known results about Seshadri constants. Finally, we discuss the relation between the existence
of a curve on S with given singular Brill-Noether number and the slope of the Mori cone of S2.

6.1. Preliminaries on S? for a K3 surface. Recall that for any smooth surface S we have
(6.1) H?*(SP,7) ~ H*(S,Z) & Ze,

where A := 2¢ is the class of the divisor parametrizing 0-dimensional subschemes supported on a
single point (see [7]). So we may identify a class in H?(S,Z) with its image in H?(S"?,Z). When
S is a K3 surface the cohomology group H 2(5[2},2) is endowed with a quadratic form ¢, called
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the Beauville-Bogomolov form, such that its restriction to H?(S,Z) is simply the cup product on
S, the two factors H?(S,Z) and Ze are orthogonal with respect to this form and g(¢) = —2. The
decomposition (6.1) induces an isomorphism

(6.2) Pic(S1) ~ Pic(S) & Zle],

and each divisor D on S corresponds to the divisor on S, by abuse of notation also denoted by D,
consisting of length-two subschemes with some support on D.

Given a primitive class a € Hy(S!?,Z), there exists a unique class wo, € H?(S™®,Q) such that
a.v = q(wy,v), for all v € H2(S!?,Z), and one sets

(6.3) q(a) = q(wa).
We denote also by po € H?(SP,Z) the corresponding primitive (1,1)-class such that p, = cw,, for
some ¢ > 0 (for further details, we refer the reader to |25]).

If now Pic(S) = Z[H], then the Néron-Severi group of S?/ has rank two. We may take as generators
of N1(SP)g the class P} of a rational curve in the ruling of the exceptional divisor A C S and
the class of the curve in S defined as follows

{¢& € 5P Supp(é) = {po,y} |y € Y},

where Y is a curve in |H| and py is a fixed point on S. By abuse of notation, we still denote the class
of the curve in S by Y. Note that we always have that

(6.4) P4 lies on the boundary of the Mori cone.

Indeed, the curve P} is contracted by the Hilbert-Chow morphism Skl — Sym?(S), so that the
pull-back of an ample divisor on Sym?(S) is nef, but zero along PL.
Therefore, describing the Mori cone NE(S) amounts, by (6.4), to computing

(6.5) slope(NE(S®?)) := inf {% |aY — bPY € Ni(SP?) is effective, a,b € Q+}.

We will also call the (possibly infinite) number a/b associated to an irreducible curve X ~g, aY —bPX
with @ > 0 and b > 0, the slope of the curve X and denote it by slope(X). Thus, the smaller slope(X)
is, the nearer is X to the boundary of NE(S[?).

By a general result due to Huybrechts 32, Prop. 3.2] and Boucksom [11], a divisor D on S is
ample if and only if ¢(D) > 0 and D.R > 0 for any (possibly singular) rational curve R ¢ S As
a consequence, if the Mori cone is closed then the boundary (which remains to be determined) is
generated by the class of a rational curve (the other boundary is generated by Pk, by (6.4)). This
means that one would have slope(NE(S?)) = slope,,,(NE(S?))), where
(6.6)

slope,.q+

(NE(S?))) := inf {% | aY — bPY € N;(S?) is the class of a rational curve, a,b € Q+}.

(A priori, one only has slope(NE(S12)) < slope,,;(NE(S12)).)

Hassett and Tschinkel |25] make a precise prediction on the geometric and numerical properties of
such extremal rational curves in S1?. Indeed, according to their conjectures [25, p. 1206 and Conj.
3.6], the extremal ray R has to be generated either by the class of a line inside a P?, such that
q(R) = —5 as in (6.3), or by the class of a rational curve that is a fibre of a P!'-bundle over a K3

surface and such that ¢(R) = —2 or —3.
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6.2. The classes of rational curves in S1Z. Assume that Pic(S) = Z[H] with p,(H) = p, > 2.

Let X C S be an irreducible rational curve. Let Cx C S be the corresponding curve as in § 2.1

and assume that C'x € |mH| with m > 1. (In particular, m > 2 if we are in case (II)). We can write
X~y a1Y + asPX.

Since X.H = m(2p, — 2), Y.H = 2p, — 2 and PL.H = 0 by the very definition of H as a divisor in
SEl and Y.e = 0 and PL.e = —2, we obtain, deﬁmng go(X) :=Xe—1,

X
(6.7) X gy mY — (%)Pg.

To compute go(X), consider the diagram (2.1). Since v%0x(A) ~ (V5 Ox(¢))®?, the double cover
f is defined by v5Ox(A). By Riemann-Hurwitz we therefore get

(6.8) 90(X) = pa(Cx).
Note that in the cases (II) and (III) in the correspondence in § 2.1, X.e = go(X) + 1 is precisely

the length of the intersection scheme CX 1N CX 2, where CX = C’Xl U C’Xg In case (III), since
C’X — S contracts one of the two components of C’X to a point xx € S, we obtain that

(6.9) go(X) = mult,, (Cx) — 1 (if Cx is of type (III)).
One can check that for all divisors D in S one has X.D = q(wx, D) with
X)+1
(6.10) wx = mH — (%)e e H?*(S?, Q).

In particular, 2wx € H?(S?, 7).

From (6.5) and (6.7) we see that searching for irreducible rational curves in (or at least “near”) the
boundary of the Mori cone of S/, or with negative square ¢(X), amounts to searching for irreducible
curves in |mH| with (partial) hyperelliptic normalizations of high genus (case (I)), or to irreducible
rational curves in |mH| with high multiplicity at a point (case (III)), or to irreducible rational curves
on S with some correspondence between some coverings of their normalizations (case (II)). Moreover,
we should search for curves with as low m as possible. Now m > 2 in case (II), as remarked above.
Moreover, any rational curve in |H| on a general S is nodal, by a result of Chen [13, Thm. 1.1] (the
same is also conjectured for rational curves in [mH| for m > 1, see [14, Conj. 1.2]), so that go(X) < 1
if C'x is of type (III) in these cases, by (6.9). Hence, we see that the most natural candidates are
irreducible curves in |H| with hyperelliptic normalizations.

By the above, an irreducible curve C' € |mH| with hyperelliptic normalization defines, by the
unicity of the gi, a unique irreducible rational curve X = Ro C S 2] with class

C)+1
(6.11) Re: ~aig mY — (%)m,

where go(C) = go(Rc) is well-defined as
(6.12) go(C) := the arithmetic genus of a minimal partial desingularization of C' admitting a ga.
(For example, if C' is nodal, then we simply take the desingularization of the non-neutral nodes of C,

cf. [22, §3]). From (6.5) we then get

2m 2m
6.13 lope(NE(SZ)) < <
(6.13)  slope(NE(S")) < PROES TN ESE

if there exists a C' € |mH| with hyp. norm.

and, by (6.3) and (6.10),

(90(C) +1)?

(pg(C) + 1)?
5 R

(6.14) g(Re) = 2m*(p, — 1) — 2

< 2m2(pa - 1) -
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In particular, the higher go(C') (or py(C)) is - thus the more “unexpected” the curve on S is from a
Brill-Noether theory point of view - the lower is the bound on the slope of NE(S?) and the more
negative is the square ¢(R¢) in S,

6.3. The invariant p,,s, Seshadri constants, the “hyperelliptic existence problem” and
the slope of the Mori cone. In [22] we introduced a singular Brill-Noether invariant

(6.15) Psing(Pa; 7, d, g) = p(g,7,d) + pa — 9,

in order to study linear series on the normalization of singular curves. Precisely, we proved

Theorem 6.16. Let S be a K3 surface such that Pic(S) = Z[H] with p, := po(H) > 2. Let C € |H|
and C — C be a partial normalization of C, such that g := pa(C’)
If psing(pa, 7, d,g) <O, then C carries no gy

Proof. One easily sees that the proof of |22, Thm. 1] also holds for a partial normalization of C. [

For r =1 and d = 2, we have

Pa + 2
5

In particular, a consequence of Theorem 6.16 is the following:

Theorem 6.18. Let S be a smooth, projective K3 surface with Pic(S) ~ Z[H] and p, := pa(H) > 2.
Let Y and P be the generators of N1(SP)g with notation as in § 6.1.
If X € Ni(SP)g with X ~qy Y — kPX, then k < P2t

(617) psing(pm L, 279) <0&g>

Proof. We can assume that X is an irreducible curve. Then, precisely as in the case of a rational curve,
X corresponds either to the data of an irreducible curve C € |H| on S, with a partial normahzatlon
C admitting a 2 : 1 morphism onto the normalization X of X, or to the data of an irreducible curve
C € |H| on S together with a point zp := zx € S. (The case correspondmg to case (II) in § 2.1 does
not occur, since the coefficient of Y is one, precisely as in the case of a rational X explained above.)
In the latter case u(X) = {zo + C} C Sym?(S), where p : S® — Sym?(S) is the Hilbert-Chow
morphism as usual, and one easily computes k = (1/2) mult,,(C) as in the rational case above. Since
clearly mult,,(C) < 2 if p, = 2 and mult,,(C) < 3 if p, = 3, we have k < % in these two cases.
If p, > 4, then from dim |H| — 3 — (p, —4) = 1 and the fact that being singular at a given point
imposes at most three independent conditions on |H|, we can find an irreducible curve C’ € |H|,
different from C, singular at xp, and passing through at least p, — 4 points of C. Therefore

200 — 2= H? = C'.C > mult,, (C') - multy, (C) + py — 4 > 2mult,, (C) + p, — 4,

whence mult,, (C) < (p, +2)/2, so that k < (p, + 2)/4.
In the first case, then, precisely as in the rational case above,

Pa 6’ +1
(6.19) p=2OHL )
from Riemann-Hurwitz. By Brill-Noether theory on X , it follows that C carries a g}i, with
X
d< QLM .

By Theorem 6.16 we have pging(po(C), 1,d, pa(C)) > 0, whence po(C) < d—1+p,a(C) /2. The desired
result now follows. O
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By the proof of Theorem 6.18 we see that if C' € |mH]| is an irreducible curve and z¢ € C, then
the class of the corresponding curve u; {zo+C} C S is given by mY — (1/2) mult,, (C)PX. Hence

2m 2 C.H
1 NE [2}<'f inf inf — = inf — inf inf —— 1} ).
slope(NE(5#) < inf (inf (inf o)) = inf g (nf (g )
It follows that

(6.20) slope(NE(SP)) <

where

: : C.H
e(H) = achelg <Cl‘g£c multx(C’))

(and the infimum is taken over all irreducible curves C' C S passing through z) is the (global) Seshadri
constant of H (cf. [17, § 6], [18] or [4]). These constants are very difficult to compute. The only case
where they have been computed on general K3 surfaces is the case of quartic surfaces, where one
has e(H) = 2 by [3], yielding the bound slope(NE(S?)) < 1. As a comparison, the bound one gets
from (6.13) using the singular curves of genus two in |H| is slope(NE(S?)) < 2/3. However, it is
well-known that e(H) < v H? on any surface, see e.g. [54, Rem. 1]. Hence, by (6.20) we obtain

Theorem 6.21. Let (S, H) be a primitively polarized K3 surface of genus p, := po(H) > 2 such
that Pic(S) ~ Z[H]. Then (cf. (6.5))

(6.22) slope(NE(S2))) < pi([f )1 < ,/pa2_ -

In particular, (6.22) shows that there is no lower bound on the slope of the Mori cone of S 2] of
K3 surfaces, as the degree of the polarization tends to infinity, that is,

(6.23) inf { slope(NE(S1?)) | S is a projective K3 surface} =0,

The same fact about slope,;(NE(S?)) will follow from (7.4) and (7.9) below.
Note that one always has e(H) > |V H?| — 1 under the hypotheses of Theorem 6.21. Indeed, if
e(H) < VH?, then there is an 2 € S and an irreducible curve C such that e(H) = #ﬁc), see e.g.

[44, Cor. 2|. Since one easily computes dim |H ® Jﬁ}‘/ﬁj‘l)\ > 2, we can find a D € |L| such that
D 2 C, mult,(D) > |VH?| —1 and D passes through at least one additional point of C'. Thus
S(H) = ¢cH _ CD > mult, (C) - multz (D) + 1

mult,(C)  mult,(C) mult, (C)
as desired. It follows that
() V221
Pa— 1 Do — 1
showing that there is a natural limit to how good a bound one can get on slope(NE(S!?)) by using
Seshadri constants.

The bound in (6.22) is not (necessarily) obtained by rational curves in S!?. However, the presence
of pg(X) in (6.19) above tends to indicate that the better bounds will be obtained by rational curves
in S (Of course, if the Mori cone is closed, then the bound will indeed be obtained by rational
curves, as explained at the end of § 6.1.) In fact, the bound (6.22) above will be improved, for
infinitely many values of H2, in Propositions 7.2 and 7.7 below by rational curves.

We now return to the study of irreducible rational curves in S and to slope,.,,(NE(S?)).
Given Theorem 6.16 and (6.17), a natural question to ask is the following:

> mult, (D) > |[VH2] — 1,

(6.24) , for (S, H) as in Theorem 6.21,
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Pa+2
2

Hyperelliptic existence problem (HEP). For 3 < p, <
in [H| with hyperelliptic normalization of geometric genus p,?

By (6.13) we have that

, does there exist a singular curve

pa+2J
2

if p, is even;

(6.25) a positive solution to (HEP) for “maximal” p, = |

4
1 NE(S12)) < { Partt
S Operat( ( )) — { 4 ifpa is odd

Pat3
and, by (6.14), the g-square of the associated rational curves would be much less than what predicted
by Hassett and Tschinkel [25, Conj. 3.1]. Moreover, the bounds in (6.25) would be much stronger
than the bound given by the right hand inequality in (6.22), and even stronger than the best bounds
one could obtain from Seshadri constants (compare the left hand side inequality in (6.22) with (6.24)).

It is natural to try to solve (HEP) using nodal curves, as one has better control of their deformations
and their parameter spaces (the Severi varieties considered in § 5). After the positive answer to the
hyperelliptic existence problem for the specific values p; = 3 and p, = 4,5 in |22, Examples 2.8 and
2.10], Theorem 5.2 gives the first examples, at least as far as we know, of positive answers to the
hyperelliptic existence problem for primitively polarized K3 surfaces of any degree.

In Remark 5.23 we showed that py(C) = ¢o(C) = 3 for these constructed curves C' € |H| (cf.
(6.12)), so that the classes of the associated rational curves Rg C S!? are, using (6.10),

(6.26) wn = H — %
with

q(wry) = g(Re) = 2p — 10 > 2.
Moreover, using (6.13), Theorem 5.2 yields (cf. (6.6)):

Corollary 6.27. Let (S, H) be a general, primitively polarized K3 surface of genus po(H) > 4. Then

(6.28) slope

rat

(NB(s) < 7.

Note that the existence of nodal curves of geometric genus 2 in |H |, which was already known and
followed from the nonemptiness of the Severi varieties on general K3 surfaces, as explained in the
beginning of § 5, leads to the less good bound of % Therefore, again as far as we know, (6.28) is the
first “nontrivial” bound on the slope of rational curves holding for all degrees of the polarization. As
already mentioned, for infinitely many degrees of the polarization we will in fact improve this bound
in Propositions 7.2 and 7.7 below.

Remark 6.29. One may also look for irreducible singular curves with hyperelliptic normalizations
in [mH|, m > 2. In [22, Corollary 4|, we also proved that, apart from some special numer-
ical cases (where we were not able to conclude), the negativity of pging(pa(mH),1,2,g) implies
the non-existence of irreducible nodal curves in |mH| with hyperelliptic normalizations. A posi-
tive solution to the hyperelliptic existence problem for singular curves in |mH| would then pro-
vide an even better bound on the slope of the Mori cone. Namely, one would for instance get
slope(NE(S?)) < 4/[m(p,(H) + 4)] for even p,. Whereas we tend to believe that the nonnegativity
of psing should imply existence of curves with hyperelliptic normalizations for the specific values of
Pe and ¢ in a primitive linear system |H| on a general K3, we are not sure what to expect for curves
in [mH| when m > 1. For instance, the degeneration methods to prove existence as in the proof of
Theorem 5.2 will certainly get more difficult, because the irreducibility of the obtained curves after
deformation is not automatically ensured.
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Remark 6.30. We do not know whether there will always be components in |H|"P¢" (whenever
nonempty) of singular curves with hyperelliptic normalizations such that the singularities of the
general member are as nice as possible, that is, all nodes and all non-neutral [22, §3].

7. P?s AND THREEFOLDS BIRATIONAL TO Pl-BUNDLES IN THE HILBERT SQUARE OF A GENERAL
K3 SURFACE

We now give an infinite series of examples of general, primitively polarized K3 surfaces (S, H), of
infinitely many degrees such that S contains either a P2 or a threefold birational to a P'-bundle,
thus showing both possibilities occurring in Proposition 3.6.

Both series of examples are similar to Voisin’s constructions in [57, § 3]. The idea is to start with
a smooth quartic surface Sy such that S([)Q} contains an “obvious” P? or threefold birational to a P!-
bundle over Sy, use the involution on the quartic to produce another such P? or uniruled threefold,
and then deform Sy keeping the latter one and loosing the first one in the Hilbert square.

We remark that the question of existence of P%s in S when S is K3 is a very interesting problem
because of the following fact: a P? in S gives rise to a birational map from S onto another
hyperkéhler fourfold, and conversely any birational transformation X — — — X’ between projective,
symplectic fourfolds can be factorized into a finite sequence of Mukai flops (cf. [41, Thm. 0.7]), by
[60, Thm. 2], see also [12, 30, 62]. Therefore, in the case of a K3 surface, if S contains no P?s,
then S!2 admits no other birational model than itself.

Also uniruled divisors have an influence on the birational geometry of a hyperkéhler manifold X.
Indeed, Huybrechts proved in [32, Prop. 4.2] that a class a in the closure of the positive cone Cx lies
in the closure of the birational Kihler cone BXx if and only if g(c, D) > 0, for all uniruled divisors
D C X. (Recall that the positive cone Cx is the connected component of {a € HY1(X,R) : g(a) > 0}
containing the cone Kx of all Kéhler classes of X, and the birational Kdhler cone BKx equals by

definition Up.x___ x/ f*Kx/, where f is a bimeromorphic map onto another hyperkdhler manifold
X').

7.1. P%s in S!2. The first nontrivial case, the case of degree 10, is particularly easy, so we begin
with that one.

Example 7.1. (Hassett) Let S C PS be a general K3 surface of degree 10. By [40] the surface S is
a complete intersection S = G NT N Q, where G := Grass(2,5) is the Grassmannian of lines in P*
embedded in P? by its Pliicker embedding, T is a general 6-dimensional linear subspace of P?, and @
is a hyperquadric in PY. Set Y := GNT. Then Y is a Fano 3-fold of index 2. Let F'(Y) be its variety
of lines. It is classically known (see e.g. [19] for a modern proof) that F(Y) = P2. Then we may
embed this plane in Sl by mapping the point corresponding to a line [¢] to £N Q. By generality, S
does not contain any line, so that this map is a morphism.

The construction behind the following result, generalizing the previous example, was shown to us
by B. Hassett.

Proposition 7.2. Let (S, H) be a general primitively polarized K3 surface of degree H? = 2(n? —

9n + 19), for n > 6. Then SP contains a P2,
The class wy € H*(SP, Q) corresponding to a line £ C P? is

(7.3) we=H — 2”2_ O,
In particular

2
(7.4) slope,.q,(NE(SP)) < ———
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Moreover the curves C' C S with hyperelliptic normalizations associated to the lines ¢ C P2 c SI2
lie in |H|, have geometric genus pg = 2n — 10, and psing(pa(C),1,2,pg) = n(n — 13) +42 > 0.
Proof. Consider the lattice ZF @ ZG with intersection matrix

F2 FG| _[2 n

GF G*> | |n 4
Since it has signature (1, 1), then, by a result of Nikulin [43] (see also [39, Cor. 2.9(i)]), there is an
algebraic K3 surface Sy with the given Picard lattice. Performing Picard-Lefschetz reflections on the
lattice, we can assume that G is nef, by |2, VIII, Prop. 3.9]. By Riemann-Roch and Serre duality, we
have G > 0 and F' > 0. Straightforward computations on the Picard lattice rules out the existence
of divisors I satisfying [? = —2 and I.F < 0or G < l;or I? =0and I.F =1 or I.G = 1,2.

By [48] it follows that both |F| and |G| are base point free, ¢jp : Sy — P? is a double cover and
]

],nZﬁ.

Piql S0 — P? is an embedding onto a smooth quartic not containing lines. As explained in § 4, S([)2
contains a P? arising from the double cover.

If 4 is a line on the P2, the corresponding class in H 2(S([)z],@) is wy, = 2F — 3e, which coincides
with the corresponding integral class py, (cf. |25, Example 5.1]).

As S is a quartic surface not containg lines, S([)z] admits an involution

v S = B e (0 Sp) \ &,

by 6, Prop. 11|, where /¢ is the line determined by &, and the sign \ means that we take the residual
subscheme. The corresponding involution on cohomology is given by (cf. e.g. |45, (4.1.6)-(4.1.7)])

vi—=q(G—ev) - (G—¢)—n.
The involution sends the P? into another P2, and the corresponding class associated to a line on it is
(7.5) q(G—¢,2F —3¢)- (G—¢) — (2F —3¢) =2((n —3)G — F) — (2n — 9)e.

In order to obtain a general K3 with the desired property we now deform S([]2]. Precisely, we consider a

general deformation of S([)z} such that (i) e remains algebraic and (ii) +(P?) is preserved. Deformations

satisfying (i) form a countable union of hyperplanes in the deformation space of .S 12
and of dimension 21, and may be characterized as those of the form S, where S is a K3 surface (see
[7, Thm. 6 and Rem. 2|). Deformations preserving ¢(P?) can be characterized as those preserving
the image in H?(SP), Z) of the class of the line in +(P?) as an algebraic class (see [25, Thm. 4.1 and
Cor. 4.2] or [57]), that is, using (7.5), those deformations keeping H := (n —3)G — F € Pic(S([]2]), or,
equivalently, H € Pic(S), by (6.2). As H> = [(n—3)G — F|?> =2(n?> - 9n+19) > 2 for n > 6 and H
is primitive, those deformations form a divisor in the 20-dimensional space of deformations keeping
e algebraic, by [34, Thm. 14].

We therefore obtain a 19-dimensional space of deformations of S([)Q}, whose general member is .S [
where (S, H) is a general primitively polarized (algebraic) K3 surface of degree H? = 2(n? —9n+19),
n > 6, and S'? contains a plane.

The class wy € H>(S!?,Q) corresponding to the line £ is as in (7.3), yielding (7.4).

As S is general, it does not contain smooth rational curves, so that the P? is not of the form
C? for a smooth rational curve C' on S. By Lemma 2.4, the lines in the P? in S[ give rise to
a two-dimensional family V of curves on S with hyperelliptic normalizations, so that Ry = u(P?),
where  : S — Sym?(S) is the Hilbert-Chow morphism. By (7.3) we have £.H = H?, so that, by
the very definition of the divisor H in H?(S!?,Z), the lines in the P? correspond to curves C' € |H|.
Comparing (6.10) and (7.3), we see that go(C) = 2n — 10, cf. (6.12). Now we note that the general

line in the P? is not tangent to A = 2¢. (Indeed, this follows by deformation since in S([)z] we have

, which is smooth

2]
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that +(P?) N A is a smooth plane sextic, since we have a composite map Sy — P2 — ((P?) that is
finite of degree two, whence ramified along a smooth sextic, as Sy is a smooth K3.) Therefore we
have py(C') = 2n — 10. We compute pging = n(n — 13) +42 > 0 (recall that n > 6). O

The examples contained in the above proposition is interesting in several regards.

Notice first that ¢(¢) = —5/2, cf. (6.3), in accordance with the prediction in [25, Conj. 3.6].

The proposition shows in particular that the correspondence in Remark 3.7 is not one-to-one and
also shows that the case dim(V') = dim(Ry) = 2 of Proposition 3.6 actually occurs.

The result also gives nontrivial examples of curves in |H| with hyperelliptic normalizations and
positively answers the hyperelliptic existence problem for p, = n? —9n 4 20 and pg = 2n—10, n > 6.

Moreover (7.4) shows that there is no lower bound on slope, (NE(S?)) as the degree of the
polarization tends to infinity. The same follows from (7.9) in Proposition 7.7 below. Both the
bounds (7.4) and (7.9) below in fact yield better bounds on slope(NE(S[?)) than (6.22).

Finally, the conics on the P? give a five-dimensional family V'(2) of irreducible curves with hyperel-
liptic normalizations on S. Of course this family has obvious non-integral members, corresponding to
non-integral conics. More generally, for any m > 3, the (3m — 1)-dimensional family of nodal rational
curves in |Op2(m)| (cf. [15, Thm. 1.1]) yields corresponding families V(m) of curves in |mH| with
hyperelliptic normalizations with dim V' (m) = 3m — 1 > 5 and dim(Ry ) = 2, showing in particular
that the case dim(V') > dim(Ry ) = 2 of Proposition 3.6 actually occurs.

In the case of the conics, we compute py; = 4n — 19 as above and as p,(2H) = 4n? — 36n + 77, we
get pging = 4n(n — 11) + 117 > —3 in these cases. This does not contradict [22, Thm. 1].

7.2. Threefolds birational to P'-bundles in S?l. We start with an explicit example in the special
case of a quartic surface.

Example 7.6. In the case of a general quartic S in P? we can find a P!-bundle over S in S, arising
from the two-dimensional family of hyperplane sections of geometric genus two. In fact, taking the
tangent plane through the general point of .S we get a nodal curve of geometric genus 2. We obtain in
this way a family V' of nodal curves with hyperelliptic normalizations in the hyperplane linear system.
This family is parametrized by an open subset of S, and the locus in S covered by the associated
rational curves is birational to a P!-bundle over this open subset. To see this, set Cp = (SN1T,S),
and let 6’,, be the normalization of C,. Note that the g} on @,, viewed on (), is given by the pencil
of lines in 7,5 through the node p. If, for two distinct points p,q € S, the gis on ép and 5q had two
common points, say  and y (so that the map ®y in (2.5) sends (p,x +y) and (¢, +y) to the same
point 2 4 y in Sym?(S)), then the line T,S NT,S, which is bitangent to S, would also pass through
x and y. This is absurd, as deg(S) = 4.

By (6.10), the class w € H?(S!?, Q) corresponding to the curves of geometric genus 2 is w = H— 3e,
whence g(w) = —1/2, as predicted by [25, Conj. 3.6]. Moreover, performing the usual involution on
the quartic, we send the constructed uniruled threefold to another one, with corresponding fibre class
given by e, so that it simply is the P!-bundle A over S. This shows that also our original threefold
was smooth, so in fact a P'-bundle over S.

We now give an infinite series of examples of general K 3s whose Hilbert squares contain threefolds
birational to P'-bundles.

Proposition 7.7. Let (S, H) be a general primitively polarized K3 surface of degree H*> = 2(d? — 1),
for d > 2. Then S contains a threefold birational to a P*-bundle over a K3 surface.
The class wy € H2(SP, Q) corresponding to a fibre is

(7.8) wr = H —de € H*(S?, 7).
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In particular

1

(7.9) slope,..;(NE(SP)) < 7
Moreover the curves C C S with hyperelliptic normalizations associated to the fibres of the threefold

lie in |H|, have geometric genus py = 2d — 1, and pging(pa(C),1,2,p4) = d(d —4) +4 > 0.

Proof. This time we start with the lattice ZF & ZG with intersection matrix
F? FG| [-2d
GF G* | | d 4

As in Proposition 7.2 one easily shows that there is an algebraic K3 surface Sy with Pic(Sy) =
ZF & ZG and that g : So — P? is an embedding onto a smooth quartic not containing lines and

},dzz

F is a smooth, irreducible rational curve. (Note that I’ 2] = P2 and performing the same procedure
on this plane as in the proof of Proposition 7.2, one gets precisely the same series of examples as
above.)

We now consider the divisor F' C S([)z], defined as the length-two schemes with some support along
F. One easily sees that this is a threefold birational to a P!-bundle over Sy and that the class in
H2(S([)2},Z) corresponding to the fibres f is py = F', cf. |25, Example 4.6].

The involution on the quartic sends this threefold to another threefold birational to a P'-bundle
over Sp and the corresponding class of the fibres is

(7.10) ¢q(G—¢e,F) - (G—e)— F=dG — F —de.

Note that this threefold satisfies the conditions in [25, Thm. 4.1] by [25, Example 4.6, so that,

as in the previous example, we can deform S([)Q}, keeping e algebraic and H := dG — F. We thus

obtain a 19-dimensional space of deformations of S([)z], whose general member is S, where (S,H) is
a general, primitively polarized (algebraic) K3 surface of degree H? = 2(d?—1) > 6 and S contains
a threefold birational to a P!-bundle, again over a K3 surface (see also [25, Thm. 4.3]).

The unique class wy € H2(SP2 Q) corresponding to a fibre f is as in (7.8) and yields (7.9).

By (7.8) we have f.H = H?, so that, by the very definition of the divisor H in H?(S??,Z), the fibres
f of Y correspond to curves C' € |H|. Comparing (6.10) and (7.8), we see that go(C) =2d —1 > 3,
cf. (6.12). As in the proof of Proposition 7.2, one can see that the general fibre of Y is not tangent
to A = 2e, so that in fact we have py(C') = 2d — 1. In particular, Y is not one of the obvious uniruled
threefolds arising from the rational curves on S, or the one-dimensional families of elliptic curves on
S. A computation shows that pging = d(d —4) +4 > 0. O

Again, a few comments are in order.

The square of the class of the fibres of the uniruled threefolds constructed above is ¢(f) = —2, as
predicted in [25, Conj. 3.6].

The obtained family V' of curves on S with hyperelliptic normalizations has dim(V) = 2 and
dim(Ry) = 3, showing that also this case of Proposition 3.6 actually occurs. This family gives
nontrivial examples of curves in |H| with hyperelliptic normalizations and positively answers the
hyperelliptic existence problem for p, = 2(d? — 1) and p; = 2d — 1 for every d > 2. Note that the
case d = 2 is the case described in [22, Example 2.8|.
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APPENDIX A
PARTIAL DESINGULARIZATIONS OF FAMILIES OF NODAL CURVES

EDOARDO SERNESI'

In this Appendix we show how to construct simultaneous partial desingularizations of families
of nodal curves, generalizing a well known procedure of simultaneous total desingularization, as
described in [4].

We work over an algebraically closed field k of characteristic 0. For every morphism X — Y, and
for every y € Y, we denote by X (y) the scheme-theoretic fibre of y.

Theorem A.1. Let
f:C—V
be a flat projective family of curves, with € and V' algebraic schemes, such that all fibres have at most

ordinary double points (nodes) as singularities. Let 6 > 1 be an integer. Then there is a commutative
diagram:

Ds © e’ e
L lf
E((;) L>V

with the following properties:
(1) « is finite and unramified, the square is cartesian, and q is an étale cover of degree §.
(ii) The left triangle defines a marking of all §-tuples of nodes of fibres of f. In particular f’
parametrizes all curves of the family f having > & nodes and, for eachn € E ), Ds(n) C ¢ (n)
is a set of & nodes of the curve C'(n).
(iii) The diagram is universal with respect to properties (i) and (ii). Precisely, if

D (—>EX\/(‘3—>€

is a diagram having the properties analogous to (i) and (ii), then there is a unique factorization

E—"Ep 2>V

such that ¢ and f are obtained by pulling back q and f' by .

If moreover E sy 1s normal, then the above diagram can be enlarged as follows:

'Work done during a visit to the Institut Mittag-Leffler (Djursholm, Sweden), whose support is gratefully acknowl-
edged. I am grateful to F. Flamini, A. L. Knutsen and G. Pacienza for accepting this note as an Appendix to their
paper, and to F. Flamini for some useful remarks.
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Ds ¢

e
lﬁ
e e
L lf
L3

(0%
_—

where:
(iv) B is a birational morphism such that, for each n € E s, the restriction:

Bn) : C(n) —=C'(n)
is the partial normalization at the nodes Ds(n).
(v) The composition f := f' o (3 is flat.
Proof. Counsider the first relative cotangent sheaf ‘J'é v Since all fibres of f are nodal, ‘J'é v commutes
with base change (|3, Lemma 4.7.5] or [5]), thus on every fibre C(v), v € V, it restricts to 7(1‘3(1;)7 which
is the structure sheaf of the scheme of nodes of C(v). It follows that we have
1
Teyy =0k

for a closed subscheme E C € supported on the nodes of the fibres of f. Consider the composition

fE:ECGLV

By construction it follows that fg is finite and unramified. Now fix 4 > 1 and consider the fibre

product:
E Xy o Xy E
—_— ——————

1)
Since fg is finite and unramified, it follows from [1, Exp.1, Prop. 3.1], and by induction on ¢ (see |3,
Lemma 4.7.11(i)]), that we have a disjoint union decomposition:

Exv---va:AHE5

where A is the union of all the diagonals, and Ej consists of all the ordered d-tuples of distinct points
of F mapping to the same point of V'; moreover the natural projection morphism
Es——V

is finite and unramified.
There is a natural action of the symmetric group 35 on Ej that commutes with the projection to
V. We denote the quotient Es/>5 by E(s5). Since the composition

Ejs —>E(5) —V

is finite and unramified and the first morphism is an étale cover, the morphism o : E(5) — V' is finite
and unramified. Note that if, for a closed point v € V', C(v) has 0 + ¢ nodes as the only singularities,
with ¢t > 0, then a~1(v) has degree (6?). Now let

Ds = {(n,e) : e € Supp(n)} C Es xv E
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Then the first projection defines the tautological family:
(A.Q) Ds C E((;) xy E C E((;) Xy @
lq
Es)

which is an étale cover of degree 6. The fibre Dgs(n) is the d-tuple parametrized by 7, for each
M€ E(5)2. We therefore have the following diagram:

Ds © e’ e
L lf
E((;) L>V

where we have denoted by €' = E5) xy C. The fibres of f” are all the curves of the family f having
> d nodes. For each n € Es) the divisor Ds(n) C €'(n) marks the set of d nodes parametrized by 7.
This proves (i) and (ii).

(iii) follows from the fact that a : E(5) — V is the relative Hilbert scheme of degree d of fp : £ — V,
and (A.2) is the universal family.

Assume that E(5) is normal. Then we can normalize € locally around Dj as in [4, Theorem 1.3.2],
to obtain a birational morphism [ having the required properties (iv) and (v). O

A typical example of the situation considered in the theorem is when V parametrizes a complete
linear system of curves on an algebraic surface. If the morphism fg is self-transverse of codimension
1 (see |3, Definition 4.7.13]) then the Severi variety of irreducible d-nodal curves is nonsingular and
of codimension d, and E ) is nonsingular (see [3, Lemma 4.7.14]), so that the theorem applies and
the simultaneous partial desingularization exists. This happens for example for the linear systems of
plane curves [3, Proposition 4.7.17].
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