
Geometric linear normality for nodal
curves on some projective surfaces

F. Flamini (*), C. Madonna

Sunto. – In questo lavoro si generalizzano alcuni risultati di [3] riguardanti la propri-
eta’ di alcune curve nodali, su superficie non-singolari in Pr, di essere ”geometricamente
linearmente normali” (concetto che estende la ben nota proprieta’ di essere linearmente
normale). Precisamente, per una data curva C, irriducibile e dotata di soli punti nodali
come uniche singolarita’, che giace su una superfice S proiettiva, non-singolare e lin-
earmente normale, si determina un limite superiore ”sharp” sul numero dei nodi di C,
δ = δ(C, S), di modo che C e’ geometricamente linearmente normale se il numero dei
suoi nodi e’ minore di δ. Trattiamo alcuni esempi di superficie che sono elementi di una
componente del luogo di Noether-Lefschetz delle superficie in P3 oppure scoppiamenti di
alcune superficie proiettive cui il nostro risultato numerico si puo’ applicare facilmente.
Infine, per dimostrare che il nostro bound e’ ottimale, nel paragrafo 3 vengono considerati
inoltre esempi di superficie ”canoniche” intersezioni complete.

Introduction

It is well-known that projective, non-singular complete intersection varieties are
linearly normal, i.e. they are not isomorphic projection of non-degenerate varieties
in higher dimensional projective spaces. From the cohomological point of view, a
projective variety X ⊂ Pr is linearly normal if and only if h1(X, IX(1)) = 0, i.e.
the linear series | OX(1) | cut out by the hyperplanes is complete. This definition
makes sense even if X is singular.

However, one can extend this notion by considering the geometric linear normal-
ity property of singular varieties X ⊂ Pr, having some restricted type of singularities
which can arise from projections. We state the following:

(*) The first author is a member of GNSAGA-CNR
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Definition 1 Let C be any reduced curve in Pr. We say that C is geometrically
linearly normal if the normalization map ν : C̃ → C cannot be factored into a
non-degenerate map C̃ → PN , with N > r, followed by a projection.

In [3], conditions for the geometric linear normality property of certain nodal
curves on smooth projective surfaces in P3 have been studied. In this paper, we
generalize Theorem 3.5 in [3] by proving the following main theorem.

Theorem 2 Let S be a smooth, non-degenerate and linearly normal surface in Pr

and let H be the general hyperplane section on S, such that h1(S, OS(H)) = 0. Let
C be a smooth, irreducible divisor on S. Suppose that:

i) CH > H2;

ii) (C − 2H)2 > 0 and C(C − 2H) > 0;

iii) ν(C, H) < 4(C(C − 2H)− 4), where ν(C,H) is the Hodge number of C and
H;

iv) δ <
C(C−2H)+

√
C2(C−2H)2

8
.

Then, if C ′ ∈| C | is a reduced, irreducible curve with only δ nodes as singular points
and if N denotes the 0-dimensional scheme of nodes in C ′, N imposes independent
conditions to | C −H + KS |.
Corollary 1 In the hypotheses of Theorem 2, if C is linearly normal in Pr then
C ′ is geometrically linearly normal.

Remark 1 Before going into details, we want to spend a few words on the cohomo-
logical conditions we gave in the statement of the theorem above. First of all, the
linear normality of S means that h1(S, IS(H)) = 0 and this is clearly necessary since,
otherwise, we can not hope to say too much on C ′. On the other hand, as it will be
also clear from the proof of Theorem 1, the vanishing condition h1(S, OS(H)) = 0
implies that the linear series | ωC̃(ν∗(−H)) | is complete, where ωC̃ denotes the
canonical sheaf on the smooth curve C̃ and ν : C̃ → C is the normalization map.
More precisely, if C ⊂ S is a δ-nodal curve and if µ : S̃ → S denotes the blow-up of
S along the set of nodes of C, such that B =

∑δ
i=1 Ei is the exceptional divisor in S̃,

the map µ induces the normalization map ν : C̃ → C. The exact sequence defining
ωC̃ gives rise to

0 → OS̃(µ∗(KS −H) + B) → OS̃(µ∗(KS + C −H)−B) →
→ ωC̃(ν∗(−H)) → 0.

We observe that h1(S̃, OS̃(µ∗(KS −H) + B)) = 0 implies that the map

H0(S̃, OS̃(µ∗(KS + C −H)−B)) → H0(C̃, ωC̃(ν∗(−H)))

is surjective. Indeed, observe that by Serre duality on S̃, h1(S̃, OS̃(µ∗(KS − H) +
B)) = h1(S̃, OS̃(KS̃ − µ∗(H))) = h1(S̃, OS̃(µ∗(H))), so the vanishing follows from
Leray spectral sequence and our assumption on h1(S, OS(H)).
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We remark that our main result gives purely numerical conditions on the divisors
C and H in order to determine the geometric linear normality property for nodal
curves on S. As we shall see in the sequel, these conditions can be directly checked
in many cases, where other criteria fail.

The paper consists of three sections. In Section 1, we recall some terminology
and notation. Section 2 contains the main theorem, whereas Section 3 is devoted to
examples, some of which show the sharpness of our results.
Acknowledgments: The authors wish to thank Prof. L. Chiantini and Prof. E. Ser-
nesi for their fundamental remarks and helpful discussions.

1. – Notation and Preliminaries

We work in the category of C-schemes. X is an algebraic m- fold if it is a
reduced, irreducible and nonsingular scheme of finite type over C and of dimension
m. If m = 1, then X is a smooth curve; m = 2 is the case of a nonsingular surface.
If X ⊂ Y are two algebraic schemes, IX/Y or IX , denotes the ideal sheaf of X in Y .
When Y is smooth, KY denotes a canonical divisor.

Let X be a m-fold and let E be a rank r vector bundle on X; ci(E) will denote
the ith-Chern class of E , 1 ≤ i ≤ r. As usual, hi(−) := dim(H i(−)).

If C is a curve, pa(C) = h1(OC) denotes its arithmetic genus, whereas pg(C)
denotes its geometric genus, the arithmetic genus of its normalization. For a smooth
curve C, ωC shall denote the canonical sheaf, i.e. ωC

∼= OC(KC).
Let S ⊂ Pr be a smooth, non-degenerate linearly normal surface, and H be the

hyperplane section on S; then,

h0(S, OS(H)) = h0(Pr, OPr(H)) = r + 1.(1)

Definition 2 Let S be a smooth projective surface and denote by Div(S) the set
of the divisors on S. An element B ∈ Div(S) is said to be nef , if B ·D ≥ 0 for each
irreducible curve D on S (where · denotes the intersection form on S; in the sequel
we will omit ·). A nef divisor B is said to be big if B2 > 0.

Remark 2 We recall that, given a smooth surface S, N(S)+ usually denotes the
ample divisor cone on S; thus F ∈ N(S)+ if and only if F 2 > 0 and FA > 0 for any
ample divisor A on S. By Kleiman’s criterion (see, for example, [8]), a nef divisor
B is in the closure of N(S)+.

Definition 3 Let S be a smooth surface and C ∈ Div(S). We denote by ν(C, H)
the Hodge number of C and H,

ν(C,H) := (CH)2 − C2H2.

By the Index Theorem (see, for example, [1] or [5]) this number is non-negative.

Remark 3 Let S ⊂ Pr be a smooth, non-degenerate linearly normal surface and
H be the hyperplane section on S. Let C ∈ Div(S) be an effective divisor. Sup-
pose that C is smooth, non-degenerate and such that C − H big and nef. Clearly
h0(OS(H − C)) = 0, hence we have the following exact sequence

0 → H0(S, OS(H)) → H0(C, OC(H)) → H1(S, OS(H − C)) → · · ·

3



By Serre duality, h1(S, OS(H−C)) = h1(S, OS(KS +C−H)) and, by the Kawamata-
Viehweg vanishing theorem (see, for example, [11]), this equals 0. Hence, by (1), it
follows

h0(C, OC(H)) = h0(S, OS(H)) = r + 1,(2)

so we get that C is linearly normal.

We recall the following:

Definition 4 We say that a linear system on a surface is a Bertini linear system
if its general element is smooth and irreducible.

Definition 5 Let S be a smooth projective surface. A rank 2 vector bundle E
on S is said to be Bogomolov − unstable if there exist M, B ∈ Div(S) and a
0-dimensional scheme Z (possibly empty) with the following exact sequence

0 → OS(M) → E → IZ(B) → 0(3)

and moreover (M −B) ∈ N(S)+.

Remark 4 We recall that E is Bogomolov- unstable when c1(E)2− 4c2(E) > 0 (see
[2] or [10]).

2. – Geometric linear normality on some projective, non-degenerate and
linearly normal surfaces

In this section we discuss the problem of geometric linear normality for nodal
curves on a smooth projective surface, which is linearly normal and satisfies a suit-
able cohomological condition (see Remark 1). More precisely, we characterize the
geometric linear normality of a nodal curve C, in a Bertini linear series, in terms of
its set of nodes.

Theorem 1 Let S be a smooth, non-degenerate and linearly normal surface in Pr

such that h1(S, OS(H)) = 0. Let | D | be a Bertini linear series on S, whose general
element is supposed to be linearly normal in Pr. Let C ∈| D | be an irreducible curve
with only δ nodes as singular points. Then C is geometrically linearly normal if and
only if the set of nodes, N , imposes independent conditions to the linear system
| D + KS −H |.

Proof. Let D be the general member of the linear series | D |. By the linear
normality hypothesis and by Riemann-Roch on D, we have

h1(D, OD(H)) = (r + 1)− deg(D) + pa(D)− 1,

hence, by Serre duality and by adjunction on S, we get

h0(D, OD(D + KS −H)) = (r + 1)− deg(D) + pa(D)− 1.(4)
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Now, let C ∈| D | be a curve with only δ nodes as singularities. Denote by
µ : S̃ → S the blow-up of S along the set of nodes of C, N , and let B =

∑δ
i=1 Ei be

the exceptional divisor in S̃. The blow-up induces the normalization map ν : C̃ → C.
By adjunction theory,

ωC̃ = OC̃(KS̃ + C̃) = OC̃(µ∗(KS + C)−B) = OC̃(ν∗(KS + C)(−Ñ)),(5)

where OC̃(Ñ) = OC̃(B) is a divisor of degree 2δ on C̃, formed by the points which
map to the nodes of C. From Riemann-Roch on C̃, it follows that

h1(C̃, OC̃(ν∗(H))) = h0(C̃, OC̃(ν∗(H)))− deg(C) + pa(C)− 1− δ.

By using (5) and the fact that C ∼ D on S, we get

h0(OC̃(ν∗(KS + D −H)(−Ñ))) = h0(OC̃(ν∗(H)))− deg(C) + pa(C)− 1− δ.(6)

Observe that h0(C̃, OC̃(ν∗(H))) = r + 1 if and only if

h0(C, OC̃(ν∗(KS + D −H)(−Ñ))) = (r + 1)− deg(C) + pa(C)− 1− δ.

By using (4) and the fact that the adjunction on S is independent from the chosen
element in | D |, we obtain

h0(C̃, OC̃(ν∗(H))) = r + 1 ⇔ h0(C̃, OC̃(ν∗(KS + D −H)(−Ñ)))(7)

= h0(C, OC(D + KS −H))− δ.

Now, we use our assumption h1(S, OS(H)) = 0. It implies, by duality on S, that

h0(S, OS(D + KS −H))− h0(S, OS(KS −H)) = h0(C, OC(D + KS −H))

whereas, on S̃,

h0(S̃, OS̃(µ∗(KS + D −H)−B))− h0(S̃, OS̃(µ∗(KS −H) + B) =

= h0(C̃, OC̃(ν∗(KS + D −H)(−Ñ))),

since, by Leray spectral sequence, h1(OS̃(µ∗(KS − H) + B)) = h1(OS(H)) = 0.
Substituting in (7), it gives

h0(OC̃(ν∗(H))) = r + 1 ⇔ h0(S̃, OS̃(µ∗(KS + D −H)−B)) =

h0(S, OS(D + KS −H))− δ.

The claim follows from the fact that h0(S̃, OS̃(µ∗(KS+D−H)−B)) = h0(S, IN/S(KS+
D −H)).

Observe that from (2) in Remark 3 and from the hypotheses on S, the same con-
clusions holds if we assume that the general element in | D | is smooth, irreducible
and non-degenerate such that D −H is big and nef.

For what concerns the geometric linear normality problem, by considering Bogo-
molov unstable vector bundles on S we can obtain an upper-bound δu on the number
of nodes such that if C has at most δu − 1 nodes, then it is geometrically linearly
normal. Using the procedure of [4], we can prove the following result.
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Theorem 2 Let S be a smooth, non-degenerate and linearly normal surface in Pr

such that h1(OS(H)) = 0. Let C be a smooth, irreducible divisor on S. Suppose that:

i) CH > H2;

ii) (C − 2H)2 > 0 and C(C − 2H) > 0;

iii) ν(C, H) < 4(C(C − 2H)− 4), where ν(C,H) is the Hodge number of C and
H;

iv) δ <
C(C−2H)+

√
C2(C−2H)2

8
.

If C ′ ∈| C | is a reduced, irreducible curve with only δ nodes as singular points and
if N denotes the 0-dimensional scheme of nodes of C ′, then N imposes independent
conditions to | C −H + KS |.

Proof. By contradiction, assume that N does not impose independent conditions
to | C − H + KS |. Let N0 ⊂ N be a minimal 0-dimensional subscheme of N for
which this property holds and let δ0 =| N0 |. This means that h1(S, IN0(C − H +
KS)) 6= 0 and that N0 satisfies the Cayley-Bacharach condition (see, for example
[7]). Therefore, a non-zero element of H1(IN0(C − H + KS)) gives rise to a non-
trivial rank 2 vector bundle E ∈ Ext1(IN0(C −H), OS) fitting in the following exact
sequence

0 → OS → E → IN0(C −H) → 0,(8)

with c1(E) = C −H and c2(E) = δ0 hence

c1(E)2 − 4c2(E) = (C −H)2 − 4δ0.(9)

By iv)

(C −H)2 − 4δ0 ≥ (C −H)2 − 4δ = C2 − 2CH + H2 − 4δ > H2 > 0,

since δ0 ≤ δ thus E is Bogomolov-unstable (see Definition 5 and Remark 4), hence
h0(E(−M)) 6= 0. Twisting (8) by −M , we obtain

0 → OS(−M) → E(−M) → IN0(C −H −M) → 0.(10)

We claim that h0(OS(−M)) = 0; otherwise, −M would be an effective divisor,
therefore −MA > 0, for each ample divisor A. From (3), it follows that c1(E) =
M + B, so, by (3) and (8),

M −B = 2M − C + H ∈ N(S)+.(11)

Thus

MH >
(C −H)H

2
;(12)

next by i) it follows that H(C −H) > 0, hence −MH < 0.
The cohomological exact sequence associated to (10) allows us to deduce that

there exists a divisor ∆ ∈| C −H −M | s.t. N0 ⊂ ∆ and s.t. the irreducible nodal
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curve C ′ ∈| C |, whose set of nodes is N , is not a component of ∆. Otherwise,
−M −H would be an effective divisor, whereas, by (12), we get

H(−M −H) = −H2 −HM < −H2 − (C −H)H

2
= −(C + H)H

2
< 0,

since H(C + H) = (C −H)H + 2H2 > 0.
Next, by Bezout’s theorem

C ′∆ = C ′(C −H −M) ≥ 2δ0.(13)

On the other hand, taking M maximal, we may further assume that the general
section of E(−M) vanishes in codimension 2. Denote by Z this vanishing-locus,
thus, c2(E(−M)) = deg(Z) ≥ 0; moreover,

c2(E(−M)) = c2(E) + M2 + c1(E)(−M) = δ0 + M2 −M(C −H),

which implies
δ0 ≥ M(C −H −M).(14)

Applying the Index theorem to the divisor pair (C, 2M − C + H), we get

C2(2M − C + H)2 ≤ (C(C −H)− 2C(C −H −M))2.(15)

Note now that, from hypothesis i) and the second one of ii) it follows that C(C−H) >
0, since C(C−2H) > 0 hence C2−HC > HC > 0. In the same way we find C2 > 0.
Since C is irreducible, this also implies that C is a nef divisor. From (13) and from
the positivity of C(C −H), it follows that

C(C −H)− 2C(C −H −M) ≤ C(C −H)− 4δ0.(16)

We observe that the left side member of (16) is non-negative, since C(C − H) −
2C(C−H−M) = C(2M−C +H), where C is effective and, by (11), 2M−C +H ∈
N(S)+. Squaring both sides of (16), together with (15), we find

C2(2M − C + H)2 ≤ (C(C −H)− 4δ0)
2.(17)

On the other hand, by (14), we get

(2M−C+H)2 = 4(M− (C −H)

2
)2 = (C−H)2−4(C−H−M)M ≥ (C−H)2−4δ0,

i.e
(2M − C + H)2 ≥ (C −H)2 − 4δ0.(18)

Next, we define

F (δ0) := 16δ2
0 − 4C(C − 2H)δ0 + (CH)2 − C2H2.(19)

Putting together (17) and (18), it follows that F (δ0) ≥ 0. We will show that, with
our numerical hypotheses, one has F (δ0) < 0, proving the statement.
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Indeed, the discriminant of the equation F (δ0) = 0 is 16C2(C − 2H)2, and it is
a positive number, since (C − 2H)2 > 0, by the first one of ii), and C2 > 0. We
remark that F (δ0) < 0 iff δ0 ∈ (α(C, H), β(C, H)), where

α(C, H) =
C(C − 2H)−

√
C2(C − 2H)2

8

and

β(C,H) =
C(C − 2H) +

√
C2(C − 2H)2

8
;

so we have to show that, δ0 ∈ (α(C, H), β(C, H)).
From iv), it follows that δ0 < β(C,H). Note that α(C,H) ≥ 0. Indeed, if

α(C,H) < 0 then C(C− 2H) <
√

C2(C − 2H)2, which contradicts the Index Theo-

rem, since C(C−2H) > 0. In order to simplify the notation, we put t := C(C−2H).

Thus, α(C, H) < 1 if and only if t− 8 <
√

t2 − 4ν(C, H).

If t − 8 < 0, the previous inequality trivially holds, so δ0 > α(C, H). Note also
that, by iii), 4ν(C,H) < 16t − 64, so that β(C, H) > 1, which ensures there exists
at least a positive integral value for the number of nodes.

If t − 8 ≥ 0, α(C,H) < 1 directly follows from iii), whereas β(C, H) > 1 holds

since it is equivalent to t− 8 > −
√

t2 − 4ν(C,H).

In conclusion, our numerical hypotheses contradict F (δ0) ≥ 0, therefore the
assumption h1(IN(D −H + KS)) 6= 0 leads to a contradiction.

Corollary 1 In the hypotheses of previous theorem, if C is linearly normal in Pr

then C ′ is geometrically linearly normal.

Remark 5 Observe that, if t− 8 ≥ 0, then

C(C − 2H) + C(C − 2H)− 8

8
<

C(C − 2H) +
√

C2(C − 2H)2

8
,

therefore we may change the bound δ < β(C, H) with the more ”readable” one

δ ≤ C(C−2H)
4

− 1.
Indeed,

C(C − 2H) + C(C − 2H)− 8

8
<

C(C − 2H) +
√

C2(C − 2H)2

8

≤ C(C − 2H)

4
.

3. – Examples

This section will be devoted to the study of some examples, which also show the
sharpness of our bound in Theorem 2.
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First of all, assume that S is a smooth, projective, non-degenerate and linearly
normal surface, with Picard group Z-generated by the hyperplane section H. Sup-
pose also that h1(S, OS(H)) = 0; then our results easily apply to the cases of nodal
curves C ∼ nH on S, such that n ≥ 3 and deg(S) > 4

n(n−2)
. Indeed, condition ii) in

Theorem 2 implies that n > 2, whereas condition iii) gives that ν(nH, H) = 0, so
C(C − 2H) − 4 = n(n − 2)H2 − 4 > 0 if and only if H2 > 4

n(n−2)
; this means that

the degree of S must be greater than or equal to 2, but with the further condition
that S ⊂ Pr is non-degenerate.

In particular, if we go back to the case of a general surface S ⊂ P3, such that
deg(S) ≥ 2, the bound on the number of nodes is

δ <
n(n− 2)

4
deg(S),

which generalizes Theorem 3.5 in [3], where the cases in which KS is an ample divisor
on S are considered.

We can also state the following generalization

Proposition 1 Let S be a smooth, non-degenerate complete intersection surface
of type (a1, . .., ar−2) in Pr, r ≥ 4, and let C ∈| nH | with only δ nodes as singular
points. Suppose that n ≥ 3 and deg(S) ≥ 4; then, if

δ <
n(n− 2)

4
deg(S),(20)

hence C is geometrically linearly normal.

Proof. Observe, first, that this result obviously generalizes the bounds for general
smooth surfaces in P3, of degree d ≥ 2, mentioned above and the ones of Theorem
3.5, in [3], to the cases of non-degenerate, complete intersections in higher dimen-
sional projective spaces. The proof is a straightforward application of Theorem 2.
Indeed, the cohomological condition trivially holds, for a 2-dimensional complete in-
tersection; moreover, the hypotheses on n and deg(S) ensure that conditions i), ii)
and iii) of Theorem 2 hold. In the statement of the proposition we considered
the bound deg(S) ≥ 4 instead of the one obtained by numerical computations, i.e.
deg(S) ≥ 2, since complete intersections of degree 2 and 3 are obviously degenerate
if r ≥ 4. The bound on δ is condition iv).

In [3] it is proved the sharpness of the bound on δ for a general quintic surface
in P3. In particular, since in this case the Neron-Severi group of S is such that
NS(S) ∼= Z[KS], then, when C ∼ nH on S, with n an odd integer, the bound on

the number of nodes is δ < 5(n−1)2

4
instead of 5n(n−2)

4
. We shall see that the same

occurs in some other cases of general complete intersections. Indeed, we will show
the sharpness of bound iv), in Theorem 2, by considering nodal curves C ∼ nH on
general ”canonical” complete intersection surfaces. Since in these cases the Hodge
number is zero, this bound reduces to (20); moreover, when n is an odd integer, (20)
can be replaced by

δ <
(n− 1)2

4
deg(S),
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as it follows from Theorem 2.2 in [3]. Applying the same procedure of [3] we will
show that these bounds are almost sharp for a sestic surface in P3.

To do this, we want to recall that the geometric linear normality property is
equivalent, in some particular cases, to another important aspect of families of nodal
curves on a projective surface.

Remark 6 Let S be a nonsingular projective surface, which is non-degenerate and
linearly normal, for which KS ∼ H. In such a case, the fundamental condition
h1(S, OS(H)) = 0, used in the proof of Theorem 1, implies that S is a regular surface.
Therefore, Theorem 2 determines purely numerical conditions on the nodal curve C
ensuring that its set of nodes imposes independent conditions to the linear system
which C belongs to or, similarly (see [3]), that C corresponds to a smooth point of
the Severi variety V|D|,δ, C ∈| D |. We recall that, given a Bertini linear series | D |
on a surface S, V|D|,δ denotes the locally closed subscheme of | D | parametrizing
irreducible nodal curves with δ nodes in | D |. With abuse of language, it is called
the Severi variety of δ-nodal curves in | D |. The fact that C corresponds to a
smooth point of such a varity means that the nodes of C can be independently
smoothed. In [3] this problem is studied when KS is an ample divisor on S and C
is a divisor which is numerically equivalent to pKS, where p is a rational number
greater than 2. A first improvement of this result is given in [6], where the authors
weakened the assumptions of KS being ample and considered the cases in which C,
C − KS are ample divisors and C2 ≥ K2

S. In [4], purely numerical conditions are
given in order to generalize these results on the regularity of the Severi variety V|D|,δ.

Examples of projective, regular, non-degenerate and linearly normal surfaces,
such that KS ∼ H, are given by general complete intersections in Pr of type
(a1, ..., ar−2), such that (

∑r−2
i=1 ai) = r + 2 (see [11]); therefore, only few cases may

occur. More precisely, we have a general quintic surface in P3, surfaces of type (2, 4)
and (3, 3) in P4, the surface of type (2, 2, 3) in P5, whereas in P6 we have the case
(2, 2, 2, 2). In Pr, for r ≥ 7, no non-degenerate case can occur.

In the following example we consider the case of a general complete intersection
of type (2, 4) in P4. The construction can be obviously generalized to the other
cases in the list above.

Example 1 Let F2, F4 be two general hypersurfaces in P4 of degree 2 and 4,
respectively; let S be the surface of degree 8, which is the complete intersection of
F2 and F4. Denote by W2 and W4 the cones in P5, over F2 and F4 respectively,
with the same vertex P ∈ P5. Let V2 and Vm be two general 4-folds in P5 of
degree 2 and m, respectively, where m is a positive integer greater than or equal to
3. Let T be the complete intersection 3-fold of V2 and Vm and denote by πP the
projection πP : T → T ′ from the vertex P of T onto the variety T ′ of dimension
3. It is classically known that the degree of T ′ is 2m and that T ′ contains a double
surface G and in order to compute its degree, we use the technique of ”hyperplane
sections”. Indeed, let us denote by E the curve obtained on T taking two consecutive
hyperplane sections; hence E is a complete intersection of type (2, m, 1, 1) in P5 and
so pg(E) = m(m− 2) + 1. Using the same procedure for T ′ ∈ P4, we obtain a plane
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curve E ′ of degree 2m; therefore, its arithmetic genus is pa(E
′) = 2m3 − 3m + 1.

Hence, deg(G) = m2 −m.
Let C̃ be the complete intersection curve in P5 determined by

C̃ := V2 ∩ Vm ∩W2 ∩W4.

C̃ is a smooth curve of degree 16m, which lies on the cone of dimension 3, S̃ :=
W2 ∩ W4. Denote by C the projection of C̃ from P ; C has degree 16m and it
is complete intersection of S and T ′ in P4. Therefore, C ∈| 2mH | on S and
its singularities coincide with the zero-dimensional scheme of S ∩ G; thus C has a
set N of δ = 8m2 − 8m nodes and no other singularities. By construction, C̃ is
the normalization of C which, therefore, cannot be geometrically linearly normal.
Observe that, the bound in (20) becomes, in this case, δ < 8m2 − 8m, hence it is
sharp.

Remark 7 The above construction shows that our result is sharp for ”canonical”
complete intersection surfaces. Furthermore, from Theorem 1 it follows that, in this
example, N cannot impose independent condition to | C |, so that the Severi variety
V|2mH|,8m2−8m is not smooth of the expected dimension, i.e. dim(| 2mH |)−8m2−8m,
in a neighbourhood of C.

Proposition 2 The curve C constructed above is a singular point of V|2mH|,8m2−8m,
which is generically smooth, of the expected dimension.

Proof. The previous construction, together with Theorem 1, shows that the tan-
gent space of V|2mH|,8m2−8m at C has codimension 8m2−8m−1 in the tangent space
of | 2mH | at C (see [3] for details). Hence, h1(S, IN(2mH)) = 1, since C is the
projection of a smooth, complete intersection in P5.

Let C ′ be a curve in a neighbourhood of C in V|2mH|,8m2−8m, for which the
set of nodes N ′ does not impose independent conditions to | 2mH |. Then, by
semicontinuity, h1(S, IN ′(2mH)) = 1; therefore, also C ′ is the projection of a curve
C̃ ′ in P5 which ”lives” in a neighbourhood of C̃ in the Hilbert scheme of P5. It
follows that also C̃ ′ must be a smooth, complete intersection of the cone S̃ with
some complete intersection 3-fold of type (2,m). If we denote by M the subvariety
of V|2mH|,8m2−8m, formed by these projected curves, we can find an upper-bound for
dim(M). By keeping the cones W2 and W4 fixed, the normalizations of the elements
of M fill a variety of dimension at most

h0(C̃,NC̃/S̃) = h0(C̃, OC̃(2)⊕ OC̃(m)) = 8m2 − 16m + 38.

If we let also the vertex P vary in P5, we get a variety of dimension at most
8m2 − 16m + 43. On the other hand, V|2mH|,8m2−8m has dimension at least

h0(S, OS(2m))− 1− 8m2 + 8m = 8m2 + 5.

Since m ≥ 3, then 8m2 +5 > 8m2−16m+43, which means that the general element
of the Severi variety does not arise from this construction and is a smooth point of
V|2mH|,8m2−8m.
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Remark 8 We remark that there exist non-canonical surfaces for which the bound
is not sharp. Indeed, let us consider a nonsingular sextic surface S in P3. Let C be
a curve on S equivalent to nH, with n an even integer greater than 4. Arguing with
cones as in the previous example, we can prove that C has 3

2
(n2−2n) nodes, while the

bound in this case is given by the number 3
2
n(n−4), and C is the projection of a curve

in P4. It remains to understand what happens in the range [3
2
n(n−4), 3

2
n(n−2)−1].

We end this section by considering some examples of surfaces to which our nu-
merical criterion can be easily applied, whereas other criteria fail. We shall focus on
blown-up surfaces or surfaces of P3 which contain a line L.

1) Let S ⊂ P3 be a general smooth quartic. We have therefore, OS(KS) ∼= OS.
Let H be the plane section of S. If π : S̃ → S denotes the blow-up in a point
p ∈ S and E the π-exceptional divisor, then KS̃ ∼ E is not ample. Moreover, given
C ∼ mπ∗(H) on S̃, where m a positive integer, it cannot be an ample divisor since
CKS̃ = 0. Thus, both the results in [3] and [6] cannot be applied.

However, consider H̃ = 2π∗(H)−E, which is a very ample divisor, since the linear
system | H̃ | trivially separates points and tangent vectors on S̃. If we consider the
embedding of S̃ via the complete linear system | H̃ |, then S̃ is linearly normal.
Furthermore,

h1(OS̃(H̃)) = h1(I{p}/S(2H)) = 0,

since {p} imposes independent conditions to | 2H | on S ⊂ P3. Observe also
that the general element of | mπ∗(H) | is smooth and irreducible. Furthermore,
C − 2H̃ ∼ (m − 4)π∗(H) − 2E; so that the numerical conditions in Theorem 2
become (C − 2H̃)2 = 4(m2 − 8m + 15) > 0, C(C − 2H̃) = 4m(m − 4) > 0,
ν(C, H̃) = 4m2 < 4(C(C−2H̃)−4) = 4(4m2−16m−4) > 0. These simultaneously
hold as soon as m ≥ 6. Moreover,

δ <
m(m− 4) + m

√
(m− 4)2 − 1

2
.

From Remark 5, we know that, since t − 8 = C(C − 2H̃) − 8 = m2 − 4m − 2 is
positive for m ≥ 6, then we may change the bound above with the more ”readable”

one δ ≤ C(C−2H̃)
4

− 1 = m(m− 4)− 1 = m2 − 4m− 1.
Thus, if there exists a nodal curve C ∈| mπ∗H |, m ≥ 6, such that the number

of nodes is
δ ≤ m2 − 4m− 1,

then C is geometrically linearly normal by Theorem 2.
2) Let S be a smooth quintic surface in P3 which contains a line L. Denote by

Γ ⊂ S a plane quartic which is coplanar to L, so that Γ ∼ H − L. Thus,

H2 = 5, HL = 1, L2 = −3, HΓ = 4, Γ2 = 0 and ΓL = 4.

Choose C ∼ 3H + L, so that | C | contains curves which are residue to Γ in the
complete intersection of S with the smooth quartic surfaces of P3 containing Γ.
| 3H + L | is base-point-free and not composed with a pencil, since (3H + L)L = 0
and 3H is an ample divisor. By Bertini’s theorems, its general member is smooth
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and irreducible; but C and C−KS cannot be both either ample or, even, nef divisors.
In fact, CL = 0 and (C −KS)L = (2H + L)L = −1. Moreover C is not numerically
equivalent to a rational multiple of KS ∼ H. Therefore, the results in [3] and in [6]
cannot be applied.

Neverthless, S is trivially linearly normal with h1(OS(H)) = 0; furthermore,
CH = C(C−2H) = ν(C, H) = 16, (C−2H)2 = 4, H2 = 5, 4(C(C−2H)−4) = 48;
we then obtain δ < 16

4
= 4. Thus, if | 3H + L | contains some nodal, irreducible

curves, then, if δ ≤ 3, this singular curve is geometrically linearly normal; since
KS ∼ H, this is equivalent to saying that such a curve corresponds to a smooth
point of V|3H+L|,δ, which will be everywhere smooth of the expected dimension.
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