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A REMARK ON THE INTERSECTION OF PLANE CURVES

C. CILIBERTO, F. FLAMINI, AND M. ZAIDENBERG

Abstract. Let D be a very general curve of degree d = 2ℓ − ε in P2, with
ε ∈ {0, 1}. Let Γ ⊂ P2 be an integral curve of geometric genus g and degree
m, Γ 6= D, and let ν : C → Γ be the normalization. Let δ be the degree of
the reduction modulo 2 of the divisor ν∗(D) of C (see § 2.1). In this paper we
prove the inequality 4g+ δ > m(d− 8+ 2ε)+ 5. We compare this with similar
inequalities due to Geng Xu ([88, 89]) and Xi Chen ([17, 18]). Besides, we
provide a brief account on genera of subvarieties in projective hypersurfaces.
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Introduction

Given an effective divisor D ∈ |OPn(d)| and an integral (i.e., reduced and irre-
ducible) projective curve Γ of degree m in Pn, which is not contained in supp(D),
let j(D,Γ) be the order of Γ ∩D. Assume D is very general and set

j(n, d,m) := min{j(D,Γ) |Γ ⊂ P
n as above} and j(n, d) := min

m>1
{j(n, d,m)}.

Similarly, with Γ and D as before, let i(D,Γ) stand for the number of places of Γ
on D, that is, the number of centers of local branches of the curve Γ on D. Then,
set

i(n, d,m) := min{i(D,Γ) |Γ ⊂ P
n as above} and i(n, d) := min

m>1
{i(n, d,m)}.

The problem of computing j(n, d) and i(n, d) has been considered in [17, 88, 89]
(basically devoted to n = 2 case) and [18] (where the case n > 2 is considered).
The relations of this with the famous Kobayashi problem on hyperbolicity of the
complement of a very general hypersurface in Pn is well known and we do not dwell
on this here (see, e.g., [18]).

Geng Xu ([88, Thm. 1]) proved that

j(2, d) = d− 2, for any d > 3,

where the equality is attained either by a bitangent line or by an inflectional tangent
line of D, i.e. the minimum is achieved by m = 1. Moreover, for d = 3, he also
proved in [89, Corollary] that, for any integer m > 1, the number of rational
curves of degree m which meet set-theoretically a given (arbitrary) smooth plane
cubic curve D at exactly one point is finite and positive. Therefore, for d = 3 the
minimum j(2, 3) = 1 is achieved by any integer m > 1.

Xi Chen ([17, Thm. 1.2]) proved that, for d > m, one has

j(2, d,m) > min

{
dm−

m(m+ 3)

2
, 2dm− 2m2 − 2

}
.

Furthermore (cf. [17, Cor. 1.1]), for d > max{ 3m
2 − 1, 3} one has

j(2, d,m) = dm− dim(|OD(m)|) = dm−
m(m+ 3)

2
.

In addition, he conjectured (see [17, Conj. 1.1]) that

j(2, d,m) = dm− dim(|OD(m)|) if d > max{m, 2}.

In arbitrary dimension n > 2, Xi Chen ([18, Thm 1.7]) proved that, for D very
general and Γ as above, one has

(0.1) 2g − 2 + i(D,Γ) > (d− 2n)m,

where g is the geometric genus of Γ, i.e., the arithmetic genus of its normalization.
In this paper we obtain a new inequality of type (0.1), although only in the case

n = 2 (see Theorem 3.1). Indeed, let D be a very general curve of degree d = 2ℓ−ε
in P2, with ε ∈ {0, 1}. Let Γ be an integral curve in P2 of geometric genus g and
degree m, Γ 6= D, and let ν : C → Γ be the normalization. Let δ(D,Γ) be the
degree of the reduction modulo 2 of the divisor ν∗(D) on C (cf. § 2.1). In Theorem
3.1 we prove that

(0.2) 4g + δ(D,Γ) > m(d+ 2ε− 8) + 5.
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Note that δ(D,Γ) 6 i(D,Γ), and the equality holds if and only if at any place p of
Γ on D, the local intersection multiplicity of D and Γ at p is odd. This happens, for
instance, if Γ intersects D transversely. In the latter case δ(D,Γ) = i(D,Γ) = md
and both (0.1) and (0.2) are uninteresting. On the other hand, (0.1) and (0.2)
become interesting when δ(D,Γ) and i(D,Γ) are small. Though the difference
between the two quantities is a priori unpredictable, one may expect that, generally
speaking, δ(D,Γ) is strictly smaller than i(D,Γ). Unfortunately, the genus g works
against us in (0.2); however, for g = 0, 1 and d even, (0.2) is better than (0.1).
Further related problems have been recently considered in [19, 64, 65].

As a final remark, note that (0.2) is more useful than (0.1) if one looks, as we
do in this paper, at the geometric genera of curves contained in a double plane Xd,
that is, a cyclic double cover of P2 branched along a very general plane curve D of
even degree d. For instance, letting g = 0, δ(D,Γ) = 0, 2 and d even, we are looking
actually for rational curves on Xd. By (0.2) we see that such a rational curve over
Γ might exist, as expected, only for d 6 6 (for low m one has even smaller bounds
on d). The case d = 6 corresponds to a K3 surface, which always contains infinitely
many rational curves. In contrast, it follows from (0.2) that the double planes
with very general branching curves of even degree d > 8 (d > 10, respectively) do
not carry any rational curve (any rational or elliptic curve, respectively, hence are
algebraically hyperbolic). For d = 8 and d = 10 these double planes are Horikawa
surfaces H8 and H10, that is, their Chern numbers satisfy c2 = 5c21 + 36 (in other
words, (c21, c2) lies on the Noether line). The algebraic hyperbolicity of H10 was
established first by X. Roulleau and E. Rousseau ([75]). J. Liu ([65]) showed that
some of the Horikawa surfaces H10 are even Kobayashi hyperbolic, whereas there is
no hyperbolic H8. Indeed, the Horikawa double planes H8 carrying elliptic curves
are dense in the set of all such surfaces, while the Kobayashi hyperbolicity is open
in the Hausdorff topology.

The proof of Theorem 3.1 presented in §3 follows, with minor variations due to
the different setting, the basic ideas exploited in [21] (and later in [22]). These
are based on a smart use of the theory of focal loci, see e.g. [20]. For the reader’s
convenience, we recall in § 1 the basic notions and results of this theory. We apply
this technique to families of double covers of P2 branched along a very general plane
curve D or along D plus a general line, according to whether the degree of D is
even (see § 2.3 and § 3.2.1) or odd (see § 2.4 and § 3.2.2).

In the last §4 we provide a short survey on genera of subvarieties in projective
varieties, with accent on projective hypersurfaces.

1. Focal loci

For the reader’s convenience, we recall here some basic notions from [20, 21].
Let X be a smooth projective variety of dimension n+1. Assume we have a flat,

projective family D
p

−→ B of effective divisors on X over a smooth, irreducible,
quasiprojective base B, with irreducible general fiber. Up to shrinking B to a
suitable Zariski dense, open subset, we may suppose that for any closed point b ∈ B

the fiber Db of D
p

−→ B over b is irreducible.
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Assume we have a commutative diagram

(1.1) C

q

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

�

� i
// D

p

��

B

where q : C → B is a flat projective family such that, for all b ∈ B, the fiber Γb over
b is a reduced curve of geometric genus g, and where i is an inclusion: so, for any
b ∈ B, one has Γb ⊂ Db via the inclusion ib.

By a result of Tessier (see [80, Théorème 1]), there is a simultaneous normaliza-
tion

(1.2) C

q
''❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

ν
// C

q

��

B

such that C is smooth and, for every b ∈ B, the fiber Cb of q : C → B is the
normalization νb : Cb → Γb of Γb. For any b ∈ B, the curve Cb is smooth of
(arithmetic) genus g.

Composing with the inclusion D
j
→֒ B ×X , we get the commutative diagram

(1.3)

C

q

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

ν
// C

q

��

�

� i
// D

p

��

�

� j
// B ×X

pr1

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

pr2

��

B
id

// B X

where pri is the projection onto the ith factor, for i = 1, 2.
We set

s := j ◦ i ◦ ν : C → B ×X ,

and let N := Ns be the normal sheaf to s, defined by the exact sequence

0−→TC
ds
−→ s∗(TB×X)−→N−→0 ,

where TY stands for the tangent sheaf of a smooth variety Y .
For b ∈ B we set

Nb := N|Cb
= N ⊗OCb

and sb = s|Cb
: Cb → {b} ×X = X .

In addition, we let
ϕ := pr2 ◦ s : C → X .

Then ϕb = ϕ|Cb
coincides with sb for any b ∈ B, that is,

ϕb = sb : Cb
νb

// Γb
�

� ib
// Db

�

� (pr2◦j)b
// X .

As in [21, § 2], we set

(1.4) z(C) := dim (ϕ(C)),

so that z(C) 6 n+ 1 = dim(X). If z(C) = n+ 1 one says that C
q

−→ B, or C
q

−→ B,
is a covering family.

Proposition 1.1 (See [20, Prop. 1.4 and p. 98]). In the above setting, we have:
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(a) for any b ∈ B, the sheaf Nb fits into the exact sequence

0 −→ TCb

dsb−→ s∗b(TX) −→ Nb −→ 0

and C
q

−→ B induces on Cb a characteristic map

χb : TB,b ⊗OCb
−→ Nb ,

where TB,b denotes the tangent space to B at b;
(b) if b ∈ B and x ∈ Cb are general points, then

dim (Nb,x) = dim (s∗b(TX)x)− dim (TCb,x) = n and rk (χb,x) = z(C)− 1 .

Definition 1.2 (See [20, Def. (1.5)]). Given b ∈ B, the focal set of C
q

−→ B on Cb is
the closed subscheme Φb of Cb defined as

Φb := {x ∈ Cb| rk(χb,x) < z(C)− 1}.

If b ∈ B is general, then Φb is a proper subscheme of Cb. The points in Φb are called

focal points of C
q

−→ B on Cb. We denote by Φsm
b the open subset of Φb consisting

of the points x ∈ Φb which map to smooth points of Γb via the normalization
morphism νb : Cb → Γb.

Proposition 1.3 ([21, Prop. 2.3 and Prop. 2.4]). Let C −→ B be a covering family.
Then the following hold.

(i) Suppose that for x ∈ Cb the point s(x) is smooth in both Γb and Db.

Assume also that s(x) is a fundamental point of the family D
p

−→ B, i.e. it
is a base point of the family. Then x ∈ Φsm

b .
(ii) For a general point b ∈ B one has

(1.5) deg(Φsm
b ) 6 2g − 2−KX · Γb .

2. Double planes

In this section we collect useful material for the proof of our main result. The
result itself is stated and proven in §3. The contents of this section, which suffice
for our applications, can be easily adapted to the higher dimensional case.

2.1. The δ–invariant. Let C be any smooth, irreducible, projective curve, and
let ∆ =

∑
imipi be an effective divisor on C. We set ∆2 :=

∑
imipi , where

mi ∈ {0, 1} is the residue of the integer mi modulo 2. We also set δ2(∆) := deg(∆2).
For any smooth curve D ⊂ P

2 and any integral curve Γ ⊂ P
2, Γ 6= D, with

normalization ν : C → Γ, we set

(2.1) δ(D,Γ) := δ2(ν
∗(D)) .

We notice that

δ(D,Γ) 6 i(D,Γ).
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2.2. Basics on a certain weighted projective 3-space. For any positive integer
ℓ, we denote by Lℓ the linear system |OP2(ℓ)| of plane curves of degree ℓ, and
by Uℓ its open dense subset of points corresponding to smooth curves. We let

Nℓ = dim(Lℓ) = ℓ(ℓ+3)
2 . We denote by Dℓ → Lℓ the universal curve, and we use

the same notation Dℓ → Uℓ for its restriction to Uℓ.

The linear system Lℓ determines the ℓth Veronese embedding P2 vℓ
→֒ PNℓ , whose

image is the ℓ–Veronese surface Vℓ in P
Nℓ . Let [x] = [x0, x1, x2] be homogeneous

coordinates in P2, and let

[xI ], where I = (i0, i1, i2) is a multiindex such that |I| = i0 + i1 + i2 = ℓ,

be homogeneous coordinates in PNℓ . In these coordinates the Veronese map is given
by

P
2 ∋ [x]

vℓ−→ [xI ]|I|=ℓ ∈ P
Nℓ , where xI := xi00 x

i1
1 x

i2
2 .

We equip the weighted projective 3-space P(1, 1, 1, ℓ) with weigthed homogeneous
coordinates [x, z] := [x0, x1, x2, z], where x0, x1, x2 [resp. z] have weigth 1 [resp.
has weight ℓ]. We introduce as well coordinates [xI , z]|I|=ℓ in PNℓ+1 and embed

PNℓ in PNℓ+1 as the hyperplane Π with equation z = 0. Then P(1, 1, 1, ℓ) can be
identified with the cone Wℓ ⊂ PNℓ+1 over the l–Veronese surface Vℓ with vertex
P = [0, . . . , 0, 1]. Blowing P up yields a minimal resolution

ρ : Zℓ →Wℓ
∼= P(1, 1, 1, ℓ),

with exceptional divisor E ∼= Vℓ ∼= P2. The projection from P induces a P1–bundle
structure

π : Zℓ → Vℓ ∼= P
2 .

Let f be the class of a fiber of π. One has

Zℓ ∼= P(OP2(ℓ)⊕OP2) and OZℓ
(1) = ρ∗(OWℓ

(1)).

For every integer m, we set

(2.2) Oℓ(m) := π∗(OP2(m)) and Lℓ(m) := |Oℓ(m)| .

Note that

(2.3) OZℓ
(1) ∼= Oℓ(ℓ)⊗OZℓ

(E).

Since
E ∼= P

2, OZℓ
(1)⊗OE

∼= OE , and Oℓ(ℓ)⊗OE
∼= OP2(ℓ),

we deduce

(2.4) OZℓ
(E)⊗OE

∼= OP2(−ℓ).

Finally, we denote by Kℓ the canonical sheaf of Zℓ.

Lemma 2.1. One has

Kℓ
∼= Oℓ(ℓ− 3)⊗OZℓ

(−2) ∼= Oℓ(−ℓ− 3)⊗OZℓ
(−2E) .

Proof. The Picard group Pic(Zℓ) is freely generated by the classes Oℓ(1) and
OZℓ

(E), and also by Oℓ(1) and OZℓ
(1), see (2.3). Let H [resp. L] be a general

member of |OZℓ
(1)| [resp. of Lℓ(1)]. Write Kℓ ∼ αH + βL, where α, β ∈ Z. From

the relations Kℓ · f = −2, H · f = 1, and L · f = 0 one gets α = −2.
By adjunction formula and (2.4) we obtain

OP2(−3) ∼= KE = (Kℓ + E)|E ∼= (−2H + βL+ E)|E ∼= OP2(β − ℓ) .

So, β = ℓ− 3, as desired. �
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Finally, let Gℓ be the group of all automorphisms of P(1, 1, 1, ℓ) which stabilize
the divisor with equation z = 0. This group is naturally isomorphic to the au-
tomorphism group of the pair (Wℓ, Vℓ), i.e. automorphisms of Wℓ stabilizing Vℓ,
where Vℓ is cut out on Wℓ by Π. In turn, the latter group is isomorphic to the
automorphism group of the pair (Zℓ, ρ

∗(Vℓ)). One has the exact sequence

(2.5) 1 → C
∗ → Gℓ → PGL(3,C) → 1.

2.3. The even degree case. Let D be a smooth curve in P2 of even degree d =
2ℓ > 2 which, in the homogeneous coordinate system fixed in §2.2, is given by
equation f(x0, x1, x2) = 0, where f is a homogeneous polynomial of degree d.
Viewed as a hypersurface of Vℓ, D is cut out on Vℓ by a quadric with equation
Q(xI)|I|=ℓ = 0, where Q is a homogeneous polynomial of degree 2 in the variables

{xI}|I|=ℓ.
The double plane associated with D is the double cover ψ : D∗ → P2 branched

along D. It can be embedded in P(1, 1, 1, ℓ) as a hypersurface D∗
a defined by a

(weighted homogeneous) equation of the form az2 = f(x0, x1, x2), for any a ∈ C∗.
Under the identification of P(1, 1, 1, ℓ) with Wℓ, we see that D∗

a is cut out on Wℓ by
a quadric in PNℓ+1 of the form az2 = Q(xI)|I|=ℓ.

Consider the sublinear system Qℓ of |OWℓ
(2)| of surfaces cut out on Wℓ by the

quadrics of PNℓ+1 with equation of the form az2 = Q(xI)|I|=ℓ.
When a 6= 0, the quadrics in question are such that their polar hyperplane with

respect to P has equation z = 0. When a = 0, such a quadric is singular at P , it
represents the cone with vertex at P over the quadric in Π = {z = 0} ∼= PNℓ with
equation Q(xI)|I|=ℓ = 0 and it cuts out on Wℓ a cone, with vertex at P , over a
quadric section of Vℓ.

In particular, Qℓ contains the codimension 1 sublinear system Qc
ℓ of all such cones

with vertex at P over a quadric section of Vℓ, thus dim(Qℓ) = Nd + 1. Moreover
Qℓ is stable under the action of Gℓ on Wℓ.

We set Q̃ℓ := ρ∗(Qℓ), which is a sublinear system of |OZℓ
(2)|. Note that Q̃ℓ

contains the sublinear system Q̃c
ℓ = ρ∗(Qc

ℓ) of all divisors of the form 2E plus a
divisor in Lℓ(d).

We denote by Q∗
ℓ the dense open subset of Qℓ of points corresponding to smooth

surfaces. Since no surface in Q∗
ℓ passes through P , we may and will identify Q∗

ℓ

with its pull–back via ρ on Zℓ, which is a dense open subset of Q̃ℓ sitting in the

complement of Q̃c
ℓ. We denote by ID∗

ℓ → Q∗
ℓ the universal family.

A surface D∗ ∈ Q∗
ℓ cuts out on Vℓ a smooth curve D ∈ Uℓ and conversely; indeed

the projection from P realizes D∗ as the double cover of P2 branched along D. This
yields a surjective morphism

Q∗
ℓ ∋ D

∗ β
−→ D

∗ ∩ Vℓ := D ∈ Ud ,

which sends the double plane D∗ to its branching divisor D. This morphism is
equivariant under the actions of Gℓ on both Q∗

ℓ and Ud, where Gℓ acts on Ud via
the natural action of the quotient group PGL(3,C), see (2.5). The morphism β is
not injective, its fibers being isomorphic to C∗.

As an immediate consequence of Lemma 2.1, we have:

Lemma 2.2. Let D be a smooth curve in P2 of even degree d = 2ℓ > 2, let ψ :
D

∗ → P
2 be the double cover branched along D, let Γ ⊂ P

2 be a projective curve of



8 C. CILIBERTO, F. FLAMINI, AND M. ZAIDENBERG

degree m not containing D, and let Γ∗ be its pull–back via ψ considered as a curve
in Zℓ. One has

(2.6) Kℓ · Γ
∗ = −m(d+ 6) .

In the setting of Lemma 2.2, consider the diagram

(2.7) C∗

ψ′

��

ν∗

// Γ∗

ψ

��

C ν
// Γ

where ν and ν∗ are the normalization morphisms and ψ and ψ′ have degree 2 (to
ease notation, here we have identified ψ with its restriction to Γ∗).

Let δ := δ(D,Γ). It could be that C∗ splits into two components both isomorphic
to C; in this case δ = 0. If δ = 0 and the genus of C is zero, then C∗ certainly
splits. Suppose that C∗ is irreducible, and let g and g∗ be the geometric genera
of Γ and Γ∗ (i.e. the arithmetic genera of C and C∗, respectively). Since ψ′ has
exactly δ ramification points, the Riemann-Hurwitz formula yields

(2.8) 2(g∗ − 1) = 4(g − 1) + δ .

2.4. The odd degree case. Fix a line h ∈ |OP2(1)|, and let D be a smooth curve
in P2 of degree d = 2ℓ − 1 > 1, which intersects h transversely. We denote by Uhd
the open subset of Ud consisting of such curves.

For each D ∈ Uhd , we consider the reducible curve of degree d+ 1 = 2ℓ

∆ := D + h ∈ |OP2(d+ 1)|

and the double cover ψ : D∗ → P2, branched along ∆. The difference with the
even degree case is that D∗ is no longer smooth, but it has double points at the d
points in D ∩ h. In any event, as in the even degree case, we can consider the set
Q∗
ℓ;h ⊂ |OZℓ

(2)| of all such surfaces D∗, with its universal family ID∗
ℓ;h → Q∗

ℓ;h which

parametrizes all double planes ψ : D∗ → P
2 as above. We still have the morphism

β : Q∗
ℓ;h → Uhd

associating to D∗ the branching divisor ∆ of ϕ : D∗ → P2 minus h.
The group acting here is no longer the full group Gℓ but its subgroup Gℓ;h which

fits in the exact sequence

1 → C
∗ → Gℓ;h → Aff(2,C) → 1,

where Aff(2,C) is the affine group of all projective transformations in PGL(3,C)
stabilizing h.

Keeping the setting and notation of §2.3, Lemma 2.2 still holds, as well as dia-
gram (2.7). If Γ intersects h at m distinct points which are off D, then the double
cover ψ′ : C∗ → C has δ +m > m > 0 ramification points, where δ = δ(D,Γ) as
above. In particular, C∗ is irreducible, and (2.8) is replaced by

(2.9) 2(g∗ − 1) = 4(g − 1) + δ +m.
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3. The main result

In this section we prove the following:

Theorem 3.1. Let δ > 0 be an integer such that, for a very general curve D in P2

of degree d = 2ℓ−ε, where ε ∈ {0, 1}, there exists an integral curve Γ ⊂ P2, Γ 6= D,
of geometric genus g and degree m with δ(D,Γ) = δ. Then

(3.1) 4g + δ > m(d+ 2ε− 8) + 5.

The proof of Theorem 3.1 will be done in §3.2. First we need some more pre-
liminaries, which we collect in the next subsection. We keep all notation and
conventions introduced so far.

3.1. Constructing appropriate families. Fix integers m > 1 and g > 0. Let
H be the locally closed subset of Lm, whose points correspond to integral curves
Γ ⊂ P2 of degree m and geometric genus g; H is a quasiprojective variety. We let
U → H be the universal curve.

3.1.1. The even degree case. Fix an even positive integer d = 2ℓ and a non-negative
integer δ. Consider the locally closed subset I of H×Q∗

ℓ of pairs (Γ,D∗) such that
Γ does not coincide with the branch curve D of ψ : D∗ → P2 and δ(D,Γ) = δ.
Remember that we may equivalently interpret D∗ as a surface in Wℓ or in Zℓ. Each
irreducible component of I is fixed by the obvious action of Gℓ on H×Q∗

ℓ .
For any (Γ,D∗) ∈ I, the pull–back Γ∗ ⊂ D∗ of Γ via ψ is a reduced curve in Zℓ.

Hence there is a morphism µ : I → K, where K is the Hilbert scheme of curves of
Zℓ. We let V → K be the corresponding universal family. The map µ is equivariant
under the actions of Gℓ on both I and K.

Let π1 : I → H and π2 : I → Q∗
ℓ be the two projections. Under the hypotheses

of Theorem 3.1 and with notation as in § 2.3, the following holds.

Lemma 3.2. There exists an irreducible component I of I which dominates Qℓ via
π2. Hence I dominates also Ud ⊂ Ld via β ◦ π2.

Given I as in Lemma 3.2, we choose an irreducible, smooth subvariety B of I,
such that π2 restricts to an étale morphism of B onto its image, which is dense
in Qℓ. To place our objects in the context of §1, consider the universal family
ID∗

ℓ → Q∗
ℓ (cf. § 2.3) of double planes D∗ [resp. V → K of curves Γ∗ ⊂ D∗]. Up to

possibly shrinking B and performing an étale cover of it, the morphisms B
π2−→ Q∗

ℓ

and B
µ

−→ K give rise to families

D := π∗
2(ID

∗
ℓ )

p
−→ B and C := µ∗(V)

q
−→ B .

over B fitting in diagram (1.1). We may assume that there exists a simultaneous

normalization ν and a family C
q

−→ B as in (1.2), with C smooth fitting in (1.3),
where X = Zℓ.

3.1.2. The odd degree case. Fix now an odd positive integer d = 2ℓ− 1 and a non-
negative integer δ, and fix a line h in P2. We consider the locally closed subset I
of H × Qℓ;h consisting of pairs (Γ,D∗) ∈ H × Q∗

ℓ such that Γ is not contained in
the branch divisor ∆ of ψ : D∗ → P2, δ(D,Γ) = δ, and Γ intersects h at m distinct
points which are off D.
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For any point (Γ,D∗) ∈ I, the pull–back Γ∗ ⊂ D∗ of Γ via ψ is an integral curve
in Zℓ. So, we still have the morphisms µ : I → K, π1 : I → H and π2 : I → Q∗

ℓ;h

equivariant under actions of Gℓ;h.
As before, we have the following

Lemma 3.3. There exists an irreducible component I of I which dominates Q∗
ℓ;h

via π2.

As in the even case, given I as in Lemma 3.3, we may construct a smooth B
having an étale, dominant morphism to Qℓ;h, together with families

D := π∗
2(ID

∗
ℓ,h)

p
−→ B, C := µ∗(V)

q
−→ B,

fitting in diagram (1.1). Consider a simultaneous normalization ν and a family

C
q

−→ B as in (1.2), with C smooth. In view of Lemmata 3.2 and 3.3, the constructed
families fit in diagram (1.3), with X = Zℓ.

In both cases, the next lemma allows to apply Proposition 1.3 in our setting.

Lemma 3.4. For any d > 0, C
q

−→ B is a covering family, i.e. z(C) = 3.

Proof. By the discussion in §3.1, for d even ϕ(C) is stable under the action of Gℓ
on Zℓ, which is transitive; for d odd ϕ(C) is stable under the action of Gℓ;h, which
is transitive on the dense open subset of Zℓ whose complement is π−1(h)∪E. This
proves the assertion. �

3.2. Proof of Theorem 3.1. Our proof follows the one of Theorem (1.2) in [21].
First we recall the following useful fact.

Lemma 3.5 (See [21, Lemma (3.1)]). Let g : V → W be a linear map of finite
dimensional vector spaces. Suppose that dim(g(V )) > k. Let {Vi}i∈I be a family
of vector subspaces of V , such that

⋃
i∈I Vi spans V , and for any pair (i, j) ∈ I × I,

with i 6= j, there is a finite sequence i1 = i, i2, . . . , it−1, it = j of distinct elements
of I with dim(g(Vih ∩ Vih+1

)) > k, for all h ∈ {1, . . . , t− 1}. Then there is an index
i ∈ I such that dim(g(Vi)) > k.

3.2.1. The even degree case. We need to construct a suitable subfamily of C → B
with the covering property.

Fix a general point b0 ∈ B, and let Γ∗
0 and D∗

0 be the corresponding elements of
the families C → B and D → B, respectively.

Let L be the open subset of the linear system Lℓ(d − 1) as in (2.2) consisting
of the surfaces F ∈ Lℓ(d − 1) which do not contain Γ∗

0. A general such surface F
meets Γ∗

0 transversely. By genericity, we may suppose that all surfaces F defined
by the pull–back via π : Zℓ → Vℓ ∼= P2 of degree d− 1 monomials in the variables
x0, x1, x2 belong to L. For a given F ∈ L, we denote by BF the subvariety of B
parameterizing all double planes in D → B containing the complete intersection
curve of F and D∗

0. In addition, for a general point ξ ∈ Γ∗
0 we let BF,ξ denote the

subvariety of BF parameterizing all surfaces in D → BF which pass through ξ.

Lemma 3.6. For F ∈ L and ξ ∈ Γ∗
0 as above one has

dim(BF ) = 3 and dim(BF,ξ) = 2 .

Furthermore, b0 is a smooth point of both BF and BF,ξ.
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Proof. Consider the sublinear system ΛF of Q̃ℓ = ρ∗(Qℓ) on Zℓ consisting of all
surfaces containing the complete intersection curve F∩D∗

0. Imposing to the surfaces
in ΛF the condition to contain a general point of F , the divisor F + 2E splits
off, and the residual surface sits in Lℓ(1). Hence ΛF contains a codimension 1
sublinear system consisting of surfaces of the form 2E + F + L, with L varying
in Lℓ(1), which has dimension 2. Hence dim(ΛF ) = 3. Since B dominates Qℓ via
π2, which is finite on B, and BF is the inverse image of ΛF , one has dim(BF ) =
dim(ΛF ) = 3. The proof is similar for BF,ξ. The final assertion follows by the
genericity assumptions. �

We denote by T0 the tangent space to B at b0, and by TF and TF,ξ the 3 and
2–dimensional subspaces of T0 tangent to BF and to BF,ξ at b0, respectively.

Lemma 3.7. One has:

(a)
⋃
F∈L TF spans T0;

(b) given F ∈ L, the union
⋃
ξ∈Γ∗

0
TF,ξ spans TF .

Proof. (a) Since π2 is étale on B, T0 is isomorphic to the tangent space to Qℓ at
D∗

0. Remember that, by §2.3, the double plane D∗
0, considered in Wℓ, is cut out by

a quadric with equation z2 = Q(xI)|I|=ℓ. So T0 can be identified with the vector

space of homogeneous quadratic polynomials of the form az2 −G(xI)|I|=ℓ modulo

the one-dimensional linear space spanned by z2−Q(xI)|I|=ℓ and by the linear space

of quadratic polynomials in {xI}|I|=ℓ defining Vℓ.
1 Hence T0 can be identified with

the vector space of quadratic polynomials in {xI}|I|=ℓ, modulo the vector space of

quadratic polynomials in {xI}|I|=ℓ defining Vℓ. This, in turn, can be identified with
the vector space Sd of homogeneous polynomials of degree d in x0, x1, x2.

Now TF can be identified with the vector subspace Sd(f) of T0 ∼= Sd of polyno-
mials of the form fh, where f is a fixed homogeneous polynomial of degree d − 1
(determined by F ), and h is any linear form. By assumption on L,

⋃
F∈L TF con-

tains all monomials of degree d, which do span Sd.
(b) Given F , TF,ξ can be identified with the vector space of homogeneous poly-

nomials of the form fh, where h vanishes at π(ξ) ∈ P2. These polynomials do span
TF ∼= Sd(f). �

Next we consider the restrictions

DF
p

−→ BF , CF
q

−→ BF , and DF,ξ
p

−→ BF,ξ, CF,ξ
q

−→ BF,ξ,

respectively, of the families

D
p

−→ B and C
q

−→ B.

Proposition 3.8. For general F ∈ L and ξ ∈ Γ∗
0, the families

CF
q

−→ BF and CF,ξ
q

−→ BF,ξ

have the covering property.

1An explanation is in order. Consider a vector space V and a nonzero vector v ∈ V , along with
the associated projective space P(V ) and the corresponding point [v] ∈ P(V ). Then the tangent
space T[v]P(V ) can be canonically identified with Hom(〈v〉, V/〈v〉) ∼= V/〈v〉.
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Proof. We prove the assertion for CF
q

−→ BF . The proof for CF,ξ
q

−→ BF,ξ is similar
(and analogous to the proof of the corresponding statement in [21, Theorem (1.2)]),
hence it can be left to the reader.

Let M be the set of all monomials of degree d − 1 in x0, x1, x2. Consider the
family {FM}M∈M, where FM ∈ L is defined by the pull–back via π : Zℓ → Vℓ ∼= P2

of the monomial M . Take two monomials M ′,M ′′ which differ only in degree 1,
i.e., their lowest common multiple U has degree d. Then BF

M′
∩ BF

M′′
contains

the pull–back via π2 of an open, dense subset of the pencil 〈D∗
t 〉 spanned by D∗

0

and FU , where FU is the pull–back via π of the monomial U . The base locus of
this pencil does not contain Γ∗

0. Therefore, Γ∗
0 varies in a non-trivial one-parameter

family 〈Γ∗
t 〉 together with members D∗

t varying in the pencil 〈D∗
t 〉.

Next we apply Lemma 3.5 with

• V = T0;
• W = H0(Γ∗

0, NΓ∗

0
|Zℓ

);

• the linear map g induced by the characteristic map (see Proposition 1.1
(a));

• the family of subspaces {Vi}i∈I given by {TFM
}M∈M.

For each pair of monomials M ′,M ′′, there is a sequence of monomials M1 =
M ′,M2, . . . ,Mt−1,Mt = M ′′, such that for all i = 1, . . . , t − 1, the lowest com-
mon multiple of Mi and Mi+1 has degree d. The above argument implies that
g(TFMi

∩ TFMi+1
) has dimension at least 1, for all i = 1, . . . ,m− 1. Furthermore,

one has dim(g(T0)) > 2, because C → B is a covering family (see (b) of Proposi-
tion 1.1 and Lemma 3.4). By Lemma 3.5 there is a monomial M ∈ M such that
dim(g(TFM

)) > 2; by virtue of Lemma 3.6, this implies that CFM
→ BFM

is a
covering family. This proves the assertion. �

To finish the proof of Theorem 3.1 in this case, consider the covering family

CF,ξ
q

−→ BF,ξ, with F ∈ L and ξ ∈ Γ∗
0 general. Using (1.5), (2.6), and (2.8), for

b = (Γ∗
b ,D

∗
b) ∈ BF,ξ general (see §3.1.1) we deduce

(3.2) deg(Φsm
b ) 6 4(g − 1) + δ + 2m(ℓ+ 3) = 4(g − 1) + δ +m(d+ 6) .

On the other hand, by construction and by (a) of Proposition 1.3,

(3.3) deg(Φsm
b ) > 1 + deg(Γ∗

b ∩ F ) = 1 + 2(d− 1)m.

Comparing (3.2) and (3.3) gives (3.1).

3.2.2. The odd degree case. The proof runs exactly as in the case of even d, so we
will be brief and leave the details to the reader.

Fix again b0 ∈ B, Γ∗
0 and D∗

0 as in the even degree case. Following what we did
in §3.1.2, we replace Db by Db + h, where h ⊂ P2 is a general line. In the present
setting we let L be the open subset of Lℓ(d) consisting of the surfaces F ∈ Lℓ(d)
which do not contain Γ∗

0. Again we may assume that all surfaces F defined by
the pull–back via π of degree d monomials in the variables x0, x1, x2 belong to L.
Given F ∈ L, we define BF and BF,ξ as in the even degree case, and the analogue
of Lemma 3.6 still holds. Then, with the usual meaning for T0, TF and TF,ξ, the
analogue of Lemma 3.7 holds. Similarly as in Proposition 3.8, the covering property
holds for the restricted families

DF
p

−→ BF , CF
q

−→ BF , and DF,ξ
p

−→ BF,ξ, CF,ξ
q

−→ BF,ξ .
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We conclude finally as in the even degree case: (3.2) holds with no change, whereas
(3.3) has to be replaced by

deg(Φsm
b ) > 1 + deg(Γb ∩ F ) = 1 + 2dm ,

and again, (3.1) follows.

4. Genera of subvarieties: a survey

As we mentioned in the Introduction, inequality (0.2) allows to bound the genera
of curves in double planes from below. In this section we provide a brief survey
on genera bounds for subvarieties in different type of varieties, and discuss several
conjectures. All varieties are supposed to be projective, reduced, irreducible, and
defined over C. The geometric genus pg(Y ) of a variety Y is the geometric genus
of a smooth model of Y .

Two important sources of interest in bounding genera are: the Clemens Conjec-
ture on count of rational curves in Calabi-Yau varieties ([27]), and the celebrated
Kobayashi Conjecture on hyperbolicity of general hypersurfaces in P

n of sufficiently
large degree ([59]). Recall ([43], [59]) that the Kobayashi hyperbolicity of a variety
X implies the algebraic hyperbolicity, and in particular, absence of rational and
elliptic curves in X . A part concerning the Clemens Conjecture started with the
following theorem.

Theorem 4.1. (H. Clemens [26]) The geometric genera of curves in a very general
hypersurface X of degree d > 2n−1 in Pn satisfy the inequality g > 1

2 (d−2n+1)+1.

This shows, in particular, the absence of rational curves in very general surfaces
of degree d > 5 in P3. One of the subsequent results in higher dimensions was

Theorem 4.2. (E. Ballico [3]) There is an effective bound ϕ(n) such that a very
general hypersurface of degree d > ϕ(n) in Pn is algebraically hyperbolic.

A better effective bound was provided by Geng Xu ([88]). For instance ([25]), it
follows from the results in [88] that a general sextic threefold in P4 is algebraically
hyperbolic.

The Demailly algebraic hyperbolicity theorem states the following.

Theorem 4.3. (J.-P. Demailly [38]) For any hyperbolic subvariety X ⊂ Pn there
exists ε > 0 such that, for any curve C ⊂ X, the geometric genus g of C is bounded
below in terms of the degree: g > ε deg(C) + 1. Therefore, the curves of bounded
genera in X form bounded families.

Due to a recent proof of the Kobayashi Conjecture, Theorem 4.3 can be applied
to general (in Zariski sense) hypersurfaces in Pn.

Theorem 4.4. (D. Brotbek [12], Y.-T. Siu [79]) A general hypersurface of suffi-
ciently large degree in Pn is Kobayashi hyperbolic.

For effective estimates of degrees of hyperbolic hypersurfaces, see Y. Deng ([41,
42]); see also J.-P. Demailly [40] for a survey and a simplified proof.

L. Ein obtained some analogs of Clemens’ estimate in higher dimensions.

Theorem 4.5. (L. Ein [44, 45]) Let M be a smooth projective variety of dimension
n > 3, let L → M be an ample line bundle, and let X ∈ |dL| be a very general
member. Then for d > 2n − ℓ any subvariety Y ⊂ X of dimension ℓ has positive
geometric genus, and for d > 2n− ℓ+ 1, Y is of general type.



14 C. CILIBERTO, F. FLAMINI, AND M. ZAIDENBERG

In the case M = Pn there is a sharper bound.

Theorem 4.6. (C. Voisin [81, 82]) Let X be a very general hypersurface of degree
d > 2n − ℓ − 1 in Pn, n > 3. Then for d > 2n − l + 1 any subvariety Y ⊂ X
of dimension l ≤ n − 3 has positive geometric genus, and for d > 2n − l, Y is of
general type.

Sharper bounds are known also for certain toric varieties (A. Ikeda [53]). For
M = Pn a further improvement is due to G. Pacienza.

Theorem 4.7. (G. Pacienza [73]) For n > 6 and for a very general hypersurface
X ⊂ Pn of degree d > 2n− 2, any subvariety Y ⊂ X is of general type.

Geng Xu improved Ein’s theorem as follows.

Theorem 4.8. (G. Xu [92]) Let X be a very general complete intersection of m 6

n − 3 hypersurfaces of degrees d1, . . . , dm in Pn, where di > 2 ∀i, and let Y ⊂ X
be a reduced and irreducible divisor. Let d = d1 + · · ·+ dm. Then pg(Y ) > n− 1 if
d > n+ 2, and Y is of general type if d > n+ 2.

See also Geng Xu ([91]), C. Chang and Z. Ran ([15]), L. Chiantini, A.-F. Lopez,
and Z. Ran ([22]), H. Clemens and Z. Ran ([28]), S.S.-T. Lu and Y. Miyaoka ([66]),
and L.-C. Wang ([86, 87]). The results in [86] include some classes of divisors in
Calabi-Yau hypersurfaces of degree d = n+ 1 in Pn.

Let us mention several sporadic results. See also, e.g., R. Beheshti ([6]), M. Bernar-
dara ([8]), L. Bonavero and A. Hoering ([10]), T.D. Browning and P. Vishe ([13]),
I. Coskun and E. Reidl ([31]), O. Debarre ([37]), K. Furukawa ([48, 49]), J. Harris,
M. Roth, and J. Starr ([51]), J. Kollar ([60]). Concerning the Clemens Conjecture
on rational curves in quintic threefolds and Mirrow Symmetry, see, e.g., M. Kont-
sevich ([61]), A. Libgober and J. Teitelbaum ([63]), D.A. Cox and S. Katz ([35]),
T. Coates and A. Givental ([29]) and the references therein.

Theorem 4.9. • (G. Pacienza [72], E. Riedl and D. Yang [74]) Let X ⊂ Pn

be a very general hypersurface of degree d. If either n = 6 and d = 2n− 3,
or n > 7 and 3n+1

2 ≤ d ≤ 2n − 3, then X contains lines but no other
rational curves.

• (D. Shin [78]) A general hypersurface of degree d > 3
2n − 1 in Pn does

not contain any smooth conic; however (S. Katz [56]), a general quintic
threefold in P4 does.

• (S. Katz [56], P. Nijsse [71], T. Johnsen and S..L. Kleiman [54], J. D’Almeida
[36], E. Cotterill [32, 33], E. Ballico and C. Fontanari [5]; cf. also E. Ballico
[4] and A. L. Knutsen [57, 58]) A general quintic threefold X in P4 contains
only finitely many rational curves of degree ≤ 12, and each rational curve C
of degree ≤ 11 either is smooth and embedded in X with a balanced normal
bundle O(−1)⊕O(−1), or is a plane 6-nodal quintic.

• (D. Shin [77], G. Mostad Hana and T. Johnsen [70], E. Cotterill [34]) A
general hypersurface of degree 7 in P5 does not contain any rational curve
of degree d ∈ {2, . . . , 16}.

• (G. Ferrarese and D. Romagnoli [47]) The degree of an elliptic curve on a
very general hypersurface X of degree 7 in P4 is a multiple of 7.

• (B. Wang [85]) A general hypersurface of degree 54 in P30 does not contain
any rational quartic curve.
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• (B. Wang [84]) A very general hypersurface of degree d > 2n− 1 in Pn does
not contain any smooth elliptic curve.

For n = 3, Geng Xu replaced Clemens’ initial genus bound in Theorem 4.1 by
the optimal one. See also L. Chiantini and A.F. Lopez ([21]) for an alternative
proof and some generalizations.

Theorem 4.10. (G. Xu [90]) The genera of curves on a very general surface of
degree d > 5 in P3 satisfy the inequality g > 1

2d(d− 3)− 2, and this bound is sharp.
For d > 6 this sharp bound can be achieved only by a tritangent hyperplane section.

Let Gaps(d) be the set of all non-negative integers which cannot be realized as
geometric genera of irreducible curves on a very general surface of degree d in P

3.
This set is union of finitely many disjoint and separated integer intervals. By Xu’s
Theorem 4.10, the first gap interval is Gaps0(d) = [0, d(d − 3)/2 − 3]. For d = 5,
this is the only gap interval. For d > 6, the next gap interval is Gaps1(d) = [d(d−
3)/2+2, d2−2d−9] ([23]). One can show ([24]) that max(Gaps(d)) = O(d8/3). The
latter is based on certain existence results. For arbitrary smooth (not necessarily
general) surfaces in P

3, we have the following existence result.

Theorem 4.11. ([16], [24]) There exists a function c(d) ∼ d3 such that, for any
smooth surface S in P3 of degree d and any g > c(d), S carries a reduced, irreducible
nodal curve of geometric genus g, whose nodes can be prescribed generically on S.

To formulate an analog in higher dimensions, we recall the following notion. Let
Y be an irreducible variety of dimension s. A singular point y ∈ Y is called an
ordinary singularity of multiplicity m (m > 1), if the Zariski tangent space of Y at
y has dimension s+1, and the (affine) tangent cone to Y at y is a cone with vertex
y over a smooth hypersurface of degree m in Ps.

The next result was first established by J.A. Chen ([16]) for curves in n-dimensional
varieties, and then in [24] for subvarieties of arbitrary dimension s 6 n− 1 2.

Theorem 4.12. ([16], [24]) Let X be an irreducible, smooth, projective variety of
dimension n > 1, let L be a very ample divisor on X, and let s ∈ {1, . . . , n − 1}.
Then there is an integer pX,L,s such that for any p > pX,L,s one can find an
irreducible complete intersection Y = D1 ∩ . . . ∩ Dn−s ⊂ X of dimension s with
at most ordinary points of multiplicity s + 1 as singularities such that pg(Y ) = p,
where Di ∈ |L| for i = 1, . . . , n−s−1 are smooth and transversal and Dn−s ∈ |mL|
for some m > 1. Moreover, for n > 3 and s = 1 one can find a smooth curve Y in
X of a given genus g(Y ) = p > pX,L,1.

Recall the famous:

Green-Griffiths-Lang Conjecture. ([50, 62]; see also [7], [39]) Let X be a
projective variety of general type. Then there exists a proper closed subset Z ⊂ X
such that any subvariety Y ⊂ X not of general type is contained in Z.

The following conjecture is inspired by the previous results and by the Green-
Griffiths-Lang Conjecture in the surface case.

Conjecture. There exists a strictly growing function ϕ(d), with natural values,
such that the set of curves of geometric genus g 6 ϕ(d) in any smooth surface S of
degree d > 5 in P3 is finite.

2We are grateful to J.A. Chen for pointing out his nice paper [16] that we ignored when writing
[24]. We apologize for our ignorance.
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Notice ([24]) that for any g > 0 and d > 1 one can find a smooth surface
S ⊂ P3 of degree d carrying a nodal curve of genus g. Notice also that any smooth
quartic surface in P3 contains an infinite countable set of rational curves, hence the
restriction d > 5 is necessary. Let us mention a few facts supporting the conjecture.
According to B. Segre ([76]) the number of lines on a smooth surface of degree d > 3
does not exceed (d−2)(11d−6). The celebrated Bogomolov theorem ([9]) says that
the number of rational and elliptic curves on a surface of general type with c21 > c2
is finite. Moreover, due to Y. Miyaoka, this number admits a uniform estimate:

Theorem 4.13. (Y. Miyaoka [68]) Let S be a minimal smooth projective surface of
general type satisfying the inequality for Chern numbers c21 > c2. Then the number
of irreducible curves of genus 0 and 1 on S is bounded by a function of c1 and c2.

Analogous facts are true under certain weaker assumptions on Chern numbers
(Y. Miyaoka [69]), or on the singularities of rational and elliptic curves in S (S.S.-
Y. Lu and Y. Miyaoka [67]). It is plausible that the number of curves of genus
g 6 ϕ(d) on a smooth surface of degree d in P

3 can be uniformly bounded above
by a function of d. The conjecture above is coherent with the following ones.

Conjecture. (C. Voisin [83]) Let X ⊂ Pn be a very general hypersurface of
degree d > n+ 2. Then the degrees of rational curves in X are bounded.

Conjecture. (P. Autissier, A. Chambert-Loir, and C. Gasbarri [2]) Let X
be a smooth projective variety of general type with the canonical line bundle KX .
Then there exist real numbers A and B, and a proper Zariski closed subset Z ⊂ X
such that for any curve C of geometric genus g in X not contained in Z, one has
degC(KX) 6 A(2g − 2) +B.
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