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SINGULAR CURVES ON A K3 SURFACE AND LINEAR SERIES
ON THEIR NORMALIZATIONS

FLAMINIO FLAMINI, ANDREAS LEOPOLD KNUTSEN AND GIANLUCA PACIENZA

Abstract. We study the Brill-Noether theory of the normalizations of singular,
irreducible curves on a K3 surface. We introduce a singular Brill-Noether number
ρsing and show that if Pic(K3) = Z[L], there are no g

r
d’s on the normalizations of

irreducible curves in |L|, provided that ρsing < 0. We give examples showing the
sharpness of this result. We then focus on the case of hyperelliptic normalizations,
and classify linear systems |L| containing irreducible nodal curves with hyperelliptic
normalizations, for ρsing < 0, without any assumption on the Picard group.

Introduction

Smooth curves on K3 surfaces, and in particular their Brill-Noether theory, have
played a fundamental role in algebraic geometry in the past decades (see e.g. [23],
[22], [12], [24], [7], [8], [27], [2], [1], [9] and [28], just to mention a few). The Brill-
Noether theory of these curves is both an important subject in its own right, especially
because it is connected to the geometry of the surface and, at the same time, it is an
important tool to prove results about smooth curves with general moduli.

Recall the following fundamental result of R. Lazarsfeld:

Theorem (Lazarsfeld [22]). Let S be a K3 surface with Pic(S) = Z[L], with
L2 = 2p− 2 > 0. Let ρ(p, r, d) := p− (r + 1)(p− d + r) be the Brill-Noether number.

(i) If X ∈ |L| is smooth, and ρ(p, r, d) < 0, then

W r
d (X) := {A ∈ Picd(X) | h0(X, A) ≥ r + 1} = ∅,

(ii) If X ∈ |L| is a general member and ρ(p, r, d) ≥ 0, then W r
d (X) is smooth

outside W r+1
d (X), and of dimension ρ(p, r, d).

Similarly, in [12], Green and Lazarsfeld proved that all the smooth curves in a
complete, base point free linear system |L| on a K3 surface have the same Clifford
index. Moreover, they proved that if the Clifford index is non-general, i.e. less than
⌊p−1

2
⌋, where p = pa(L) is the arithmetic genus of the curves in |L|, then it is induced

by a line bundle on the surface. As a consequence, one can easily construct curves
of any prescribed Clifford index and gonality on K3 surfaces [21]. This shows that
curves on K3 surfaces with arbitrary Picard group may be far from being generic
with respect to the Brill-Noether theoretical point of view. The hyperelliptic case
is “classical” and dates back to Saint-Donat [25], who classified linear systems on S
containing hyperelliptic curves :

Theorem (Saint-Donat [25]). Let L be a globally generated line bundle with L2 > 0
on a K3 surface S. The following conditions are equivalent:
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(i) the morphism ϕL defined by |L|, is not birational.
(ii) There is a smooth, hyperelliptic curve in |L|.
(iii) All the smooth curves in |L| are hyperelliptic.
(iv) Either L2 = 2, or there exists a smooth, irreducible, elliptic curve E on S

satisfying E.L = 2, or L ∼ 2B for a smooth, irreducible curve B with B2 = 2.

A linear system |L| satisfying these properties is said to be hyperelliptic.

Whereas the Brill-Noether theory of smooth curves on K3 surfaces is quite well
understood, almost nothing is known about the Brill-Noether theory of singular
curves; by this we mean the Brill-Noether theory of normalizations of singular curves
on K3 surfaces. Singular curves on K3 surfaces with nodes as the only singularities
behave in the expected way in the following sense, as a consequence of a result of Xi
Chen and of the theory of Severi varieties (cf. Remark 0.4 for details):

Theorem (Xi Chen [5]). If S ⊂ Pp, p ≥ 3, is a general, primitive K3 surface
of genus p, whose hyperplane divisor is H, then, for each integer m ≥ 1, the Severi
varieties V|mH|,δ(S) ⊂ |mH|, parametrizing the universal family of irreducible curves
in |mH| having δ nodes as the only singularities, are nonempty and hence of the
expected dimension pa(mH) − δ, for each δ ≤ pa(mH).

It is therefore natural to try to extend the study of linear series on smooth curves
lying on a K3 surface to the case of curves which are the normalizations of singular
curves on a K3 surface, at least in the nodal case. Beside of the interest on its own,
the problem and the results we obtain in this paper are related to the study of the
Hilbert scheme of points S [k] of a K3 surface. Indeed, a g

1
k on the normalization C of

a curve X on S gives rise to a rational curve in S [k] and, as a consequence of a result
of D. Huybrechts and S. Boucksom ([17, Prop. 3.2] and [4, Th. 1.2]), we know that
rational curves span the Mori cone of S [k]. (When k = 2, see [16] for a conjecture
about the numerical and geometrical properties of the rational curves generating the
extremal rays.) We plan to return to this topic in a future work.

In this paper we draw the attention to a number which seems to be an important
invariant for the study of the Brill-Noether theory of normalizations of singular curves
on K3 surfaces.

Let X be a reduced, irreducible, possibly singular curve in |L| and let g be its
geometric genus (i.e. the genus of its normalization). Set pa := pa(X), and define
the singular Brill-Noether number as follows :

(0.1) ρsing(pa, r, d, g) := ρ(g, r, d) + pa − g.

Our starting point is a result which we derive from the interesting work of T. L.
Gómez [11] concerning rank-one, torsion-free sheaves on singular curves on smooth
K3 surfaces.

Theorem 1. Let S be a K3 surface such that Pic(S) = Z[L] with L2 > 0. Let X be a
reduced, irreducible curve in the linear system |L|, of arithmetic genus pa := pa(X) =
pa(L) and having δ singular points of given multiplicities as the only singularities.

Let C
ν
→ X be the normalization of X, whose geometric genus is denoted by g. Then,

if ρsing(pa, r, d, g) < 0 one has W r
d (C) = ∅.
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Note that, when X has δ nodes, then pa − g = δ. In particular, for r = 1 and
d = 2, we have

ρsing(pa, 1, 2, pa − δ) < 0 ⇔ δ ≤ (pa(X) − 3)/2.

We show the sharpness of Theorem 1 by providing examples (cf. Examples 2.8
and 2.10) of nodal curves on a K3 surface having hyperelliptic normalizations, with
ρsing ≥ 0.

Examples 2.8 and 2.10 also show that the theorem of Green and Lazarsfeld on the
constancy of the Clifford index of smooth curves in a linear system |L| cannot be
extended to the curves in the Severi varieties V|L|,δ(S) of |L| (cf. Remark 2.11).

Our second main result is a classification, via a Bogomolov-Reider type approach,
of linear systems |L| on a K3 surface S with arbitrary Picard group, containing δ-
nodal curves X ∈ |L| with hyperelliptic normalizations and with δ ≤ (pa(X) − 3)/2
(that is ρsing(pa(X), 1, 2, pa(X) − δ) < 0).

In order to achieve the classification, we have to recall the classical notion of
neutral node for irreducible, δ-nodal curves having hyperelliptic normalizations (cf.
§ 3). More precisely, if C is the normalization of such a curve X and if y1, y2 ∈ C
are the preimages of a node x ∈ X then, if y1, y2 are conjugated by the hyperelliptic
involution existing on C, x ∈ X is called a neutral node, otherwise x ∈ X is a
non-neutral node (cf. Definition 3.2).

Our result shows that any element in V|L|,δ with hyperelliptic normalization cannot
have too few non-neutral nodes:

Theorem 2. Let S be a K3 surface and L ∈ Pic(S) be globally generated and
nonhyperelliptic. Let δ be a positive integer such that pa(L) − δ ≥ 2.

Inside the Severi variety V|L|,δ, consider the subscheme V hyper
|L|,δ parametrizing those

elements having hyperelliptic normalizations. Let [X] ∈ V hyper
|L|,δ and let δ0 ≤ δ be the

number of non-neutral nodes of X.
Then either δ0 ≥ (pa(L) − 5)/2 or (δ0, pa(L)) = (2, 10).
Moreover, if δ0 ≤ (pa(L) − 3)/2 or (δ0, pa(L)) = (2, 10) then, for any pair of

(possibly coinciding) points on X belonging to the image of the g
1
2 of C, there exists

an effective divisor D on S passing through all the non-neutral nodes of X and through
the pair of points and satisfying one of the following conditions:

(i) L = OS(3D), δ0 = 2, pa(L) = 10;
(ii) L = OS(2D) and either δ0 = (pa(L) − 3)/2 and D2 = δ0 + 1 ≥ 4 (so δ0 ≥ 3

is odd), or δ0 = (pa(L) − 5)/2 and D2 = δ0 + 2 (so δ0 is even);
(iii) D and X are linearly independent in Pic(S), D.X = 2δ0 +2, (pa(L)−5)/2 ≤

δ0 ≤ (pa(L) − 3)/2 and D2 = δ0 (so δ0 is even).

A similar statement can also be obtained for curves with normalizations possessing
g

1
k’s for k > 2, but to avoid longer classification results and proofs - which are more

difficult only from a technical point of view - we choose to keep the exposition clearer
and state it only for k = 2.

Theorem 2 has the following two corollaries:
Corollary 3. Let L be a globally generated, nonhyperelliptic line bundle on a K3
surface and δ be a positive integer such that pa(L) − δ ≥ 2.

If V hyper
|L|,δ 6= ∅, then either δ ≥ (pa(L) − 5)/2 or (δ, pa(L)) = (2, 10)
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Corollary 4. Let S be a K3 surface with Pic(S) = Z[L], for some line bundle L on
S with L2 ≥ 2, and n ≥ 1 an integer.

If V hyper
|nL|,δ 6= ∅, for some δ ≤ pa(nL)−3

2
= 1

4
n2L2 − 1 then either

(a) (n, L2) = (3, 2) and δ = 2 or 3, or

(b)
√

δ+1
L2 ∈ Z and n = 2

√

δ+1
L2 , or

(c)
√

δ+2
L2 ∈ Z and n = 2

√

δ+2
L2 .

In particular, in any case we have n ≥ 2.

The paper is organized as follows. After some preliminaries, we prove Theorem 1 in
Section 1. Section 2 is devoted to discussing two examples that prove the sharpness
of Theorem 1. In Section 3 we briefly recall the notion of neutral and non-neutral
nodes and give some results on the matter. In the last section, we translate the fact of
having hyperelliptic normalization into a non-separation statement for |L| and then
apply a Bogomolov-Reider type technique to prove Theorem 2 and its two corollaries.

Preliminaries

We work in the category of algebraic C-schemes. Terminology and notation are
the standard ones (cf. [15]).

By a K3 surface is meant a smooth, algebraic surface S (reduced and irreducible)
with h1(OS) = 0 and KS = 0. The sectional genus pa(L) of a line bundle L (with
sections) is defined by L2 = 2pa(L)−2. By adjunction, pa(L) is the arithmetic genus
of any member of |L|. Recall that by Saint-Donat’s classical results [25], on a K3
surface |L| is base point free if and only if it has no fixed components.

We use the following standard definitions:

Definition 0.2. A line bundle L on a surface S is called primitive if L 6∼ nL′ for
any n > 1 and L′ ∈ Pic(S).

A polarized surface (resp. primitively polarized surface) is a pair (S, L), where S
is a surface and L ∈ Pic(S) is globally generated and ample (resp. primitive, globally
generated and ample).

Let S be a smooth, algebraic surface and let |L| be a complete linear system on S,
whose general element is a smooth, irreducible curve. For any integer 0 ≤ δ ≤ pa(L),
one denotes by

(0.3) V|L|,δ(S)

the locally closed and functorially defined subscheme of |L| parametrizing the univer-
sal family of irreducible curves in |L| having δ nodes as the only singularities. These
are classically called Severi varieties of irreducible, δ-nodal curves in |L| on S.

Remark 0.4. Recall that if S is a K3 surface, there are several properties concerning
Severi varieties on S which are well-known. Indeed, let L be a globally generated line
bundle on S such that pa(L) ≥ 2. Assume that, for a given δ ≤ pa(L), V|L|,δ(S) 6= ∅.
Let [X] ∈ V|L|,δ(S) and let N = Sing(X) be the subscheme of its nodes. Since S is
a K3 surface, then N always imposes independent conditions on the linear system
|L|, i.e. H1(S, IN/S ⊗L) = (0) (see e.g. [6]). By the description of the tangent space
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at [X] to V|L|,δ(S), the condition H1(S, IN/S ⊗L) = (0) is equivalent to the fact that
[X] is an unobstructed point of V|L|,δ(S) (see e.g. [6] or [10]).

Therefore, on K3 surfaces, if V|L|,δ(S) 6= ∅, then each of its irreducible components
is regular, i.e. smooth and of the expected dimension pa(L) − δ. Furthermore, the
non-emptyness of V|L|,δ(S), for some δ, implies, for each δ′ < δ, that V|L|,δ′(S) 6= ∅
and, moreover, that each irreducible component of V|L|,δ′(S) is also regular.

For what concerns existence results on K3 surfaces we refer to Chen’s result (cf.
[5]) and its consequence quoted in the introduction. On the other hand, we stress
that it is still not known whether the Severi varieties V|mH|,δ(S) are irreducible.

Definition 0.5. Let S be a smooth, algebraic surface and let |L| be a complete linear
system on S, whose general element is smooth and irreducible. Consider V|L|,δ(S).
We denote by

V hyper
|L|,δ (S)

the subscheme of V|L|,δ(S) parametrizing curves whose normalizations are hyperelliptic

curves. Curves in V hyper
|L|,δ (S) will be called δ-hyperelliptic nodal curves.

When no confusion arises, we will omit S and simply write V|L|,δ and V hyper
|L|,δ .

1. An extension of Lazarsfeld’s result to the singular case

The aim of this section is to prove Theorem 1 stated in the introduction.

Remark 1.1. Before proving the theorem, we want to add some comments on the
hypothesis Pic(S) = Z[L]. This could seem restrictive, but one cannot hope to
weaken this hypothesis too much if one uses the Lazarsfeld and the Gómez procedure
(cf. the final Remark in [22]). However, going through the paper of Lazarsfeld,
one sees that the crucial point is to make sure that a certain vector bundle has no
nontrivial endomorphisms (cf. [22, Prop. 2.2]). This is the case under the following
hypothesis:

(1.2) L has no decomposition L ∼ M + N with h0(M) ≥ 2 and h0(N) ≥ 2,

if one carefully looks through the proof of [22, Lemma 1.3].
Therefore, the hypothesis Pic(S) = Z[L] in Theorem 1, as well in Lazarsfeld’s

theorem quoted in the introduction, can be weakened to (1.2).

To prove Theorem 1 we first need to introduce some notation and some more
general facts.

Let Y be an integral curve (not necessarily smooth), of arithmetic genus pa; one

can consider the complete scheme J
d
(Y ), defined as the scheme parametrizing rank

one torsion-free sheaves on Y of degree d (recall that, if A ∈ J
d
(Y ), by definition

d = deg(A) := χ(A) + pa − 1, cf. e.g. [11, § 2]). When Y lies on a smooth surface,

J
d
(Y ) is integral and contains, as an open, dense subscheme, the generalized Jacobian

Jd(Y ), defined as the variety parametrizing line bundles of degree d on Y . Therefore

J
d
(Y ) is a compactification of Jd(Y ). One can consider the complete subscheme of

J
d
(Y ), called the generalized Brill-Noether locus,

(1.3) W
r

d(Y )

parametrizing those sheaves A which are special and such that h0(A) ≥ r + 1.
5



Proposition 1.4. Let S be a K3 surface and L be a globally generated line bundle
on S such that L2 > 0. Let X be a reduced, irreducible curve in |L|, of arithmetic
genus pa := pa(X) = pa(L) and having δ singular points of given multiplicities as the
only singularities.

Let C
ν
→ X be the normalization of X, whose geometric genus is denoted by g.

Assume furthermore that C possesses a line bundle A ∈ Picd(C) such that |A| = g
r
d;

then ν∗(A) ∈ W
r

d+pa−g(X).

Proof. It is well-known that ν∗(A) is a rank-one, torsion-free, coherent sheaf on X
(see e.g. [15, II, 5.20]). Therefore we have that

(1.5) deg(ν∗(A)) = χ(X, ν∗(A)) + pa(X) − 1.

By Leray’s isomorphism,

(1.6) χ(X, ν∗(A)) = χ(C, A) = d − g + 1 and h0(X, ν∗(A)) = h0(C, A) = r + 1.

This means that deg(ν∗(A)) = d − g + 1 + pa(X) − 1 = d + (pa(X) − g). �

By recalling Formula (0.1) in the introduction, we can state the following:

Proposition 1.7. With notation and assumptions as in Theorem 1, we have:

(1.8) W
r

d+pa−g(X) = ∅ ⇔ ρsing(pa, r, d, g) < 0.

Proof. (⇒) Assume ρsing(pa, r, d, g) ≥ 0. By the very definition of ρsing and by a
straightforward computation, we have that

(1.9) ρsing(pa, r, d, g) = ρ(pa, r, d + pa − g).

Since pa = pa(X) = pa(L), thus for the general D ∈ |L| we have dim(W r
d+m(D)) =

ρ(pa, r, d + pa − g) by Lazarsfeld’s theorem quoted in the introduction. By upper
semi-continuity, as in [11, Proof of Theorem I, p. 749], we have that W

r

d+pa−g(X) is

nonempty and dim(W
r

d+pa−g(X)) ≥ ρ(pa, r, d + pa − g) ≥ 0.

(⇐) Assume W
r

d+pa−g(X) 6= ∅; by [11, Prop. 2.5 and proof of Thm. I at p. 749-750] it

is possible to deform the couple (X, A), where A ∈ W
r

d+pa−g(X), to a couple (D, L),
where D is a smooth, irreducible curve in |L| and L ∈ W r

d+pa−g(D). By Lazarsfeld’s
theorem quoted in the introduction, since pa = pa(X) = pa(L) and D is smooth,
then ρ(pa, r, d + pa − g) ≥ 0. One can conclude by using the equality in (1.9). �

Proof of Theorem 1. It directly follows from Propositions 1.4 and 1.7. �

Suppose now that X is a reduced, irreducible curve on S having δ nodes as the
only singularities. Recall that in this case we have that pa(X) − g = δ, since each
singular point is an ordinary double point. In particular, when r = 1 and d = 2, the
condition ρsing(pa(X), 1, 2, pa(X) − δ) < 0 is equivalent to the upper-bound on the
number of nodes δ ≤ (pa(X) − 3)/2.

Thus, recalling Definition 0.5, an immediate consequence of Theorem 1 is the
following.

Corollary 1.10. Let S be a K3 surface such that Pic(S) = Z[L], with L of sectional
genus p = pa(L) ≥ 3. If

(1.11) δ ≤ (p − 3)/2

then V hyper
|L|,δ = ∅.

6



Remark 1.12. To conclude this section, we remark that even if non-existence re-
sults easily follow from Lazarsfeld’s and Gómez’s procedures, the same does not
occur for what concerns existence results in the complementary range of values
ρsing(pa, r, d, pa − δ) ≥ 0. To see this, suppose for simplicity that X is nodal.

Let N be the scheme of its δ nodes. Let W r
d (X, N) ⊂ W

r

d(X) be the subscheme

parametrizing the elements of W
r

d(X) which are not locally free exactly at N . Then
W r

d (X, N) ∼= W r
d−δ(C) (cf. e.g. [3]).

Proposition 1.7 yields that, if ρsing ≥ 0, then W
r

d(X) 6= ∅, but this does not insure

that W r
d (X, N) ⊂ W

r

d(X) is nonempty. We shall discuss in § 2 two examples of
existence when ρsing ≥ 0. These examples will show the sharpness of Theorem 1.

2. Existence of δ-hyperelliptic nodal curves with ρsing ≥ 0

In this section X will always denote a reduced, irreducible curve on S having δ
nodes as the only singularities.

Let S be as in Corollary 1.10 and suppose further that it is a general, primitive K3.
Then, by Chen’s theorem quoted in the introduction, V|L|,δ 6= ∅, for each δ ≤ p. On
the other hand, (1.11) gives an upper-bound on δ, which ensures that the subschemes

V hyper
|L|,δ are empty. However, these subschemes are not always empty. Indeed, for

δ = p − 2, one clearly has
V|L|,p−2 = V hyper

|L|,p−2,

since the normalizations of the curves they parametrize have genus 2. These can
be considered as trivial examples of δ-hyperelliptic nodal curves (cf. Definition 0.5).

Therefore nontrivial questions on V hyper
|L|,δ make sense only for

(2.1) p ≥ 3 and
p − 2

2
≤ δ ≤ p − 3.

We shall now discuss in details the unique ”nontrivial” examples of δ-hyperelliptic
nodal curves on a general complete intersection K3 surface of type (2, 3) in P4 and
of type (2, 2, 2) in P5 (see Examples 2.8 and 2.10 below). We start with the following
remark and result.

Remark 2.2. Recall from [25] that if L is a globally generated line bundle on a
K3 surface S with p := pa(L) ≥ 3 and such that |L| is non-hyperelliptic, i.e. the
morphism ϕL defined by |L| is birational (cf. Saint-Donat’s Theorem quoted in
the introduction). Thus, ϕL maps S birationally onto a projectively normal surface
ϕL(S) ⊆ Pp with at worst rational double points as singularities. These points are
exactly the images of the contracted, smooth rational curves on S, i.e. curves Γ such
that Γ.L = 0. Moreover ϕL is an isomorphism outside these contracted curves.

It follows that every irreducible curve X ∈ |L| is mapped isomorphically to a
hyperplane section of ϕL(S).

Proposition 2.3. Let S be a K3 surface and L be a globally generated line bundle
on S with p := pa(L) ≥ 3 and such that |L| is non-hyperelliptic. Let [X] ∈ V|L|,δ, for
some δ ≤ p − 3, and let N = Sing(X). Let ν : C → X be its normalization, where
g = p − δ is the geometric genus of C. Identify X with its image in ϕL(S) ⊂ Pp by
Remark 2.2.

7



Then C is hyperelliptic if and only if the rational map

πΛN |X : X −− → Pg−1,

induced on X ⊂ Pp−1 by the projection from the linear subspace ΛN := Span
Pp−1(N),

maps X 2 : 1 onto a smooth, rational normal curve in Pg−1.

Proof. Let ∆C be the degree-two pencil on C. Then, ωC
∼= ∆

⊗(g−1)
C , i.e. the canonical

morphism
ΦC : C → Pg−1

maps C 2 : 1 onto a rational normal curve Γ ⊂ Pg−1, where ΦC is the morphism
given by |ωC|.

We have X ∼= ϕL(X) = ϕL(S) ∩ H , for some H = Pp−1. Consider ΛN the linear
subspace of H given by the span of the δ nodes of X ⊂ H . By our assumption
Card(N) = δ ≤ p − 3, we have that dim(ΛN) = δ − 1 if and only if the δ nodes
are in general linear position in H ∼= Pp−1, i.e. if and only if h1(IN/S(L)) = 0. This
vanishing holds by Remark 0.4.

Therefore, for each δ ≤ p − 3, we have

(2.4) dim(ΛN) = δ − 1.

Let Ñ be the 2δ points given by the pull-back of N to C. Since C is the normal-
ization of X, by adjunction on the surface S̃ (given by the blow-up of S along N),
we know that

(2.5) ωC
∼= OC(ν∗(L)(−Ñ));

thus,

(2.6) ν∗(ωC) ∼= IN/X(L),

which gives the following commutative diagram:

(2.7) C

ΦC

ν
X

τX

= ϕL(S) ∩ H ⊆ Pp−1

Γ ⊆ Pg−1,

where τX is the map induced on X by |IN/X(L)|, that is the one induced on X by
the linear projection from ΛN

πΛN
: Pp−1 −−− → Pg−1.

Therefore, by Diagram (2.7) we can conclude. �

The previous proposition can be rephrased as follows: C is hyperelliptic if and
only if the projection from the span of the nodes of X maps X onto a smooth curve
in Pg−1 lying on a number of hyperquadrics which is bigger than the expected one.

From (2.1) it follows that, when (S, H) is primitive, and H is very ample (that is,
pa(H) ≥ 3), the first nontrivial example to consider is the following.

Example 2.8. Let S = Q2 ∩ Q3 ⊂ P4 be a general, primitive, smooth K3 surface
which is the complete intersection of a quadric and a cubic hypersurface. If |H|
denotes the hyperplane linear system of S, such that Pic(S) = Z[H ], then pa(H) = 4.

8



From (2.1), we want to consider δ = 1 = pa(H) − 3; by Remark 0.4, we know that
V|H|,1 6= ∅ on such a S.

Take q ∈ S a general point and consider Hq := Tq(Q2) the hyperplane in P4 which
is the tangent space to Q2 at the point q. Let Qq := Q2∩Hq, which is a quadric cone
in Hq

∼= P3. Thus, the curve X := Hq ∩ S is such that [X] ∈ V|H|,1 on S. Moreover
deg(X) = 6 and its normalization C has genus g = 3.

Observe that, since Qq is a quadric cone in P3 and X has its node at the vertex
q of the cone Qq, the one-dimensional family of the ruling of Qq cuts out on X a

”generalized” g
1
3 (i.e. an element of W

1

3(X), cf. (1.3)), with the node q as a fixed
point. Furthermore, the projection of X from q maps X 2 : 1 onto the base of the
quadric cone in Hq. By Proposition 2.3, this determines a g

1
2 on the normalization C,

which is a smooth, hyperelliptic curve of genus g = 3. Since this holds for a general
q ∈ S, we have dim(V hyper

|H|,1 ) ≥ 2.

Conversely, let X = HX ∩ Q2 ∩ Q3, which is irreducible, 1-nodal at a point q and
where HX

∼= P3. Thus, Tq(S) ⊂ HX . Since X ⊂ HX ∩ Q2, then X is contained in
a quadric QX of HX

∼= P3. If we assume that X has normalization C which is a
hyperelliptic curve of genus g = 3, we claim that QX is forced to be a quadric cone
with vertex at the node q of X. To prove this, observe that, since |ωC | is a special g

2
4

on C, then it is composed with the hyperelliptic involution on C. Therefore, the map
Φ|ωC | given by the canonical linear system is a (2 : 1)-covering of a plane conic Γ.
On the other hand, if ν : C → X ⊂ HX

∼= P3 denotes the normalization morphism
and if πq is the projection of X from its node to P2, then we have Φ|ωC | = πq ◦ ν.
For each x ∈ Γ, let Lq,x be the line in P3 connecting x with the node q of X. Then,
one can easily show that X is contained in the quadric cone CX ⊂ P3 determined
by CX :=

⋃

x∈Γ Lx,q having vertex at the node q of X. Therefore, CX = QX . Thus,

dim(V hyper
|H|,1 ) = dim(S) = 2 whereas dim(V|H|,1) = 3.

Note that C is not general from the classical Brill-Noether theoretical point of
view, indeed ρ(3, 1, 2) = −1, whereas ρsing(4, 1, 2, 3) = 0 and we actually have a g

1
2

on C.
In particular, this example shows the sharpness of the bound (1.11) in Corollary

1.10, whence also of Theorem 1.

Remark 2.9. Following Voisin (see [27, pp. 366-367]), Example 2.8 can also be
obtained as follows. Let S be a K3 surface with Pic(S) ∼= Z[L], such that L2 =
2p − 2 ≥ 2. The smooth members D of |L| are of geometric genus p and Brill-
Noether general by Lazarsfeld’s theorem quoted in the introduction. In particular,
they have the same gonality as a generic curve.

Therefore, if p = 2k, k ≥ 2, a general member D is (k + 1)-gonal. Let A be the
g

1
k+1 on D. Following [22], there exists a rank-two vector bundle E := E(D, A) on

S, such that
c1(E) = L, c2(E) = k + 1 and h0(S, E) = k + 2.

The zero-locus of a general section of E is a general member of a g
1
k+1 on some D. If

x1, . . . , xδ are general points on S such that 2δ ≤ k, the vector space

H := H0(S, I{x1,...,xδ} ⊗ E)

has dimension at least two. For α and β general in H , the curve X := V (α∧β), where
α∧ β ∈ H0(S, L), is irreducible, with nodes exactly at the points xi’s, 1 ≤ i ≤ δ. On
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the other hand, the given two sections generate a rank-one subsheaf of the restriction
E|X . If ν : C → X is the normalization, this rank-one subsheaf induces a line
sub-bundle LA ⊂ ν∗(E) with two sections and whose moving part on C is of degree
k + 1 − δ. Hence C is (k + 1 − δ)-gonal.

If we want C to be hyperelliptic, we set δ = k − 1. Since 2δ ≤ k, then k ≤ 2.
Therefore, the only case one obtains using this procedure, is the one discussed in
Example 2.8, with k = 2, p = 4 and δ = 1.

The second example we want to consider is the following.

Example 2.10. Let p = 5 and let S be a general, primitive complete intersection
surface of type (2, 2, 2) in P5. We consider the case δ = 2 which, by (2.1), is the
only possible, nontrivial example to construct. By what recalled in Remark 0.4,
V|H|,2 6= ∅. Let [X] ∈ V|H|,2 and let N = Sing(X); let ΛN := l be the line spanned
by the two nodes of X. Since C, the normalization of X, has genus g = 3 then, by
using Proposition 2.3, we first show the following:

Step 1: τl(X) = Γ ⊂ P2 is a conic ⇔ X ⊂ H = P4 lies on a quadric cone, which is
a rank-3 quadric in P4 with vertex the line l and base the conic Γ ⇔ X is in the join
variety of Γ and l in P4.

Proof. (⇒) If U ∈ |Il/H(1)|, then #U ∩ X = 8 and 4 intersections are absorbed by
the two nodes. Let P2

Γ be the plane containing Γ; since U ∩ P2
Γ is a line, then U ∩ Γ

are two points γ1, γ2 ∈ P2
Γ. By assumption, there exist points ni, qi ∈ X, 1 ≤ i ≤ 2,

such that
τX(ni) = τX(qi) = γi, 1 ≤ i ≤ 2;

furthermore, the configuration of points {ni, qi, γi} lies on the same plane πi ⊂ U
through l, 1 ≤ i ≤ 2. Therefore, the configuration of points {n1, q1, γ1, n2, q2, γ2}
lies on the singular quadric Σl = π1 ∪ π2 ⊂ U . If we take the pencil of P3’s in H ,
passing through l and cutting 2 points on Γ, we get that X is contained in the cone
over Γ in P4, with vertex l.
(⇐) Let Ql be a rank-3 quadric in P4 and assume that X ⊂ Ql. Let U ∈ |Il/H(1)|;
since U ∩ X ⊂ U ∩ Ql = Σl = π1 ∪ π2 and since #U ∩ X = 8, by symmetry we have
two smooth points of X on each πi, 1 ≤ i ≤ 2. By definition of the maps τX and πl,
we conclude. ✷

Now, we want to lift-up to S the geometric information proved in Step 1. Precisely,
we show:

Step 2: X ⊂ H = P4 lies on a rank-3 quadric in H, with the two nodes on the
linear vertex l of the quadric ⇔ the surface S =

⋂3
i=1 Qi lies on a rank-5 quadric in

P5 having l as a generatrix, which is a 2-secant of S.

Proof. (⇐) After a possible change of basis, one can assume that Q1 is a rank-5
quadric in P5, which is a cone of vertex a point v and base a smooth quadric Q in
P4. If we project from v to P4, then Q1 projects onto Q and S onto a birationally
equivalent surface F ⊂ Q, having a double curve in its singular locus. This means
that, through v, we have a pencil of generatrices of Q1 which are 2-secants of S.
Let l be one of such generatrices. Let H ∈ |Il/P5(1)| which is tangent to Q1 along l.
Then H ∩ S = X is a curve with two nodes at the points S ∩ l. Since S ⊂ Q1, then
X ⊂ Q1 ∩ H := Ql, which is a rank 3 quadric in P4 having l as the linear vertex.
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(⇒) Let Ql be a rank 3 quadric in P4 vertex a line l and assume that X ⊂ Ql. By
assumption Pic(S) = Z[H ], therefore l is not contained in S. Since X ∼ H on S,
the hyperplane H must be tangent to S only at the two nodes of X, which are l∩S.
Since Ql ⊂ P4 contains both X = S ∩ H and l ⊂ H and since S is non-degenerate,
irreducible and linearly normal, then Ql extends to a unique, irreducible quadric Ql

in P5 containing S and obviously l (see e.g. [25, Lemma 7.9], whose arguments easily
extend to the case of an irreducible, nodal hyperplane section of S).

Now, l = Sing(Ql) = Sing(Ql ∩ H); therefore, by standard facts on hyperquadrics
(see e.g. [14], page 283), we have that either

(i) Ql is a rank 3 quadric in P5, with vertex a plane Πl containing l, or
(ii) Ql is a rank 4 quadric in P5 with vertex l, or
(iii) l is not contained in Sing(Ql) and H is a tangent hyperplane to Ql along l.

We claim that only case (iii) can occur. Indeed, in case (i), since S ⊂ Ql is of type
(2, 2, 2) in P5, then other two linearly independent quadrics would intersect Πl, so
S ∩ Πl 6= ∅, which would give that S is singular, a contradiction. In case (ii), since
S ∩ l = Sing(X), then S would be singular too. Therefore we must be in case (iii).

Now, in case (iii), Ql must be necessarily a rank 5 quadric with vertex a point
and l a generatrix. Indeed, if Ql were smooth, then the Gaussian map would give an
isomorphism between Ql and its dual hypersurface, which is still a hyperquadric, so
the points of l could not have the same tangent hyperplane. ✷

To sum up, in order to construct examples of 2-nodal curves which are hyperplane
sections on a general, primitive, complete intersection surface S of type (2, 2, 2) in P5,
it is sufficient to consider the quadric cones, with vertex a point, containing S and
hyperplanes which are tangent to these cones along generatrices which are 2-secants
of S. Observe that such a S is contained in a two-dimensional family of hyperquadrics
in P5. Among these hyperquadrics, we have a one-dimensional family of quadric cones
having a zero-dimensional vertex. Each such a cone has a one-dimensional family of
2-secants of S through its vertex. Therefore, by recalling notation as in Definition
0.5, we have, a priori, dim(V hyper

|H|,2 ) ≥ 2. Furthermore,

V hyper
|H|,2 ⊆ V|H|,2

and, by Remark 0.4, dim(V|H|,2) = 3.
We claim that the above inclusion is proper. Indeed, let q1 6= q2 ∈ S be such that

the general element [X] ∈ V|H|,2 has Sing(X) = {q1, q2}. Therefore, there exists a
hyperplane HX ⊂ P5 s.t.

Tq1
(S), Tq2

(S) ⊂ HX and X = HX ∩ S.

Since HX intersects each plane of P5 along (at least) a line, in order to contain
Tqi

(S), 1 ≤ i ≤ 2, we have to impose two independent conditions on the linear
system |OP5(1)|.

On the other hand, S is a complete intersection of quadrics in P5, i.e. S =
V (F1, F2, F3), with deg(Fi) = 2. Therefore, to impose to a general hyperplane
Σ5

i=0aixi = 0 to be tangent at q1 and at q2 to one of the three quadrics V (Fi)
gives more than two independent conditions on the coefficients {a0, . . . , a5}.

In conclusion, we have dim(V hyper
|H|,2 ) = 2.

11



This shows that all the elements of V hyper
|H|,2 on S are obtained from the above

construction; furthermore, this gives examples of 2-hyperelliptic, nodal curves in the
range ρsing > 0. Indeed, in this case we have g = 3, so ρsing(5, 1, 2, 3) = ρ(3, 1, 2)+2 =
1.

Remark 2.11. In both examples presented above, V hyper
|L|,δ is nonempty and two-

dimensional. We will return in a forthcoming work to the study of the nonemptyness
and the dimension of V hyper

|L|,δ (S), for ρsing(pa(L), 1, 2, pa(L) − δ) ≥ 0 and (S, L) a

general, primitive K3.
Note also that, in Examples 2.8 and 2.10, V hyper

|L|,δ is of codimension one in V|L|,δ,

for δ = 1, 2, respectively. This shows that the property of having hyperelliptic
normalizations is not constant among all the nodal curves in a Severi variety, contrary
to the case of smooth curves (cf. the theorems of Saint-Donat [25] and Green and
Lazarsfeld [12] stated in the introduction). Moreover, the “unexpected” property of
having hyperelliptic normalization is not induced by a line bundle on the surface. This
indicates that the Brill-Noether theory for singular curves on K3 surfaces appears to
be more subtle than the one for smooth curves.

3. Neutral and non-neutral nodes

In this section we briefly make some comments on the behavior of the nodes of a
δ-hyperelliptic curve under the hyperelliptic involution, first in the general case, and
then when the curve lies on a K3 surface.

Let X be a nodal curve (not necessarily lying on a K3 surface) and N := Sing(X)
be its scheme of nodes. If A is a rank-one, torsion-free sheaf on X then, by the
hypotheses, one has:

Sing(A) := {q ∈ X | Aq is not locally free} ⊆ N and Aq
∼= mq if q ∈ Sing(A),

where mq ⊂ OX,q is the maximal ideal (cf. e.g. [13] or [26], pp. 163-165).
From now on in this section, unless otherwise stated, we shall focus on the following

situation:

Notation 3.1. Assume that:

(i) X is an irreducible curve of arithmetic genus p = pa(X) with δ nodes as the
only singularities;

(ii) N = Sing(X) is the (reduced) scheme of nodes of X;
(iii) for each subscheme Z ⊆ N , denote by νZ : XZ → X the partial normalization

of X along Z. In particular, when Z = N , then XN = C and νN = ν : C →
X is the (total) normalization of X; in this case the smooth curve C has
(geometric) genus g = p − δ, which is assumed to be g ≥ 2;

(iv) there exists a line bundle ∆C on C such that |∆C | = g
1
2, i.e. C is hyperelliptic.

From the assumption g ≥ 2, ∆C is unique.

Note that the sheaf ν∗(∆C) on X has the following properties:

• ν∗(∆C) is torsion-free of rank one,
• deg(ν∗(∆C)) = 2 + δ,
• Sing(ν∗(∆C)) = N , and
• h0(X, ν∗(∆C)) = h0(C, ∆C) = 2.
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We now recall the classical notion of neutral (resp. non-neutral) pairs with respect
to the g

1
2 on C.

Definition 3.2. Let n ∈ N and ν−1(n) = {n
′

, n
′′

} ⊂ C. The pair (n
′

, n
′′

) is called a
neutral pair if n

′

+ n
′′

∈ |∆C | (otherwise the pair is called non-neutral). For brevity,
the node n ∈ X will be called a neutral node (non-neutral node, respectively).

We extend the notion of neutral (non-neutral, resp.) nodes to linear series com-
posed with the hyperelliptic involution of C. The typical situation is given by the
canonical linear system |ωC | = g

g−1
2g−2. Since C is by assumption hyperelliptic, with

g ≥ 2, then |ωC | = (g − 1)|∆C|.
If |LC | = g

r
2r = g

r
r ◦ g

1
2 = r|∆C |, then the associated morphism

(3.3) C
Ψ

−→ Γr ⊂ Pr,

which is 2 : 1 onto a rational normal curve Γr ⊂ Pr, is the composition of the 2 : 1
map given by |∆C |, and of the r-tuple Veronese embedding. Hence, it makes sense
to give the following:

Definition 3.4. Let n ∈ N be a node of X and let (n
′

, n
′′

) be the corresponding pair
on C. Then (n

′

, n
′′

) is a neutral pair (equiv., n is a neutral node) for |LC | if and
only if it is a neutral pair (equiv., a neutral node) for |∆C |.

Proposition 3.5. Let n ∈ N and let |LC | = g
r
2r, with r ≤ g − 1, be a base point

free linear system on C which is composed with |∆C |. Then ν∗(LC), as a rank-one
torsion-free sheaf on X, is not globally generated at the neutral nodes, and globally
generated elsewhere.

Proof. First of all, observe that as a straightforward consequence of Definition 3.5,
ν∗(LC) is not g.g. at a point p ∈ X if and only if ν∗(∆C) is. Therefore, since ν is an
isomorphism outside N , it is sufficient to study the generation of ν∗(∆C) at the nodes
of X. Using Notation 3.1, let A ⊆ N be the (possibly empty) subset of neutral nodes
and Z ⊆ N be the (possibly empty) subset of non-neutral nodes of X. Consider the
following commutative diagram:

(3.6) C

ν

τ
XZ

ϕ

X,

where ϕ normalizes the nodes in Z (so XZ has still a := Card(A) nodes), and τ = νA

normalizes the residual a nodes. Denote by f := f∆C
: C → P1 the (2 : 1)-morphism

induced by |∆C |.
Since the map τ identifies a neutral pairs, we have that the morphism f induces

on XZ a (2 : 1)-morphism h : XZ → P1, which gives the commutative diagram

(3.7) C

f

τ
XZ

h

P1,

i.e. ∆C induces a line bundle R ∈ Pic2(XZ) such that:
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(i) R is globally generated on XZ (since h is a morphism), and
(ii) τ ∗(R) = ∆C (since the g

1
2 on C is unique).

From (ii), we have that τ∗(∆C) = R ⊗ τ∗OC . From the exact sequence

0 → OXZ
→ τ∗OC → OA → 0

tensored by R, we see that the cokernel of the evaluation morphism

H0(τ∗(∆C)) ⊗ OXZ
∼= H0(R) ⊗ OXZ

→ τ∗(∆C)

is exactly OA. So ν∗(∆C) is not generated at the neutral nodes.
On the other hand, if ϕ∗(R) were not globally generated as a rank-one torsion-free

sheaf on X, then consider L := im(ev), where ev : H0(ϕ∗(R)) ⊗ OX → ϕ∗(R) is the
(non-surjective) evaluation map. It is easy to show that L ∈ Pic(X) and ϕ∗(L) = R.
The latter is impossible, since ϕ : XZ → X identifies the non-neutral pairs, so ϕ∗(R)
is globally generated.

From Diagram (3.7), it follows that ν∗(∆C), as rank-one torsion-free sheaf on X,
is globally generated at the non-neutral nodes of X. This concludes the proof. �

Remark 3.8. We note that from the last proposition and the discussion above, it is
clear that the non-neutral nodes N0 of X can be characterized by any of the three
following equivalent descriptions:

(i) N0 is the set of the nodes whose two preimages on the normalization of X are
not conjugated by the hyperelliptic involution.

(ii) N0 is the minimal set of nodes such that the curve obtained by desingularizing
these nodes possesses a g

1
2, i.e. it admits a (2 : 1)-morphism to P1.

(iii) N0 is the set of nodes at which ν∗(ωC) is globally generated.

If we furthermore assume that X lies on a K3 surface and X ∈ |L| for L ∈ Pic(S),
then by (2.6) and by the short exact sequence

0 → OS → IN/S ⊗ L → IN/X ⊗ L → 0,

the conditions (i)-(iii) are equivalent to:

(iv) N0 is the set of nodes at which IN/S ⊗L is globally generated as a sheaf on S.

If |L| is hyperelliptic on a K3 surface S, then ϕL maps the surface S generically
2 : 1 onto a rational ruled surface or onto the Veronese surface in P5, by Saint-Donat
[25], so that any irreducible member of |L| is mapped 2 : 1 onto a smooth rational
curve. Hence, if V|L|,δ is not empty, any node of a curve in it must be neutral. To see
such an example, it is sufficient to consider S as the general degree-2 K3 and take
X as the pull-back of a line tangent to the branched plane sextic curve.

The next two examples show that the nodes in Examples 2.8 and 2.10 above are all
non-neutral. This will also follow from the results in the next section (more precisely
from Theorem 2). However, since this can be seen geometrically, we find it instructive
to include these examples at this point.

Example 3.9. Let S ⊂ P4 be a general complete intersection of type (2, 3) and let

H be the hyperplane section of S. From Example 2.8, we know that V hyper
|H|,1 6= ∅.

Let [X] ∈ V hyper
|H|,1 and let {p} = Sing(X). Let ν : C → X be the normalization
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morphism and let ν−1(p) = {p′, p′′}. Suppose that p is a neutral node of X, i.e.
|OC(p′ + p′′)| = |∆C | = g

1
2 on C. Thus,

(3.10) h0(C, ωC ⊗ OC(−p′ − p′′)) = h0(C, ωC ⊗ OC(−p′)) = 2.

On the other hand, by (2.5), formula (3.10) becomes

(3.11) h0(C, ν∗(H) − 2p′ − 2p′′) = h0(C, ν∗(H) − 2p′ − p′′) = 2,

which is a contradiction. Indeed, the geometric meaning of (3.11) is that there should
exist a pencil of planes in P3 = H such that each plane of the pencil passes through
p and, since it is tangent at p to one of the two branches of X around p, it must be
tangent also to the other branch of X through p. This cannot occur since only one
such plane does exist; thus p is a non-neutral node for X.

Example 3.12. From Example 2.10, let S ⊂ P5 be a general, primitive K3 surface
of type (2, 2, 2) and let [X] ∈ V hyper

|H|,2 (S). Let Sing(X) = {n, q}. We want to show

that both n and q are non-neutral nodes for X.
By contradiction, two cases must be considered. Let ν : C → X be the normaliza-

tion. Then:
Case 1: Suppose n neutral and q non-neutral. Let HX ⊂ P5 be the hyperplane such
that X = S ∩ HX .

If ν−1(n) = {n′, n′′} and ν−1(q) = {q′, q′′}, then |OC(n′ + n′′)| = |∆C | = g
1
2 on C.

Thus, as in Example 3.9, we would have:

(3.13) h0(ν∗(H) − 2n′ − 2n′′ − q′ − q′′) = h0(ν∗(H) − 2n′ − n′′ − q′ − q′′) = 2,

which is a contradiction. Indeed, as above, (3.13) would imply there exist a pencil
of hyperplanes in P4 = HX such that each hyperplane of the pencil passes through q
and, since it is tangent at n to one of the two branches of X through n, it must be
tangent also to the other branch of X through n; in fact only one such hyperplane
actually exists in P4 = HX .
Case 2: Suppose both n and q neutral. One can conclude as above.

4. δ-hyperelliptic nodal curves: a classification result for ρsing < 0.

As already mentioned in the introduction, here we want to classify linear systems
|L| on a K3 surface S with arbitrary Picard group, such that, as in Definition 0.5,

V hyper
|L|,δ 6= ∅ and ρsing < 0. This can be viewed as a natural extension to the nodal

case of Saint-Donat’s result.
In the particular case of S with Pic(S) = Z[L] and p = pa(L) ≥ 3, we find again

Corollary 1.10 via a different approach.
The techniques used here are related to a Bogomolov-Reider type approach for

separation of points by the linear system |L| on S.
By recalling Notation 3.1, we first prove the following more general result, which

translates the property of having k-gonal normalization into a failure of separation
of zero-dimensional schemes by |L|.

Theorem 4.1. Let S be a K3 surface and L be a globally generated line bundle on
S of sectional genus p = pa(L) ≥ 3. Let δ be an integer such that δ ≤ p − 2. Let
[X] ∈ V|L|,δ and let N0 ⊆ Sing(X) := N be a subset of the scheme of the δ nodes of
X. Let XN0

be the curve obtained by desingularizing X at the nodes in N0.
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Then XN0
possesses a base point free, complete g

1
k, for k ≥ 2, if and only if

there exist k points q1, . . . , qk ∈ X \ N such that the zero-dimensional subscheme
N ′ := N0 ∪ {q1, . . . , qk} ⊆ X ⊆ S does not impose independent conditions on the
linear system |L|, but for any proper subset Z ( {q1, . . . , qk}, the subscheme N0 ∪ Z
imposes independent conditions on |L|; more precisely

(4.2) h1(IN ′/S ⊗ L) = 1 and h1(I(N0∪Z)/S ⊗ L) = 0 for any Z ( {q1, . . . , qk}

Moreover, this property holds for every k-uple of points q1, . . . , qk ∈ X \ N (not
necessarly distinct) such that their inverse images on XN0

are part of the g
1
k.

Proof. Denote by µN0
: SN0

→ S the blow-up of S along N0, which induces the

morphism νN0
: XN0

→ X, which normalizes the nodes in N0. Let B :=
∑δ

i=1 Ei

be the total µN0
-exceptional divisor and let Ñ0 = Supp(OXN0

(B)) be the scheme of
2δ0 points of XN0

, the pre-images of the δ0 ≤ δ nodes in N0. As in (2.5), ωXN0

∼=

OXN0
(ν∗L) ⊗ OXN0

(−Ñ0), where ωXN0
is the dualizing sheaf of XN0

. This gives

(4.3) H0(XN0
, ωXN0

) ∼=
H0(S, IN0/S(L))

H0(OS)
.

Let q′1, . . . , q
′
k ∈ XN0

− Ñ0 − Sing(XN0
) be k (not necessarily distinct) points

and q1, . . . , qk ∈ X \ N their images via ν. Consider π the further blow-up of
SN0

along {q′1, . . . , q
′
k}. Therefore, µN ′ := π ◦ µN0

is the total blow-up of S along
N ′ := N0 ∪ {q1, . . . , qk}. Denote by Eq1

, . . . , Eqk
the µN ′-exceptional divisors over

q1, . . . , qk, respectively.
Denote by XN0

the proper transform of X in SN ′. Then XN0

∼= XN0
; let q′′j be the

point on XN0
corresponding to q′j on XN0

, 1 ≤ j ≤ k. Consider the standard exact
sequences

(4.4) 0 → OSN′
(B) → OSN′

(µ∗
N ′(L)−B−Eq1

−· · ·−Eqk
) → ωXN0

(−q′′1−· · ·−q′′k) → 0

and

(4.5) 0 → OSN′
(B + Eq1

+ · · ·+ Eqk
) → OSN′

(µ∗
N ′(L) − B) → ωXN0

→ 0

on SN ′ . By the Leray isomorphism, Fujita’s Lemma (cf. [19]) and by the fact that S
is K3, we get that h1(OSN′

(B)) = h2(OSN′
(µ∗

N ′(L) − B − Eq1
− · · · − Eqk

)) = 0 and
h2(OSN′

(B)) = 1. Hence, by the Leray isomorphism again, we have

(4.6) H0(ωXN0

) ∼=
H0(S, IN0/S(L))

H0(OS)
, H0(ωXN0

(−q′′1 − · · · − q′′k)) ∼=
H0(S, IN ′/S(L))

H0(OS)
,

and

(4.7) h1(ωXN0

(−q′′1 − · · · − q′′k)) = h1(S, IN ′/S(L)) − 1.

From Serre duality and (4.7) we see that |OXN0

(q′1 + · · ·+ q′k)| is a g
1
k if and only if

h1(IN ′/S(L)) = 1 or, equivalently, from (4.6) if and only if N ′ imposes only δ0 +k−1
conditions on |L|.

At the same time, the g
1
k is base point free if and only if, for any proper subset

Z ( {q1, . . . , qk}, denoting the corresponding subscheme on XN0
by Z ′′, we have

h0(OXN0

(Z ′′)) = 1, which is equivalent to saying that h1(I(N0∪Z)/S(L)) = 0, or that

N0 ∪ Z imposes independent conditions on |L|, as h1(L) = 0 since L is big and nef.
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To conclude, we have left to show that if N ′ does not impose idependent conditions
on |L|, but N0∪Z does, for any proper subset Z ( {q1, . . . , qk}, then h1(IN ′/S(L)) = 1.

Assume, to get a contradiction, that h1(IN ′/S(L)) > 1. Then, as in (4.7), we
would have that h0(OXN0

(q′′1 + · · ·+ q′′k)) > 2. Therefore, we can find a proper subset

Z ( {q1, . . . , qk}, such that, denoting the corresponding subscheme on XN0
by Z ′′, we

have h0(XN0
(Z ′′)) ≥ 2. Hence, arguing as above, N0∪Z does not impose independent

conditions on |L|, a contradiction. �

Using Theorem 4.1 and the Reider-like results on higher order embeddings of K3
surfaces in [20], we are now ready to prove Theorem 2, stated in the introduction,

which classifies linear systems |L| on S for which V hyper
|L|,δ 6= ∅, with ρsing < 0. We

remark that, as already mentioned in the introduction, a similar statement can also
be obtained for curves with normalizations possessing g

1
k’s for k > 2, using Theorem

4.1 and the corresponding notion of neutral and non-neutral nodes for g
1
k’s. The

principle is the same, but the classification becomes longer.

Proof of Theorem 2. Assume that V hyper
|L|,δ 6= ∅ and let [X] be a point of this scheme.

Let N0 ⊆ N := Sing(X) be the set of non-neutral nodes of X, which consists of
δ0 ≤ δ points, by assumption. Then, by Theorem 4.1 and Remark 3.8, there exist
two points p, q ∈ X \N such that, if N ′ = N0 ∪{p, q}, then |L| does not separate N ′.

Let Z ⊆ N ′ be minimal, so that for each Z ′ ( Z, |L| separates Z ′ but it does not
separate Z. We claim that Z = N ′.

Indeed, if p 6∈ Z then in particular |L| does not separate N0 ∪ {q} and by (4.3)
it follows that the inverse image of q is a base point of |ωXN0

|, a contradiction. By
symmetry we therefore have that both p, q ∈ Z. If Z = N1∪{p, q} for some N1 ( N0,
then already a partial normalization of δ1 := length N1 of the nodes of X would admit
a g

1
2, contradicting property (ii) in Remark 3.8. Hence Z = N ′.
We have that length(N ′) = δ0 + 2. Assume now that

δ0 ≤
pa(L) − 3

2
,

or equivalently

(4.8) L2 ≥ 4(length(N ′) − 1).

By [20, Theorem 1.1], the condition (4.8) implies that there exists an effective
divisor D on S passing through N ′ and satisfying the numerical conditions

2D2
(i)

≤ L.D ≤ D2 + δ0 + 2
(ii)

≤ 2δ0 + 4

with equality in (i) if and only if L ∼ 2D and L2 ≤ 4δ0 + 8,(4.9)

and equality in (ii) if and only if L ∼ 2D and L2 = 4δ0 + 8.

Setting D′ := L − D one easily finds that (4.9) implies

(4.10) D′.D ≤ δ0 + 2.

Furthermore, by [20, Lemma 3.6(v)] (or the proof of [18, Prop. 1.13]), we have
L.(L − 2D) ≥ 0, whence

(4.11) D′2 ≥ D2.
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By (4.8) and (4.9) we have

L2 ≥ 4δ0 + 4 > 2δ0 + 4 ≥ D.L,

whence D 6⊇ X, by the nefness of L. Therefore, since D ⊃ N ′ we have by Bezout’s
Theorem

(4.12) D.X = D.L ≥ 2δ0 + 2.

This gives

(4.13) D2 = D.L − D.D′ ≥ 2δ0 + 2 − δ0 − 2 = δ0 > 0.

The Hodge index theorem and (4.10) yields

(4.14) (D2)2 ≤ D2D′2 ≤ (D.D′)2 ≤ (δ0 + 2)2,

which gives δ0 ≤ D2 ≤ δ0 + 2 (note that, D2 is even, since the intersection form on
a K3 surface is even).

If D2 = δ0 + 2 we get from (4.9) that L ∼ 2D, so that L2 = 4δ0 + 8, i.e. pa(L) =
2δ0 + 5, which is the second case in (ii) of the theorem.

If D2 = δ0 + 1 we get from (4.9) that either L.D = 2δ0 + 2 with L ∼ 2D, or
L.D = 2δ0 + 3.

In the first case we get L2 = 4δ0 + 4, i.e. pa(L) = 2δ0 + 3, which is the first case
in (ii). Moreover, since L is nonhyperelliptic by assumption, we must have D2 ≥ 4,
whence δ0 ≥ 3, by Saint-Donat’s theorem quoted in the introduction.

In the second we get D.D′ = D.L−D2 = δ0+2. From (4.11) and (4.14) and the fact
that δ0 is odd we get that D′2 = δ0 + 1 or δ0 + 3, yielding L2 = D2 + D′2 + 2D.D′ =
4δ0 + 6 and 4δ0 + 8 respectively. In the first subcase we get from the results in
[20] (see the precise statement in [18, Prop. 1.13]) that L ∼ 2D + Γ for a smooth
rational curve Γ such that Γ.D = 1 and Γ ∩ N ′ 6= ∅. But since Γ.L = 0 we have
Γ ∩ X = ∅, a contradiction. In the second subcase we compute (L − 2D)2 = 0 and
(L−2D).L = 2 so that |L| is a hyperelliptic system by Saint-Donat’s theorem quoted
in the introduction, a contradiction.

Finally, if D2 = δ0 then δ0 is even and we get from (4.9) and (4.12) that L.D =
2δ0 + 2. Then (4.14) yields D′2 = δ0, δ0 + 2 or δ0 + 4 or (δ0, D

′2) = (2, 8). The last
case is case (i) in the theorem and one easily sees that the first three cases yield the
three cases in (iii).

We have therefore proved that if δ0 ≤
pa(L)−3

2
we must be in one of the three cases

(i)-(iii) of Theorem 2. In particular we have proved that either δ0 ≥ (pa(L)− 5)/2 or
(δ0, pa(L)) = (2, 10), as stated in the theorem. �

Now Corollary 3 in the introduction immediately follows.

Proof of Corollary 4. If δ ≤ pa(nL)−3
2

= 1
4
n2L2 − 1, then δ0 ≤ pa(nL)−3

2
, where δ0 is

the number of non-neutral nodes of X ∈ V hyper
|nL|,δ . By Theorem 2 and the fact that

Pic(S) ∼= Z[L], we must be in one of the cases (i) or (ii) of Theorem 2.
In case (i) we must have n = 3, L2 = 2 and 2 = δ0 ≤ δ ≤ 3, whence δ = 2 or 3.

This yields case (a) in the corollary.
In case (ii), we have nL ∼ 2D, with D ∼ kL for some k ≥ 1, whence n = 2k.

Moreover D2 = δ0 + 1 or δ0 + 2.
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If D2 = δ0 + 1 we find δ0 = 1
4
n2L2 − 1, so that δ = δ0. It follows that k =

√

δ+1
L2

and n = 2
√

δ+1
L2 , which is case (b) in the corollary.

If D2 = δ0 + 2 we find δ0 = 1
4
n2L2 − 2, so that δ0 = δ − 1 or δ. In the first case we

end up in (b) as above, and in the second we get k =
√

δ+2
L2 and n = 2

√

δ+2
L2 , which

is case (c) in the corollary. �

We remark that for what concerns the case δ = 1 we have a complete picture.

Corollary 4.15. Let S be a K3 surface and L be a globally generated, nonhyperel-
liptic line bundle on S of sectional genus p = pa(L) ≥ 3. Then:

(i) V hyper
|L|,1 = ∅, if p ≥ 5;

(ii) if, furthermore, S is a general, primitive K3 such that Pic(S) = Z[L], then

dim(V hyper
|L|,1 ) = 2, for p = 3, 4.

Proof. Statement (i) is an immediate consequence of Theorem 2. Statement (ii)
follows from Example 2.8 when p = 4. For p = 3, just take S as general in P3

embedded by |L| and, through the general point p ∈ S, take a hyperplane section
which is tangent to S at p. This yields an irreducible curve on S with one node, that
is a curve of geometric genus two, which is automatically hyperelliptic. Therefore
dim(V hyper

|L|,1 ) = dim(V|L|,1) = 2 in this case as well. �
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L. Pasteur et CNRS 7, rue R. Descartes - 67084 Strasbourg Cedex, France.

Fax: +33-3-902-40328. e-mail: pacienza@math.u-strasbg.fr.

20


