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GONALITY OF CURVES ON GENERAL HYPERSUFACES

FRANCESCO BASTIANELLI, CIRO CILIBERTO, FLAMINIO FLAMINI, AND PAOLA SUPINO

Abstract. This paper concerns the existence of curves with low gonality on smooth hypersurfaces

of sufficiently large degree. It has been recently proved that if X ⊂ P
n+1 is a hypersurface of degree

d > n + 2, and if C ⊂ X is an irreducible curve passing through a general point of X, then its

gonality verifies gon(C) > d− n, and equality is attained on some special hypersurfaces. We prove

that if X ⊂ P
n+1 is a very general hypersurface of degree d > 2n + 2, the least gonality of an

irreducible curve C ⊂ X passing through a general point of X is gon(C) = d −

⌊√

16n+1−1

2

⌋

, apart

from a series of possible exceptions, where gon(C) may drop by one.

1. Introduction

In this paper, we consider smooth hypersurfaces X ⊂ P
n+1 of sufficiently large degree, and we

are interested in the existence of irreducible curves C ⊂ X having low gonality and passing through

a general point of X. We recall that the gonality gon(C) of an irreducible projective curve C is the

least degree of a non-constant morphism C̃ −→ P1, where C̃ is the normalization of C.

The study of curves on varieties is at the basis of the birational classification. As for rational

curves on projective hypersurfaces or complete intersections, their existence has been investigated

long since (see e.g. [14, 17, 18]), and it has been understood in a series of seminal works (see [8, 11,

12, 19, 20]). In particular, it turns out that no rational curve lies on a very general hypersurface

X ⊂ Pn+1 of degree d > 2n. When instead X has degree d 6 2n − 1, it contains lines varying in a

(d− 2n − 1)-dimensional family (see e.g. [5, 9]), and if n > 5, lines are the only rational curves on

a very general hypersurface of degree d = 2n− 1 (cf. [15]).

In order to deal with (possibly moving) curves having higher gonality, it is profitable to consider

the following birational invariant introduced in [4], and coinciding with the gonality in dimension

1. Given an irreducible variety Y , we define the covering gonality of Y to be the integer

cov. gon(Y ) := min

{
c ∈ N

∣∣∣∣
Given a general point y ∈ Y, ∃ an irreducible

curve C ⊆ Y such that y ∈ C and gon(C) = c

}
.

Since cov. gon(Y ) = 1 is equivalent to Y being uniruled, we can think of the covering gonality as a

measure of the failure of Y to be uniruled.

The following theorem is probably the most general result governing the gonality of moving

curves in a very general hypersurface of large degree.

Theorem ([4, Proposition 3.8]). Let X ⊂ Pn+1 be a very general hypersurface of degree d > 2n. If

Y ⊂ X is an irreducible subvariety of dimension s > 1, one has

cov. gon(Y ) > d− 2n+ s. (1.1)
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In particular,

cov. gon(X) > d− n. (1.2)

Actually (1.2) holds even if X has at worst canonical singularities and d > n + 2; under these

assumptions, the bound (1.2) is sharp (cf. [4, Corollary 1.11 and Example 1.7]).

When n = 1 and X ⊂ P2 is a smooth plane curve of degree d > 3, famous result by M. Noether

yields gon(X) = d − 1, and all the morphisms X −→ P
1 of degree d − 1 are projections from a

point of X (see e.g. [7]). The case of smooth surfaces X ⊂ P
3 of degree d > 5 has been studied in

[13], where one shows that cov. gon(X) = d − 2, and all families of curves computing the covering

gonality are classified. In particular, if X ⊂ P3 is a very general surface of degree d > 5 and C ⊂ X
is a (d− 2)-gonal curve passing through a general point x ∈ X, then C is a plane curve cut out on

X by some tangent plane TpX, so that C has a double point at p ∈ X and the map C 99K P1 of

degree d− 2 is the projection from p (cf. [13, Corollary 1.8]).

The main result in this paper is the following Theorem 1.1, which determines the covering

gonality of a very general hypersurfaceX ⊂ P
n+1 of sufficiently large degree and arbitrary dimension,

apart from a series of exceptions for which, as we will see, the covering gonality is almost determined

(see Remark 1.2 below).

Theorem 1.1. Let X ⊂ Pn+1 be a very general hypersurface of degree d > 2n + 2. Then

d−
⌊√

16n + 9− 1

2

⌋
6 cov. gon(X) 6 d−

⌊√
16n+ 1− 1

2

⌋
. (1.3)

If n ∈ Nr
{
4α2 + 3α, 4α2 + 5α+ 1

∣∣α ∈ N∗}, then

cov. gon(X) = d−
⌊√

16n + 1− 1

2

⌋
, (1.4)

and for general x ∈ X, there exists an irreducible plane curve C ⊂ X passing through x, which

computes the covering gonality via the projection C 99K P
1 from a singular point p ∈ C of multiplicity⌊√

16n+1−1
2

⌋
.

Remark 1.2. For n ∈
{
4α2 + 3α, 4α2 + 5α+ 1

∣∣α ∈ N
}
, the integers

⌊√
16n+9−1

2

⌋
and

⌊√
16n+1−1

2

⌋

differ by 1, so (1.3) almost determines the covering gonality (cf. Lemma 4.2).

To prove Theorem 1.1, we combine various approaches and techniques developed in several

works (see [3, 4, 6, 11, 13, 15, 19]). The key idea is to relate irreducible curves of low gonality

contained in X ⊂ P
n+1 to the cones V h

p ⊂ P
n+1 swept out by tangent lines having intersection

multiplicity at least h > 2 at p ∈ X.

To this aim, we use the argument of [1, 13], and we deduce from [3, Theorem 2.5] that, if C ⊂ X
is an irreducible curve which passes through a general point x ∈ X and admits a map

ϕ : C 99K P
1

of small degree c 6 d− 3, then any fiber of ϕ consists of collinear points (see Proposition 2.10). By

arguing as in [4, Theorem C], we prove further that a curve C ⊂ X as above lies on a cone V d−c
p ,

and the map ϕ : C 99K P
1 is the projection from the vertex p ∈ C (cf. Proposition 2.11).
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Then we follow the approach of [15], relying on vector bundles techniques as in [11, 19]. We

consider the Grassmannian G(1, n + 1) of lines ℓ ⊂ Pn+1 and we define the locus

∆̃d−c,X := {(p, [ℓ]) ∈ X ×G(1, n + 1)| ℓ ·X > (d− c)p} .
The gonality map ϕ : C 99K P1 clearly determines a rational curve in ∆̃d−c,X . Since the curves C

cover X, then ∆̃d−c,X contains a uniruled subvariety of dimension at least n. This, and an analysis

of positivity properties of the canonical bundle of ∆̃d−c,X , yield numerical restrictions on d − c,
leading to the lower bound in Theorem 1.1 (cf. Corollary 3.6 and Theorem 4.1).

In order to conclude the proof of Theorem 1.1, we construct a family of irreducible plane curves

covering X and having a singularity of multiplicity
⌊√

16n+1−1
2

⌋
. The cones V h

p are contained in the

tangent hyperplane TpX ∼= P
n, and any hyperplane section of V h

p not containing p is defined by

the vanishing of h− 2 polynomials of degrees 2, 3, . . . , h− 1, respectively. Then we slightly improve

(in the case of lines) a classical result about linear spaces in complete intersections in a projective

space (cf. [17, 6] and Proposition 2.3), from which we deduce the existence of a subvariety Z ⊂ X

of dimension at least n − 1 such that for any p ∈ Z and h 6

⌊√
16n+1−1

2

⌋
, the cone V h

p contains a

line ℓp not passing through p (see Lemma 2.7). Hence the span of p and ℓp cuts out on X a plane

curve Cp having a singularity at p of multiplicity at least h, so that the projection from p ∈ Cp is

a map Cp 99K P
1 of degree at most d − h. The family of plane curves obtained by varying p ∈ Z

covers X, and the assertion follows by setting h =
⌊√

16n+1−1
2

⌋
(see Theorem 2.8).

A couple of questions are in order. First, it would be interesting to characterize the curves

computing the covering gonality of X and, in particular, to understand whether, at least if n is

sufficiently large and d > 2n + 1, they are only the plane curves presented above. We discuss this

question in §5.1.
Concerning the exceptional values n ∈

{
4α2 + 3α, 4α2 + 5α + 1

∣∣α ∈ N
}
, apart from the trivial

case n = 1, we cannot decide if (1.4) holds for other exceptional values. However, especially if one

believes that for sufficiently large dimension of X the covering gonality is computed by plane curves,

it is natural to make the following:

Conjecture 1.3. Let X ⊂ P
n+1 be a very general hypersurface of degree d > 2n. Then

cov. gon(X) = d−
⌊√

16n + 1− 1

2

⌋
.

The paper is organized as follows. In Section 2 we are concerned with the relations between

the cones of lines having high tangency order at a point p ∈ X and the geometry of curves having

low gonality and covering X. On one hand, we discuss the existence of lines in V h
p not belonging

to the ruling of the cone, and we achieve the upper bound in Theorem 1.1. On the other hand, we

prove that any curve C ⊂ X through a general point of X having sufficiently small gonality lies on

some V h
p and we describe the gonality map C 99K P

1.

In Section 3 we study positivity properties of the loci ∆̃d−c,X , deducing numerical conditions

on the existence of uniruled subvarieties of ∆̃d−c,X . In Section 4 we finish the proof of Theorem 1.1,

and in Section 5 we make some final remarks and discuss some open problems.

Notation. We work over C. By variety we mean a complete reduced algebraic variety X, unless

otherwise stated. By curve we mean a variety of dimension 1. We say that a property holds for a
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general (resp. very general) point x ∈ X if it holds on a Zariski open nonempty subset of X (resp.

on the complement of the countable union of proper subvarieties of X).

2. Geometry of covering families of curves

2.1. High tangency cones to hypersurfaces. Let X ⊂ Pn+1 be a hypersurface defined by the

vanishing of a non–zero homogeneous polynomial F ∈ C[y0, . . . , yn+1] of degree d > 2.

Definition 2.1. Given a point x ∈ X and an integer h > 2, the cone V h
x (X) ⊂ P

n+1 of tangent

lines of order h at x ∈ X (denoted by V h
x if there is no danger of confusion) is the set of all lines

ℓ ⊂ Pn+1 having intersection multiplicity at least h with X at x.

The variety V h
x is a cone with vertex containing x, and (see [6, p. 186]) it is defined by the h−1

equations

Gk(y0, . . . , yn+1) :=
∑

16i16···6ik6n+1

yi1 · · · yik
∂kF

∂yi1 · · · ∂yik
(x) = 0 for 1 6 k 6 h− 1.

In particular, if X is smooth at x, then V 2
x is the (projective) tangent hyperplane TxX ⊂ P

n+1.

When h > 3, the variety V h
x is a cone in TxX ∼= Pn with vertex at x ∈ X, and any hyperplane

section of V h
x not containing x is a subvariety Λhx ⊂ Pn−1, uniquely determined up to isomorphism,

defined by the vanishing of h− 2 polynomials of degrees 2, 3, . . . , h− 1, respectively.

Lemma 2.2. Let X ⊂ P
n+1 be a general hypersurface of degree d > 2 and let x ∈ X be a general

point. Then Λhx is a general complete intersection of type (2, 3, . . . , h− 1) in P
n−1.

Proof. We may assume that x = [0, . . . , 0, 1] and that TxX = {yn = 0}. Then X has equation of

the form

F (y0, . . . , yn+1) = yny
d−1
n+1 + f2(y0, . . . , yn)y

d−2
n+1 + . . . + fd−1(y0, . . . , yn)yn+1 + fd(y0, . . . , yn) = 0,

where the polynomials fi are homogeneous of degree i. Then Λhx, as a subvariety of the P
n−1 with

equations yn = yn+1 = 0, is defined by the equations

f2(y0, . . . , yn−1, 0) = · · · = fh−1(y0, . . . , yn−1, 0) = 0.

LetW be the sub–vector space of C[y0, . . . , yn+1]d consisting of all polynomials F as above. Consider

the linear map

ζ : W −→
h−1∏

i=2

H0
(
P
n−1,OPn−1(i)

)

F 7−→
(
f2(y0, . . . , yn−1, 0), . . . , fh−1(y0, . . . , yn−1, 0)

)
.

To prove the assertion amounts to show that ζ is surjective. One has

dim(W ) =

(
d+ n+ 1

d

)
− n− 2 and dim

(
h−1∏

i=2

H0
(
P
n−1,OPn−1(i)

)
)

=

(
h+ n− 1

h− 1

)
− n− 1.

Moreover ker(ζ) consists of polynomials divisible by yn, i.e. polynomials F such that fi(y0, . . . , yn) =

yngi−1(y0, . . . , yn), where 2 6 i 6 h− 1 and the polynomials gj have degree j. Then

dim(ker(ζ)) =

(
d+ n+ 1

d

)
−
(
h+ n− 1

h− 1

)
− 1 = dim(W )− dim

(
h−1∏

i=2

H0
(
P
n−1,OPn−1(i)

)
)
,
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proving that ζ is surjective. �

2.2. Lines on complete intersections. Let 1 6 s 6 m−2 and d1, d2, . . . , ds ∈ N be integers, and

set d := (d1, . . . , ds). We consider the vector space

Sd :=
s⊕

i=1

H0 (Pm,OPm(di)) ,

and its Zariski open subset

S∗
d :=

s⊕

i=1

(
H0 (Pm,OPm(di)) \ {0}

)
.

For any u := (F1, . . . , Fs) ∈ S∗
d , we denote by Yu := V (F1, . . . , Fs) ⊂ Pm the closed subscheme

defined by the vanishing of the s homogeneous polynomials F1, . . . , Fs. When u ∈ S∗
d is a general

point, Yu ⊂ P
m is a smooth irreducible complete intersection of dimension m− s > 2.

In [17], Predonzan gave necessary and sufficient conditions for the existence of a k-dimensional

linear subvariety of Yu, with u := (F1, . . . , Fs) ∈ S∗
d (see also [6, Theorem 2.1] and [5, 9]). The

following proposition provides a slight extension of Predonzan’s result in the case k = 1.

Proposition 2.3. Let 1 6 s 6 m − 2 and d1, d2, . . . , ds be positive integers such that Πsi=1di > 2.

Consider the locus

Wd :=
{
u ∈ S∗

d |Yu contains a line
}
⊆ Sd

and set

t := max

{
0,

s∑

i=1

di + s− 2(m− 1)

}
and θ := max

{
0, 2(m − 1)−

s∑

i=1

di − s
}
. (2.1)

Then Wd is nonempty, irreducible, and

codimSd
(Wd) = t.

Furthermore, if u ∈ Wd is a general point, then Yu ⊂ Pm is a smooth complete intersection of

dimension m− s, containing a family of lines of dimension θ. If t > 0, and if u ∈ Wd is a general

point, then Yu contains a unique line.

Proof. The case t = 0, is the one considered by Predonzan, in which the assertion holds Wd = S∗
d

(cf. [6, Theorem 2.1]).

Hence we may assume t > 0. Consider G := G(1,m) and the incidence correspondence

J :=
{
([ℓ] , u) ∈ G× S∗

d

∣∣∣ ℓ ⊂ Yu
}

with the projections

G
π1←− J π2−→ S∗

d .

Notice that J is a vector bundle over G via π1. Indeed, for any [ℓ] ∈ G, the fiber π−1
1 ([ℓ]) equals⊕s

i=1

(
H0
(
Iℓ/Pm(di)

)
\ {0}

)
, where Iℓ/Pm is the ideal sheaf of ℓ in Pm. Thus J is smooth and

irreducible and

dim(J) = 2(m− 1) +

s∑

i=1

h0 (OPm(di))−
s∑

i=1

(di + 1) =

s∑

i=1

(
di +m

m

)
− t > 0.
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Since Wd = π2(J), then Wd is nonempty and irreducible.

We claim that, for any [ℓ] ∈ G, if ([ℓ], u) ∈ π−1
1 ([ℓ]) is general (so that u ∈ Wd is general),

then Yu is a smooth complete intersection of dimension m − s. This is an immediate consequence

of Bertini’s theorem applied to the blow–up of Pm along ℓ, noting that the strict transforms of the

linear systems |H0
(
Iℓ/Pm(di)

)
|, with 1 6 i 6 s, are base point free.

If u ∈Wd is general, then

dim(Wd) = dim(J)− dim(π−1
2 (u)) =

s∑

i=1

(
di +m

m

)
− t− dim(π−1

2 (u)),

thus (2.1) gives

codimSd
(Wd) = t+ dim(π−1

2 (u)). (2.2)

Next we show that, for u ∈Wd general, one has dim
(
π−1
2 (u)

)
= 0. To this aim, we argue as in

[5, Proposition 2.1] and therefore we will be brief. Let [ℓ] ∈ G and let [y0, y1, . . . , ym] be coordinates

in P
m such that Iℓ := (y2, . . . , ym). For

([ℓ] , u) ∈ π−1
1 ([ℓ]) ⊂ J, with u = (F1, . . . , Fs),

we can write

Fh =
m∑

i=2

yi P
(i)
h +Rh, 1 6 h 6 s,

where

P
(i)
h =

∑

µ0+µ1=dh−1

c
(i)
h,µ0,µ1

yµ00 yµ11 ∈ C[y0, y1]dh−1, for 1 6 h 6 s and 2 6 i 6 m, (2.3)

whereas Rh ∈ I2ℓ . We may assume u general, so that Yu is smooth and the normal sheaf Nℓ/Yu is a

vector bundle on ℓ, fitting in the exact sequence

0→ Nℓ/Yu → Nℓ/Pm
∼= OP1(1)⊕(m−1) → NYu/Pm

∣∣
ℓ
∼=

s⊕

h=1

OP1(dh)→ 0. (2.4)

Any ξ ∈ H0(ℓ,Nℓ/Pm) can be identified with a collection of m− 1 linear forms on P1 ∼= ℓ

ϕξi (y0, y1) := ai,0y0 + ai,1y1, with 2 6 i 6 m,

whose coefficients form the (m− 1)× 2 matrix

Aξ := (ai,j), where 2 6 i 6 m and 0 6 j 6 1.

By abusing notation, we identify ξ with Aξ. Then the map

H0
(
ℓ,Nℓ/Pm

) σ−→ H0
(
ℓ, NYuℓ/P

m

∣∣∣
ℓ

)

arising from (2.4), is given by

Aξ
σ−→




∑

06j61<i6m

ai,jyjP
(i)
h




16h6s

. (2.5)

Notice that t > 0 is equivalent to h0
(
ℓ,Nℓ/Pm

)
< h0

(
ℓ, NYu/Pm

∣∣
ℓ

)
.
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Claim 2.4. The map σ is injective. Thus h0(Nℓ/Yu) = 0, i.e. the Fano scheme F (Yu) parametrizing

lines in Yu contains [ℓ] as a zero-dimensional integral component.

Proof of Claim 2.4. By (2.3), the expression
∑

06j61<i6m ai,jyjP
(i)
h , for 1 6 h 6 s, reads

a2,0




∑

µ0+µ1=dh−1

c
(2)
h,µ0,µ1

yµ0+1
0 yµ11


+ a2,1




∑

µ0+µ1=dh−1

c
(2)
h,µ0,µ1

yµ00 yµ1+1
1


+ · · ·+

+ · · · + am,0




∑

µ0+µ1=dh−1

c
(m)
h,µ0,µ1

yµ0+1
0 yµ11


+ am,1




∑

µ0+µ1=dh−1

c
(m)
h,µ0,µ1

yµ00 yµ1+1
1


 .

By equating to 0 the coefficients of ydh−k0 yk1 , for 0 6 k 6 dh, we find a homogeneous linear system

of
∑s

h=1 dh + s equations in the 2(m − 1) variables ai,j and coefficients c
(i)
h,µ0,µ1

, where 2 6 i 6 m

and 0 6 j 6 1. By (2.5), the map σ is injective if and only if this system admits only the trivial

solution. One checks that this is the case for a general choice of the coefficients c
(i)
h,µ0,µ1

and because

of the assumption t > 0 equivalent to
∑s

i=1 di > 2(m − 1) − s. Thus we deduce from (2.4) that

h0(ℓ,Nℓ/Yu) = 0. �

By the irreducibility of J and Claim 2.4, for u ∈ Wd general, the Fano scheme F (Yu) is zero-

dimensional, i.e. Yu contains finitely many lines. In particular, (2.2) yieds that codimSd
(Wd) = t as

desired.

Finally, to show that Yu contains only one line for u ∈ Wd general, one makes a count of

parameters, left to the reader, similar to the one in (2.2), which shows that the codimension in S∗
d

of the locus of u such that Yu contains at least two lines is strictly larger than t. �

Remark 2.5. The case of quadrics is not covered by Proposition 2.3. For our purposes, it will suffice

to recall that any quadric of dimension at least 2 contains a line, whereas the locus parameterizing

conics containing a line coincides with the locus of singular conics and it has codimension 1 in

H0
(
P
2,OP2(2)

)
.

2.3. The upper bound for the covering gonality. Given a hypersurface X ⊂ P
n+1, a smooth

point x ∈ X and an integer h > 3, we are concerned with the existence of lines in V h
x which do not

pass through x. More precisely, we want to consider the Zariski closure Xh
1 of the set of smooth

points x ∈ X such that V h
x contains a line which does not pass through x.

Lemma 2.6. Let n, d, h > 3 be integers such that d > 2n and h(h + 1) = 4n. Then there exist a

hypersurface X ⊂ P
n+1 of degree d and two points p, q ∈ X such that:

(i) X is smooth at p and q;

(ii) p 6∈ Xh
1 ;

(iii) q ∈ Xh
1 and V h

q contains a line ℓ such that q 6∈ ℓ, p ∈ ℓ and V h
q is smooth along ℓ.

Proof. Let [y0, . . . , yn+1] be the coordinates in P
n+1 and consider a homogeneous polynomial

F (y0, . . . , yn+1) =
∑

|I|=d
aIy

I

of degree d, where for a multi-index I = (i0, . . . , in+1), we denote by |I| its length and we set

yI := yi00 · · · y
in+1

n+1 . Note that I varies among the points with integral coordinates in the n–simplex
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∆d ⊂ R
n+1
>0 with vertices Q0 := (d, 0, . . . , 0), . . . , Qn+1 := (0, . . . , 0, d). For 0 6 α 6 d, we denote by

∆
(0)
α ⊂ ∆d the n–subsimplex with vertices

Q0 = (d, 0, . . . , 0), (d− α,α, 0, . . . , 0), . . . , (d − α, 0, . . . , 0, α).

Let q := [1, 0, . . . , 0], p := [0, 1, . . . , 0] ∈ Pn+1 and assume that the hypersurface X := V (F ) ⊂
P
n+1 passes through q and p, so that a(d,0,...,0) = a(0,d,...,0) = 0. Then V h

q depends on the multi-

indices I belonging to ∆
(0)
h−1. In fact, V h

q has equations

Gk(y0, . . . , yn+1) :=
∑

|J |=k

∂kF

∂yJ
(q)yJ = 0 for 1 6 k 6 h− 1 where

∂k

∂yJ
:=

∂k

∂yj00 · · · ∂y
jn+1

n+1

.

In particular

∂kF

∂yJ
=

∑

|I|=d, |J |=k, I>J

I!

(I − J)!aIy
I−J ,

where, as usual, I! := i0!i1! · · · in+1! and I − J and I > J are defined componentwise. For any

I 6∈ ∆
(0)
k , J such that |J | = k and I > J , the value of yI−J at q is zero. Therefore the non–zero

coefficients aI in Gk are such that I ∈ ∆
(0)
k , for all 1 6 k 6 h− 1.

Similarly, the non–zero coefficients aI in the equations of V h
p are such that I is an integral point

in the n–subsimplex ∆
(1)
h−1 with vertices

Q1 = (0, d, 0, . . . , 0), (h− 1, d− h+ 1, 0, . . . , 0), . . . , (0, d − h+ 1, 0, . . . , 0, h − 1).

Choose the coefficients of F so that G1 = yn+1, hence q is a smooth point for X. The cone

V h
q lies in TqX = V (yn+1) ∼= Pn. Moreover, setting H := V (y0), the section of V h

q with H

is Λhq = V (y0, yn+1, G2, . . . , Gh−1) ⊂ V (y0, yn+1) ∼= P
n−1. Next we apply Proposition 2.3 with

m = n− 1, s = h− 2 and di = i+ 1. By (2.1), we have

t =

s∑

i=1

di + s− 2(m− 1) =
h(h+ 1)

2
− 2n + 1 = 1.

If h > 4, Proposition 2.3 ensures the existence of a locus W(2,...,h−1) of codimension 1 in S(2,...,h−1),

whose general point is a complete intersection of type (2, . . . , h− 1) in P
n−1 containing a line. The

same holds for h = 3 = n by Remark 2.5.

SinceW(2,...,h−1) has codimension 1 in S(2,...,h−1) we can choose the coefficients aI , with I ∈ ∆
(1)
h−1

and I 6= (0, d, 0, . . . , 0), general enough so that X is smooth at p and Λhp contains no line. Moreover,

we can choose the coefficients aI , with I ∈ ∆
(0)
h−1 which we did not fix yet, so that p ∈ V h

q and V h
q

contains a line through p different from the line 〈p, q〉 and it is smooth along this line. This can be

done without altering the coefficients aI , with I ∈ ∆
(1)
h−1, we already chose, since ∆

(0)
h−1 and ∆

(1)
h−1

have no integral point in common. Then p and q satisfy (i)–(iii). �

Lemma 2.7. Let X ⊂ Pn+1 be a general hypersurface of degree d > 2n and let h > 3 be an integer

such that h(h+ 1) 6 4n.

(i) If h(h + 1) < 4n, then Xh
1 = X and if x ∈ X is a general point, then V h

x is the cone over

a general complete intersection in S∗
δ , with δ = (1, 2, . . . , h− 1), which contains a family of

lines of dimension θ given by (2.1);
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(ii) If h(h + 1) = 4n, then all components of Xh
1 have dimension n − 1 and there is some

irreducible component Z of Xh
1 such that, if x ∈ Z is a general point, then V h

x is the cone

over a general complete intersection in Wδ ⊂ S∗
δ , with δ := (1, 2, . . . , h−1), which is smooth

and contains only one line.

Proof. Let

X := {(x, F ) |F ∈ S∗
d and x ∈ X = V (F )} ⊂ P

n+1 × S∗
d

be the universal hypersurface of degree d, and let

P
n+1 τ←− X σ−→ S∗

d

be the projections onto the two factors. Fix a hyperplane H ⊂ Pn+1 and let

U := X ∩
(
(Pn+1 \H)× S∗

d

)
.

Let δ := (1, 2, . . . , h− 1) and consider the rational map

ϕ : U 99K S∗
δ

(x, F ) −→ V h
x ∩H,

Thanks to Lemma 2.2, the map ϕ is dominant. As in Proposition 2.3, we consider Wδ ⊆ S∗
δ .

If h(h + 1) < 4n, then Wδ = S∗
δ . Indeed, if h > 4, Proposition 2.3 applied to H ∼= P

n, with

s = h − 1, di = i and 1 6 i 6 h − 1, gives t = 0. If h = 3, then n > 4 and V 3
x is a cone over a

quadric of dimension at least 2, which always contains lines (cf. Remark 2.5). Thus, in both cases

the general (x, F ) ∈ U , and hence the general (x, F ) ∈ X , is such that V h
x ∩H is general in S∗

δ and

(i) follows by Proposition 2.3.

If h(h + 1) = 4n, Proposition 2.3 (and Remark 2.5 if h = n = 3) yields codimSδ
(Wδ) = 1.

Therefore ϕ−1(Wδ) has codimension 1 in U , Lemma 2.6 implies that σ(ϕ−1(Wδ)) is dense in Sd and

(ii) follows. �

We can now prove the upper bound in Theorem 1.1.

Theorem 2.8. Let X ⊂ P
n+1 be a very general hypersurface of degree d > 2n. Given a general

point x ∈ X, there exists a plane curve C ⊂ X passing through x, and having a singular point of

multiplicity at least
⌊√

16n+1−1
2

⌋
and gonality gon(C) 6 d−

⌊√
16n+1−1

2

⌋
. In particular,

cov. gon(X) 6 d−
⌊√

16n + 1− 1

2

⌋
.

Proof. The cases n = 1 and n = 2 are covered by [7, Teorema 3.14] and [13, Corollary 1.8],

respectively. So we assume n > 3. We set

h :=

⌊√
16n + 1− 1

2

⌋
.

and note that this is the maximal integer such that h(h + 1) 6 4n. We will prove the existence of

a family of plane curves covering X and having gonality at most d− h.
Thanks to Lemma 2.7, the hypersurface X contains an irreducible component Z of Xh

1 such

that for the general z ∈ Z, the cone V h
z contains some line ℓ not passing through z, and for each

such line ℓ we can consider the plane πz,ℓ := 〈z, ℓ〉 ⊂ V h
z . To ease the notation we set π := πz,ℓ.

Note that π is not contained in X, since X contains no rational curve (see [19, 20]), hence π cuts
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out on X a curve C := Cz,ℓ passing through z (C is possibly reducible, but none of its component is

rational, in particular it is not a line). Since π ⊂ V h
q , any line L ⊂ π passing through z is such that

the intersection cycle L ·X is of the form L ·X = h z + x1 + · · ·+ xd−h, for some x1, . . . , xd−h ∈ C.

Therefore, if C̃ is the normalization of C, the projection from z induces a morphism C̃ −→ ℓ ∼= P1,

which is non–constant on any component of C and has degree at most d − h. In particular, the

gonality of any irreducible component Γ of C̃ satisfies gon(Γ) 6 d− h.
Actually, it shall follow from Theorem 4.1 and Lemma 4.2 that for general z ∈ Z, any such a

component Γ satisfies gon(Γ) > d− h− 1, and hence the general C := Cz,ℓ ⊂ π shall turn out to be

an irreducible plane curve with gonality gon(C) 6 d−h. Moreover, any line L ⊂ π passing through

z meets C at z with multiplicity at least h, so that C has a singular point of multiplicity at least h

at z.

To finish the proof we need to show that the curves Cz,ℓ cover an open subset of X. If h(h+1) <

4n, then Z = X by Lemma 2.7, and the curves Cz,ℓ cover X.

If h(h + 1) = 4n, then Z has codimension 1 in X by Lemma 2.7. In this case, proving that

the curves Cz,ℓ cover X is equivalent to prove that the (closure of the) (n − 1)–dimensional family

of planes of the form πz,ℓ as above is non–degenerate, i.e. it sweeps out the whole projective space

P
n+1. To prove this fact, it suffices to prove it for some special hypersurface X ⊂ P

n+1 of degree d

such that dim(Xh
1 ) = n− 1.

By Lemma 2.6, for any d > 2n, there exist a hypersurface X ⊂ Pn+1 and two smooth points

p, q ∈ X such that p 6∈ Xh
1 , q ∈ Z, dim(Z) = n − 1, and p ∈ πq,L, with L a line through p not

containing q and V h
q smooth along L. Assume by contradiction that the family P of planes πz,ℓ

is degenerate, and let Π be the proper subvariety of Pn+1 which is the union of the planes of P.
To simplify the argument, we assume that P, and hence Π, is irreducible (the general case can be

treated similarly by replacing P with each of its irreducible components).

Since Z ⊂ Π, then

n > dim(Π) > dim (Π ∩X) > dim(Z) = n− 1.

Note that Π is not contained in X because X contains no plane. Therefore dim(Π) > dim(Z),

hence dim(Π) = n and Π and X intersect along a pure (n− 1)-dimensional variety containing Z as

a component, and also along some other irreducible component Y passing through p ∈ X r Z.

By (1.1) one has

cov. gon(Z) + cov. gon(Y ) > 2(d− n− 1). (2.6)

On the other hand, the intersection Π∩X is covered by the curves Cz,ℓ, and the sum of the gonalities

of their irreducible components is at most d− h. Hence
cov. gon(Z) + cov. gon(Y ) 6 d− h. (2.7)

By combining (2.6) and (2.7), we deduce d−2n−2+h 6 0, which is impossible for d > 2n and n > 3.

Thus we reach a contradiction and we conclude that Π does coincide with P
n+1, as wanted. �

2.4. Covering families of curves with low gonality and high tangency cones. Let X be an

irreducible complex projective variety of dimension n.

Definition 2.9. A covering family of c-gonal curves consists of a smooth family C π−→ T of

irreducible curves endowed with a dominant morphism f : C −→ X such that for general t ∈ T , the
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fibre Ct := π−1(t) is a smooth curve with gonality gon(Ct) = c and the restriction ft : Ct −→ X is

birational onto its image.

The covering gonality of X is the least integer c > 0 such that there exists a covering family of

c-gonal curves. According to [4, Remark 1.5], we may assume that both T and C are smooth, with

dim(T ) = n− 1. Furthermore, up to base change, we may consider a commutative diagram

C

π
""
❊

❊

❊

❊

❊

❊

❊

❊

❊

❊

ϕ
// T × P1

pr1

��

T,

where the restriction ϕt : Ct −→ {t} × P
1 is a c-gonal map. If y ∈ P

1 is a general point, we set

ϕ−1
t (y) = {q1, . . . , qc} ⊂ Ct. We can argue as in [1, Example 4.7] to construct a correspondence

Γ ⊂ X ×
(
T × P1

)
of degree c with null trace (cf. [1, Section 4]). Then [3, Theorem 2.5] implies the

following.

Proposition 2.10. Let X ⊂ P
n+1 be a smooth hypersurface of degree d > n + 3, and let C π−→ T

be a covering family of c-gonal curves, as above. If c 6 2d − 2n − 3, then f(q1), . . . , f(qc) ∈ X are

contained on a line ℓ(t,y) ⊂ Pn+1.

Set G := G(1, n + 1). For a general point x ∈ X, there exists some line ℓ(t,y) ⊂ P
n+1 passing

through x. Moreover, since X is smooth of degree d > n+ 3, then X is of general type, hence it is

not covered by lines, so that ℓ(t,y) meets X along a 0-dimensional scheme of length d = degX. As

we vary (t, y) ∈ T × P1, the line ℓ(t,y) describes a subvariety B0 ⊂ G of dimension n. By taking a

desingularization B −→ B0, we have a commutative diagram

P

φ

��

//

µ

))

P0

��

// P
n+1

B // B0

(2.8)

where P
φ−→ B is the P

1-bundle obtained as the pullback of the universal P1–bundle on G, and

µ : P −→ P
n+1 is the obvious morphism, which is clearly dominant.

Finally, by arguing similarly to [4, Theorem C], we prove the following result.

Proposition 2.11. Let X ⊂ Pn+1 be a very general hypersurface of degree d > 2n+ 2. Consider a

covering family of c-gonal curves as above with c 6 d− 3. Then:

(i) there exists a point xt ∈ f(Ct) such that f(Ct) ⊂ V d−c
xt ∩X;

(ii) the c-gonal map ϕt : Ct −→ P
1 is the composition of ft with the projection from xt.

In particular, the image of f(Ct) under the projection from xt is a rational curve Rt ⊂ Λd−cxt .

Proof. Since d > 2n+ 2, we deduce that c 6 d− 3 6 2d− 2n− 3. Hence by Proposition 2.10 there

exists a line ℓ(t,y) containing f
(
ϕ−1
t (y)

)
= {f(q1), . . . , f(qc)} ⊂ f(Ct). We will prove that there

exists a point xt ∈ f(Ct) depending only on t such that ℓ(t,y) ·X = (d− c)xt + f(q1) + · · ·+ f(qc).

We argue by contradiction and we assume that, as (t, y) ∈ {t} × P
1 varies, the 0-cycle

(ℓ(t,y) · X) − f(q1) − · · · − f(qc) moves describing a (possibly reducible) curve Dt ⊂ X. We note
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that Dt is dominated by the curve Et :=
{
(x, y) ∈ Dt × P1|x ∈ ℓ(t,y)

}
under the first projection,

whereas the second projection has degree d− c. Thus any irreducible component of Et has gonality

at most d− c, and hence any irreducible component D′
t of Dt satisfies gon(D

′
t) 6 d− c. Moreover,

since c > cov. gon(X) > d − n by (1.2) and d > 2n + 2, we deduce cov. gon(X) > d − c, so that

cov. gon(X) > gon(D′
t). Thus the closure of the locus swept out by the curves Dt is a proper

subvariety of X.

Let S be an irreducible component of such a subvariety and let 1 6 s 6 n− 1 be its dimension.

By (1.1), one has

cov. gon(S) > d− 2n+ s. (2.9)

On the other hand, let us consider the family P
φ−→ B in (2.8). By construction, the general line

ℓ(t,y) intersects S. Moreover, since s 6 n − 1 and dim(B) = n, if x ∈ S is a general point, there

is a family of dimension n − s > 0 of lines of the original family passing through x. Let us denote

by R ⊂ P the ramification divisor of the generically finite morphism µ : P −→ P
n+1 in (2.8). Thus

there exists an irreducible component Z of R such that µ(Z) = S and the restriction φ|Z : Z −→ B

is dominant.

Setting e := deg φ|Z , we claim that cov. gon(S) 6 e. Indeed, if we vary (t, y) ∈ {t} × P
1, the

lines ℓ(t,y) describe a rational curve Qt ⊂ B and the inverse image φ−1(Qt) intersects Z along a

curve Gt which dominates Dt by construction. Since Qt is rational, we deduce

cov. gon(S) 6 gon(D′
t) 6 deg

(
φ|Gt

: Gt −→ Qt
)
6 e. (2.10)

Now, we recall that for general [ℓ] ∈ B, the fibre L := φ−1 ([ℓ]) satisfies (L ·R) = n (see e.g.

[10, Proposition 1]), and the contribution of Z to this intersection product is e · ordZ(R), where
ordZ(R) is the multiplicity of Z in R. By [4, Corollary A.6], one has ordZ(R) > n − s. Therefore

e(n − s) 6 n, and (2.10) yields

cov. gon(S) 6
n

n− s. (2.11)

Finally, by pooling (2.9), (2.11) and the assumption d > 2n+ 2, we obtain

s+ 2 6
n

n− s =
s

n− s + 1,

which fails for 1 6 s 6 n− 1. Hence we get a contradiction, so that for general (t, y) ∈ {t}×P
1, the

0-cycle (ℓ(t,y) ·X)− f(q1)− · · · − f(qc) is supported at a point xt ∈ X, which depends only on t.

Moreover, denoting by Σt the closure of the surface swept out by the lines ℓ(t,y) with

(t, y) ∈ {t} × P
1, the argument above assures that the intersection X ∩Σt is supported on f(Ct), so

that xt ∈ f(Ct). In particular, we have that ℓ(t,y) ·X = (d− c)xt + f(q1)+ · · ·+ f(qc), i.e. ℓ(t,y) is a

line of the ruling of the cone V d−c
xt . Then (ii) and the final assertion of the proposition follow. �

3. The vector bundles approach

Let XF ⊂ P
n+1 be a smooth hypersurface defined by the vanishing of a non–zero polynomial

F of degree d, and set G := G(1, n + 1). For a positive integer r, we consider the variety

∆̃r,F := {(x, [ℓ]) ∈ XF ×G| ℓ ·XF > rx} (3.1)

which, for r 6 min{d, 2n+1}, turns out to be nonempty, smooth, irreducible of dimension 2n+1−r
(cf. Lemma 3.2). The main goal of this section is to find necessary conditions on the integers r, d, n, l
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for the existence of an uniruled subvariety Y ⊂ ∆̃r,F of dimension l > n, for XF very general (see

Corollary 3.6). To this aim, we will follow the argument of [15], relying on the approach of [11, 19].

3.1. Hypersurfaces and lines of high contact order. Given two integers n, d > 2, we set

P := P
n+1, N + 1 := dimC(Sd).

The universal hypersurface X ⊂ P× S∗
d over S∗

d has dimension N + 1 + n, and let

S∗
d

σ←− X τ−→ P

be the two projections. Besides, we denote by P ⊂ P × G the universal family of lines over G,

endowed with the two projections

G
π2←− P π1−→ P

The Picard group Pic(P) is generated by the line bundles

L := π∗2(OG(1)) and H := π∗1(OP(1))

where OG(1) is the Plücker line bundle on G (cf. e.g. [20, p. 609]).

Let 1 6 r 6 min{d, n + 1} be an integer, and consider the variety

∆̃r := {(x, [ℓ], F ) ∈ P × S∗
d | ℓ ·XF > rx}

endowed with the two projections

P ψ←− ∆̃r
φ−→ S∗

d .

Since r 6 d, the map ψ is surjective; indeed, for any (x, [ℓ]) ∈ P, there is the triple (x, [ℓ], F ) ∈ ∆̃r,

whereXF is the hypersurface consisting of d general hyperplanes through x ∈ P. For any (x, [ℓ]) ∈ P,
one has

ψ−1 ((x, [ℓ])) ∼= {F ∈ S∗
d |XF · ℓ > rx} ∼= H0(P,Irx/P(d)) r {0}.

Moreover, the line bundle OP(d) is (r − 1)–very ample as d > r. Thus from the exact sequence

0→ Irx/P(d)→ OP(d)→ Orx → 0

we deduce that h1(Irx/P(d)) = 0. Hence ψ is smooth of relative dimension N +1− r, and each fiber

is irreducible. Then ∆̃r is smooth, irreducible, of dimension

dim(∆̃r) = dim(P) + h0(Irx/P(d)) = 2n+ 2 +N − r.

Remark 3.1. It follows from the definition that ∆̃r is invariant under the action of GL(n + 2) on

P × S∗
d defined as follows. Given any g ∈ GL(n+ 2) and any triple (x, [ℓ], F ) ∈ P × S∗

d , then

g · (x, [ℓ], F ) :=
(
g(x), g(ℓ),

(
g−1
)∗

(F )
)
∈ P × S∗

d ,

where g(ℓ) denotes the line which is (projectively) equivalent to ℓ under g.
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We note that ∆̃r is endowed with the natural map ρ : ∆̃r −→ X given by (x, [ℓ], F ) 7−→ (x, F ),

which fits in the following commutative diagram

∆̃r

ψ

��

φ

%%ρ
// X

τ

��

σ
// S∗
d

P
π2

��

π1
// P

G

Since r 6 n+ 1, [15, Lemma 4.1] may be rephrased as follows.

Lemma 3.2. The map ρ is surjective. Furthermore, if F ∈ S∗
d is a general polynomial, then

(a) the subvariety

∆̃r,F := φ−1(F ) ⊂ ∆̃r

is smooth, irreducible, of dimension 2n+ 1− r;
(b) the restriction τ ◦ ρ|∆̃r,F

: ∆̃r,F −→ P maps onto

∆r,F := {p ∈ XF | ∃ [ℓ] ∈ G s.t. ℓ ·XF > rp} ⊆ XF .

3.2. The canonical bundle of ∆̃r,F . Let F ∈ S∗
d be general. The restriction to ∆̃r,F of the map

ψ : ∆̃r ։ P is an isomorphism onto its image, realizing ∆̃r,F as in (3.1).

Let L be the universal rank 2 quotient bundle on G. For any positive integer m, we set

Em := Symm(L). Since its fiber over [ℓ] ∈ G identifies with H0(ℓ,Oℓ(m)), the rank of Em is

m + 1 and c1(Em) = OG

(m(m+1)
2

)
. For any 1 6 r 6 d, the vector bundle π∗2(Ed) on P contains

a rank d + 1 − r sub-vector bundle Ad,r →֒ π∗2(Ed), whose fiber over (x, [ℓ]) ∈ P identifies with

H0(ℓ,Oℓ(d− rx)).
Consider the exact sequence

0→ Ad,r → π∗2(Ed)→ Bd,r → 0 (3.2)

defining the quotient Bd,r as a rank r vector bundle. Arguing as in [15, p. 263-264] one sees that,

if F ∈ S∗
d is a general polynomial, then ∆̃r,F ⊂ P is the vanishing locus of a global section of Bd,r.

Thus the normal bundle N
∆̃r,F /P of ∆̃r,F in P satisfies

N
∆̃r,F /P

∼= Bd,r|∆̃r,F
. (3.3)

Moreover, the smoothness of ∆̃r,F and adjunction formula yield

ω
∆̃r,F

= O
∆̃r,F

(
KP ⊗ c1(N∆̃r,F /P)

) ∼= O∆̃r,F

(
KP ⊗ c1(Bd,r)

)
, (3.4)

with KP = −2H − (n+ 1)L (cf. [20, p. 609]). In order to compute c1(Bd,r), we note that

Ad,r ∼= π∗2(Ed−r)⊗Ar,r,
where Ar,r = r(L−H) ∈ Pic(P). Whence we deduce

c1(Ad,r) =
(d+ r)(d− r + 1)

2
L− r(d− r + 1)H,
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so that (3.2) implies

c1(Bd,r) =
r(r − 1)

2
L+ r(d− r + 1)H

and by (3.4), we conclude that

ω∆̃r,F
= O∆̃r,F

(
(r(d− r + 1)− 2)H +

(
r(r − 1)

2
− n− 1

)
L

)
. (3.5)

3.3. Global generation lemmas. Let F ∈ S∗
d be a general point, and consider the inclusion

∆̃r,F ⊂ ∆̃r. For any integer 1 6 l 6 dim(∆̃r,F ) = 2n+ 1− r, one has

2n+1−r−l∧
T∆̃r|∆̃r,F

⊗ ω∆̃r,F

∼=
∨
Ω
2n+1−r−l
∆̃r|∆̃r,F

⊗ Ω2n+2+N−r
∆̃r|∆̃r,F

∼= ΩN+1+l

∆̃r|∆̃r,F

. (3.6)

Consider the exact sequence

0 −→Md −→ Sd ⊗OG

ev−→ Ed −→ 0 (3.7)

where

ev[ℓ] : Sd ⊗OG,[ℓ] −→ Ed|ℓ ∼= H0(ℓ,Oℓ(d))
(F, [ℓ]) 7−→ F|ℓ

and Md := ker(ev). The fiber of Md at [ℓ] ∈ G identifies with H0(ℓ,Iℓ/P(d)).
Next we consider the exact commutative diagram

0

↓
Md

↓
0→ Nd,r → Sd ⊗OP → Bd,r → 0

↓ ||
0→ Ad,r → π∗2(Ed) → Bd,r → 0

↓
0

where the central vertical column is obtained by pulling ev back to P via π2, the bottom row is

(3.2), Nd,r andMd are defined as the appropriate kernels, and

rk(Md) = N − d, rk(Nd,r) = N + 1− r.

By the Snake Lemma we have the exact commutative diagram
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0 0

↓ ↓
0 → Md → Nd,r → Ad,r → 0

↓ ↓
Sd ⊗OP = Sd ⊗OP
↓ ↓

0→ Ad,r → π∗2(Ed) → Bd,r → 0

↓ ↓
0 0

(3.8)

Lemma 3.3. With notation as above, one has:

(i) Md = π∗2(Md);

(ii)
∧tMd ⊗ tL is globally generated, for any integer 1 6 t 6 rk(Md) = N − d;

(iii) Md|∆̃r,F
→֒ Nd,r|∆̃r,F

→֒ T∆̃r|∆̃r,F
.

Proof. Assertion (i) follows from (3.7) and the left-most exact column in (3.8).

As for (ii), by [15, Proposition 2.2(ii)], the vector bundle Md⊗OG(1) is globally generated, i.e.

H0(G,Md ⊗OG(1)) ⊗OG ։ Md ⊗OG(1). Applying π∗2 to this surjection and using (i), we obtain

an induced surjection

H0(G,Md ⊗OG(1)) ⊗OP ։Md ⊗ L. (3.9)

Similarly, one has H0(P,Md ⊗ L) ∼= H0(P, π∗2(Md ⊗OG(1))). We have

π2∗(π
∗
2(Md ⊗OG(1)) ∼=Md ⊗OG(1) ⊗ π2∗(OP ) ∼=Md ⊗OG(1)

because π2∗(OP ) ∼= OG since the π2-fibers are lines. Thus

H0(P,Md ⊗ L) ∼= H0(G,Md ⊗OG(1)).

This isomorphism and (3.9) yield that Md ⊗ L is globally generated. Then we can conclude the

proof of (ii) as in [19, Corollary 1.2].

Finally we prove (iii). Recall that, for any F ∈ S∗
d , ∆̃r,F identifies with its image in P under

ψ. Accordingly, we identify ψ∗(TP)|∆̃r,F
with TP|π(∆̃r,F )

and, by abusing notation, we denote it by

TP|∆̃r,F
. From the inclusions of schemes

∆̃r,F ⊂ ∆̃r ⊂ P × S∗
d

and the fact that ∆̃r,F is a φ-fiber, we obtain the following exact sequence

0→ T
∆̃r |∆̃r,F

→ TP|∆̃r,F
⊕ (Sd ⊗O∆̃r,F

)→ N
∆̃r,F /P → 0. (3.10)

Restricting the right–most exact column in (3.8) to ∆̃r,F , we get

0→ Nd,r|∆̃r,F
→ Sd ⊗O∆̃r,F

→ Bd,r|∆̃r,F

∼= N∆̃r,F /P → 0, (3.11)
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where the isomorphism on the right is (3.3), whereas the injectivity on the left follows from

T or1(Bd,r;O∆̃r,F
) = 0, since Bd,r is locally free. The sequences (3.11) and (3.10) fit in the ex-

act commutative diagram

0 0

↓ ↓
0→ Nd,r|∆̃r,F

→ Sd ⊗O∆̃r,F
→ N∆̃r,F /P → 0

↓ ↓ ||
0→ T∆̃r |∆̃r,F

→ TP|∆̃r,F
⊕ (Sd ⊗O∆̃r,F

) → N∆̃r,F /P → 0

↓ ↓
TP|∆̃r,F

= TP|∆̃r,F

↓ ↓
0 0 .

(3.12)

Then the left–most column in (3.12) gives N
d,r|∆̃r,F

→֒ T
∆̃r|∆̃r,F

. Finally, by restricting the upper

sequence in (3.8) to ∆̃r,F , we get the inclusionMd|∆̃r,F
→֒ Nd,r|∆̃r,F

, proving (iii). �

By (3.6), Lemma 3.3(iii) ensures that for any integer 1 6 l 6 2n + 1− r, there is an injection

2n+1−r−l∧
M

d|∆̃r,F
⊗ ω

∆̃r,F
→֒

2n+1−r−l∧
T
∆̃r |∆̃r,F

⊗ ω
∆̃r,F

∼= ΩN+1+l

∆̃r |∆̃r,F

. (3.13)

Moreover, (3.5) implies that

2n+1−r−l∧
M

d|∆̃r,F
⊗ω∆̃r,F

∼=
2n+1−r−l∧

M
d|∆̃r,F

⊗
(
r(r − 1)

2
− n− 1

)
L|∆̃r,F

⊗(r(d−r+1)−2)H|∆̃r,F
. (3.14)

Since H is globally generated, 1 6 r 6 min{d, n+1} and d > 2, then (r(d− r+1)− 2)H|∆̃r,F
is globally

generated, as well. Similarly, by Lemma 3.3(ii),
∧2n+1−r−lM

d|∆̃r,F
⊗
(
r(r−1)

2 − n− 1
)
L|∆̃r,F

is globally

generated if r(r−1)
2 − n− 1 > 2n+ 1− r − l, that is if

r(r + 1)

2
− 3n− 2 + l > 0. (3.15)

Taking into account (3.14), we deduce the following

Lemma 3.4. If (3.15) holds, then
∧2n+1−r−lMd|

∆̃r,F

⊗ ω∆̃r,F
is globally generated.

3.4. Subvarieties of ∆̃r,F of positive geometric genus. Let U ⊂ S∗
d be the open dense subset parametriz-

ing polynomials F ∈ S∗
d such that XF is smooth. To ease notation, we still denote by ∆̃r the restriction of

∆̃r ⊂ P × Sd to U , and let

U
φ←− ∆̃r ⊂ P × U

be the projection.

Next we suppose that, up to possibly shrinking U and replacing it with a suitable étale cover, there is a

diagram

Y �

�

//

φ|Y
  
❅

❅

❅

❅

❅

❅

❅

❅

∆̃r

φ

��

U,
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where Y ⊆ ∆̃r is an integral scheme and φ|Y is flat of relative dimension l 6 2n+ 1− r = dim(∆̃r,F ). Then

dim(Y) = N + 1 + l

and, for a general F ∈ U , YF := φ−1
|Y (F ) ⊂ ∆̃r,F is irreducible of dimension l.

Then we consider the diagram

Ỹ ν
//

φ̃
��
❃

❃

❃

❃

❃

❃

❃

❃

Y
φ|Y

��

U,

where ν is a desingularization of Y and φ̃ is the induced map. It follows from the smoothness of Ỹ that the

restriction of ν to a general fiber ỸF := φ̃−1(F ) is a desingularization of YF . Following [15, Section 2], we

shall also assume Y to be invariant under the action of GL(n+ 2) on P × Sd as in Remark 3.1.

Let us consider the map ι : Ỹ −→ ∆̃r, obtained by composing ν with the inclusion Y →֒ ∆̃r. For any

integer l 6 2n+ 1− r, the map ι∗ : Ω1
∆̃r

−→ Ω1
Ỹ induces the map

ΩN+1+l

∆̃r|∆̃r,F

β−→ ΩN+1+l

Ỹ|ỸF

∼= ω
ỸF
,

(cf. [15, Section 2.2(3)]). Composing β with the injection (3.13), we obtain a map

2n+1−r−l∧
M

d|∆̃r,F
⊗ ω∆̃r,F

α−→ ω
ỸF
. (3.16)

Lemma 3.5. Let r, l and d be positive integers such that (3.15) and d > max{2, r} hold. Let Y ⊂ ∆̃r be any

integral subscheme as above (in particular it is invariant under the GL(n+ 2,C)–action on P × Sd). Then,

for F ∈ U general, the map

H0(α) : H0

(
∆̃r,F ,

2n+1−r−l∧
M

d|∆̃r,F
⊗ ω∆̃r,F

)
−→ H0(ỸF , ωỸF

)

induced by (3.16) is non–zero. In particular, the geometric genus of ỸF satisfies pg(ỸF ) := h0(ỸF , ωỸF
) > 0.

Proof. The proof uses the same approach as in [15, Proofs of Lemmas 2.1(i) and 2.3], which in turn follows

[11, 12, 19, 20]. For the reader’s convenience we recall the argument but we will be brief.

Consider the exact sequence

0 −→ T vert
∆̃r
−→ T∆̃r

dψ−→ ψ∗(TP) −→ 0. (3.17)

which defines T vert
∆̃r

:= Ker(dψ). With the usual identification of ∆̃r,F with its projection to P via ψ (cf.

§3.2), (3.17) yields the exact sequence

0→ T vert
∆̃r |∆̃r,F

→ T∆̃r|∆̃r,F
→ TP|∆̃r,F

→ 0, (3.18)

where the injectivity on the left follows from T or1
(
ψ∗(TP);O∆̃r,F

)
= 0. By comparing (3.18) with the

left–most column in (3.12), we deduce that N
d,r|∆̃r,F

∼= T vert
∆̃r|∆̃r,F

. This, (3.6) and Lemma 3.3(iii) yield

c∧
M

d|∆̃r,F
⊗ ω∆̃r,F

→֒
c∧
T vert
∆̃r|∆̃r,F

⊗ ω∆̃r,F
→֒

c∧
T∆̃r|∆̃r,F

⊗ ω∆̃r,F

∼= ΩN+1+l

∆̃r|∆̃r,F

where c := 2n+ 1− r − l.

By the GL(n+ 2)-invariance of Y we have also the exact sequence

0 −→ T vert
Y −→ TY

dψ−→ ψ∗(TP) −→ 0

(cf. [12, Remark 2.3(a)] and [15, Lemma 2.1(i)]), hence given a smooth point ξ := (x, [ℓ], F ) ∈ Y we have

codimTvert

∆̃r,ξ

(T vert
Y,ξ ) = codim∆̃r

(Y) = c.
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Now H0(∆̃r,F ,
∧cM

d|∆̃r,F
⊗ ω∆̃r,F

) can be considered as a space of global sections of a line bundle over

the relative Grassmannian of c–codimensional subspaces of T vert
∆̃r|∆̃r,F

⊗ ω∆̃r,F
. Then the global generation of

∧cM
d|∆̃r,F

⊗ ω∆̃r,F
, which holds by Lemma 3.4, implies that there exists a section

s ∈ H0

(
∆̃r,F ,

c∧
M

d|∆̃r,F
⊗ ω∆̃r,F

)
⊂ H0

(
∆̃r,F ,Ω

N+1+l

∆̃r|∆̃r,F

)

such that

s(x, [ℓ]) /∈ Ann(T vert
Y,ξ ).

Since ι : Ỹ → ∆̃r is generically an immersion, we obtain a non-zero element in H0(ỸF , ωỸF
). �

If l > n, then r(r+1)
2 > 2n+ 2 implies (3.15), and we have:

Corollary 3.6. Let r, l > n and d be positive integers such that d > max{2, r}. Suppose there is a Y as in

Lemma 3.5, such that for F ∈ U general one has pg(ỸF ) = 0 (e.g. when ỸF is uniruled), then

r(r + 1)

2
6 2n+ 1. (3.19)

Moreover, if F ∈ U is very general and if ∆̃r,F has a l-dimensional irreducible subvariety YF fitting in a

GL(n+ 2,C)–invariant family, whose desingularization ỸF has pg(ỸF ) = 0, then (3.19) holds.

Proof. The first part follows by Lemma 3.5. As for the final assertion, suppose (3.19) does not hold. Then

Lemma 3.5 yields that the set of polynomials F ∈ U as in the statement is the union of countably many

closed subsets of U . Hence the assertion holds. �

4. Covering gonality of very general hypersurfaces

In this section we conclude the proof of Theorem 1.1. To start, we prove the following.

Theorem 4.1. Let X ⊂ Pn+1 be a very general hypersurface of degree d > 2n+ 2. Then

cov. gon(X) > d−
⌊√

16n+ 9− 1

2

⌋
.

Proof. For n = 1 and n = 2, the assertion holds as the covering gonality of X is d− 1 and d− 2, respectively

(cf. [7, Teorema 3.14] and [13, Corollary 1.8]). So we assume hereafter that n > 3.

Let F ∈ S∗
d be very general, set c := cov. gon(XF ) and consider a covering family C π−→ T of c-gonal

curves as in §2.4 from which we keep the notation. We will assume that the curves of C have minimal degree

among all c-gonal curves covering XF .

Since n > 3, Theorem 2.8 yields c 6 d − 3. Thus Proposition 2.11 applies; for general (t, y) ∈ T × P1,

there exists a line ℓ(t,y) ⊂ V d−cxt
such that

ℓ(t,y) ·X = (d− c)xt + f(q1) + · · ·+ f(qc)

where q1 + · · ·+ qc is a divisor of a g1c on Ct. Then we define the map

ΨC : T × P1 99K ∆̃d−c,F
(t, y) 7−→ (xt, [ℓt,y] , F )

.

The variety YF,C := ΨC (T × P1) ⊂ ∆̃d−c,F is covered by the rational curves ΨC ({t} × P1), with t ∈ T . As

(t, y) ∈ T × P1 vary, the lines ℓt,y describe a n-dimensional subvariety of the Grassmannian G(1, n+ 1) (cf.

§2.4), so that dim(YF,C) = n.

Define

YF :=
⋃

C
YF,C ⊂ ∆̃d−c,F
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with C varying among the (finitely many maximal) families of c-gonal curves of minimal degree covering XF .

We may pretend YF to be irreducible, otherwise we replace it with one of its irreducible components. One

has dim(YF ) > n and YF is covered by rational curves. Clearly the last assertion of Corollary 3.6 can be

applied to YF , with r = d− c, so
(d− c)(d− c+ 1)

2
6 2n+ 1 hence d− c 6

√
16n+ 9− 1

2
.

Being c an integer, we find the lower bound in the statement. �

The conclusion of the proof of Theorem 1.1 is given by the following elementary computational Lemma,

whose proof can be left to the reader.

Lemma 4.2. Let n ∈ N. Then

⌊√
16n+ 9− 1

2

⌋
=





⌊√
16n+ 1− 1

2

⌋
+ 1 if n ∈

{
4α2 + 3α, 4α2 + 5α+ 1

∣∣α ∈ N
}

⌊√
16n+ 1− 1

2

⌋
otherwise.

5. Final remarks, open problems and speculations

5.1. Are all curves computing the covering gonality planar? As we mentioned in the Introduction,

an interesting problem is to characterize the curves computing the covering gonality of a very general hyper-

surface X ⊂ Pn+1 of degree d > 2n+ 1, in particular, one may ask the following:

Question 5.1. If X ⊂ P
n+1 is a very general hypersurface of degree d > 2n+ 1, are the curves computing

the covering gonality plane curves?

The proof of Theorem 1.1 shows that this question is related to the existence of rational curves on certain

complete intersections. Specifically, if c = cov. gon(X), h = d − c and x ∈ Xh
1 (see §2.3) is a very general

point, one is led to ask the following:

Question 5.2. Does Λhx ⊂ Pn−1 contain rational curves other than lines?

Recall that when Y ⊂ Pm is a very general hypersurface of degree 2m− 3, then all rational curves on Y

are lines, whereas there are no rational curves on very general hypersurfaces of degree 2m− 2 (cf. [15, 19]).

The integer h =
⌊√

16n+1−1
2

⌋
is the largest such that the locus of complete intersections Y ⊂ Pn−1 of type

(2, . . . , h − 1) containing a line has codimension at most 1 in the parameter space. Thus it is natural to

investigate whether the general Y containing a line may contain other rational curves, i.e. Question 5.2 arises

very naturally in this context.

A negative answer to Question 5.2 is a necessary condition for an affirmative answer to Question 5.1.

However this condition is not sufficient, as the cases n 6 7 show.

If n = 3, then h = 3 and X3
1 is the locus of points x ∈ X such that the conic Λ3

x is reducible, so that

the answer to Question 5.2 is negative. However, if x ∈ X is general, then Λhx is an irreducible conic and the

intersection of the irreducible cone V hx with X is not a plane curve but it still has gonality d − 3. Similar

considerations for n = 4, for which again h = 3.

If n = 5, then h = 4, and X4
1 is the locus of points x ∈ X such that Λ3

x, a K3 surface of degree 6

in P4, contains a line. The general such a surface contains no other rational curve, so again the answer to

Question 5.2 is negative. However, if x ∈ X is general, then Λhx is a general K3 surface of degree 6 in P4,

which contains infinitely many singular rational curves, so that again there are (infinitely many) covering

families of X consisting of (d− 4)–gonal curves other than plane curves. Similar considerations for n = 6, 7,

for which still h = 4.

Hence, to hope for an affirmative answer to Question 5.1 it is necessary to assume n sufficiently large.
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5.2. The connecting gonality. Another birational invariant introduced in [4] is the connecting gonality,

defined as

conn. gon(Y ) := min

{
c ∈ N

∣∣∣∣
Given two general points y1, y2 ∈ Y, ∃ an irreducible

curve C ⊂ Y such that y1, y2 ∈ C and gon(C) = c

}
.

Since having conn. gon(Y ) = 1 is equivalent to being rationally connected, the connecting gonality can be

thought as a measure of the failure of Y to satisfy such a property.

When X ⊂ P
n+1 is a very general hypersurface of degree d > 2n + 2, our approach may determine

restrictions also to conn. gon(X). Indeed, one could argue as in §2.2 and §2.3, and look for complete inter-

sections in Pn−1 of type (2, 3, . . . , h− 1) containing large dimensional families of lines (see e.g. [5, Corollary

2.2]). Since the dimension of a family of curves computing conn. gon(X) must be at least 2n− 2 (see e.g. [2,

Secton 2.1]), a naive computation suggests the following upper bound

conn. gon(X) 6 d−
⌊√

8n+ 9− 1

2

⌋
. (5.1)

On the other hand, the curves computing the connecting gonality of X are still governed by Proposition 2.11.

Thus a lower bound on conn. gon(X) could be obtained by improving the argument of Section 3.

In analogy with the covering gonality, one may naively conjecture that inequality (5.1) is actually an

equality. Then (1.3) would imply that the difference between the covering and connecting gonality diverges

as n grows. This would answer to a question raised in [4, Section 4].

5.3. The irrationality degree. Given an irreducible projective variety X of dimension n, for any positive

integer k 6 n one may define the k–irrationality degree of X to be the birational invariant

irrk(X) := min



c ∈ N

∣∣∣∣∣∣

Given a general point x ∈ X, ∃ an irreducible

subvariety Z ⊆ X of dimension k such that x ∈ Z and

there is a rational dominant map Z 99K Pk of degree c



 .

If k = n, this is the irrationality degree irr(X) of X (see [1] for references), whereas irr1(X) = cov. gon(X).

Of course one has

irr(X) > irrn−1(X) > · · · > irr2(X) > cov. gon(X).

It would be interesting to study this string of inequalities for X ⊂ Pn+1 a very general hypersurface as above.

It is likely that our methods could be useful for that. We hope to come back to this in the future.

Interestingly enough, a relevant amount of the inequalities above must consist of equalities. Indeed, [4,

Theorem A] ensures that irr(X) = d−1, so that Theorem 1.1 yields that irr(X)−cov. gon(X) 6
⌊√

16n+1−1
2

⌋
,

which asymtotically equals 2
√
n.

5.4. Gaps. Finally, given an irreducible projective variety X of dimension n, for any positive integer k 6 n

one can consider the following numerical set

Nk(X) :=



c ∈ N

∣∣∣∣∣∣

Given a general point x ∈ X, ∃ an irreducible

subvariety Z ⊆ X of dimension k such that x ∈ Z and

there is a rational dominant map Z 99K Pk of degree c



 .

Of course

Nn(X) ⊆ Nn−1(X) ⊆ . . . N2(X) ⊆ N1(X).

A gap for Nk(X) is an integer c ∈ N such that c 6∈ Nk(X). It is not difficult to see that the set of gaps

of Nn(X) is bounded, so is the set of gaps of Nk(X) for all k 6 n (see e.g. [4, Problem 4.6]). It would be

interesting to study the sets of gaps of Nk(X), for X a very general hypersurface in Pn+1 as above. In this

direction, we note that [13, Theorem 1.3] leads to relevant results in the case of surfaces in P
3.
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