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1. Introduction

Let g andn > 2 − 2g be non-negative integers. ByMg,n we denote the moduli space
of n-pointed genusg stable complex curves. Recall that the points of this space are in
one-to-one correspondence with isomorphism classes[C; p1, . . . , pn] of (arithmetic) genus
g curves withn non-singular marked points and finitely many automorphisms.

The rich and fascinating structure of the spaceMg,n has been intensively studied in the
past decades. Quite often, combinatorial tools have been rather useful in understanding the
geometry of this space. Conversely, geometric properties ofMg,n have been rarely used as
possible tools for combinatorial topics.

The aim of this paper is to introduce some natural symmetric polynomialsξgn andτ gn,
which are associated with sheaf cohomology groups ofMg,n. This gives a concrete way of
calculating the rank of such groups. For these purposes, we apply standard vanishing results
which hold on normal, projective,Q-factorial varieties likeMg,n - see Theorems 0.17 and
0.20.

When in particularg = 0, we first give recursion relations to carry out an explicit calcula-
tion of ξ0n andτ0

n; furthermore, we determine a natural way of defining symmetric functions
on several Cartier divisors ofM0,n, which are surprisingly defined as differences of sym-
metric functions on the ambient spaceM0,n (cf. Claims 0.48 and 0.51).

The paper consists of five sections. In Section 1, we briefly recall basic terminology as
well as we introduce notation which will be used in the rest of the paper.

In Section 2, we focus our attention on the spaceMg,n. More precisely, we consider
two Weil divisorsAg(a1, . . . , an) andDg(a1, . . . , an), which are defined for anyn-tuple of
non-negative integers(a1, . . . , an) 6= (0, . . . , 0) and which are invariant under the action of

————
The authors are members of EAGER, GNSAGA-INdAM and U.M.I.



78 Gilberto Bini and Flaminio Flamini

the symmetric groupSym(n) onMg,n - see Formulas (0.10), (0.11), (0.26) and Proposi-
tions 0.6, 0.12, respectively.

In Section 3, we apply some vanishing results to these divisors and the Hirzebruch-
Riemann-Roch Theorem in order to define symmetric functions onMg,n,

ξgn(a1, . . . , an) and τ gn(a1, . . . , an),

whose definition is related to the geometry of the spaceMg,n (cf. Definitions 0.23 and
0.25).

In Section 4, we give examples in the genus zero case. Notably, we deduce recursive
relations for the symmetric polynomialsξ0n(a1, . . . , an). In particular, we show that the
symmetric functionsγn(a1, . . . , an) onM0,n in [13] are particular cases of the more gen-
eral family of symmetric functionsξgn(a1, . . . , an), which are defined for any genusg ≥ 0
and not only in the genus-zero case. Furthermore, the functionsξ0n(a1, . . . , an) - when suit-
ably extended - can be used to compute the other symmetric polynomialsτ0

n(a1, . . . , an).
In Section 5 we also introduce other natural symmetric functions on suitable effective

Cartier divisors of the smooth projective varietyM0,n. These symmetric functions are
defined as a difference of theξgn’s and theτ gn ’s, which exist on the ambient spaceM0,n (see
Claims 0.48 and 0.51).
As for notation and terminology, note that the wordschemewill throughout refer to an al-
gebraic scheme overC. The termvariety will be used for an integral scheme. A general
convention adopted hereafter is to work additively with divisors and multiplicatively with
line bundles.
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versity of Michigan, where the authors began to discuss the subject of this paper. Finally,
the second author expresses his gratitude to GNSAGA-INdAM, V. Barucci, A. F. Lopez and
E. Sernesi for their financial support during his visiting position in the U.S.A.

2. Preliminaries and Notation

In this section we discuss some fundamental results and some basic facts we shall use
throughout. For further details and terminology that is not defined here, the reader is referred
to, for example [5].

Let X be a normal, irreducible, projective scheme. Denote byZ1(X) (resp.Div(X))
the group of Weil divisors (resp. Cartier divisors) onX. The symbols∼ and≡ will denote
linear and numerical equivalence onDiv(X) andZ1(X), respectively. As customary, we
set

A1(X) = Z1(X)/ ≡ and Pic(X) = Div(X)/ ∼ .

An element ofZ1(X) ⊗ Q (resp. Div(X) ⊗ Q) is called aQ-divisor (resp. Q-Cartier
divisor). By abuse of notation and terminology,KX denotes thecanonical divisorof X.
By definition, it is theQ-divisor which uniquely extends the canonical divisor on the smooth
algebraic schemeX \ Sing(X).

We recall that a normal, irreducible, projective schemeX is said to beQ-factorial if
Z1(X) ⊗ Q = Div(X) ⊗ Q, that is, anyQ-divisor is aQ-Cartier divisor. In such a case,
givenD ∈ Z1(X) ⊗ Q, the least positive integermD such thatmDD is Cartier is called
the index ofD. In particular, the smallest positive integerjX such thatjXKX is Cartier is
calledthe index of X.
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We recall that aQ-divisor is callednef if its intersection with any irreducible curve in
X is non-negative. Furthermore, a nefQ-divisor D is said to bebig if the highest self-
intersection numberDn is positive (we refer the reader to, for example, [10] for equivalent
definitions).

Finally, if D is aQ-divisor such thatKX +D is Q-Cartier and ifµ is a log-resolution of
the pair(X,D), then consider

KX′/X − µ∗(D) := KX′ − µ∗(KX +D) ≡
∑
i

aiEi,

where theEi’s are distinct irreducible divisors (not necessarily allµ-exceptionals); we recall
that the pair(X,D) is called

(i) canonicalif ai ≥ 0, for eachEi µ-exceptional;
(ii) Kawamata log-terminal(k.l.t., for short) ifai > −1 for eachEi.

SinceKX′/X is alwaysµ-exceptional, thenX is said to have onlycanonical singularities
if the pair(X, 0) is canonical.

3. Some Fundamental Vanishing Theorems

Among the various results onQ-divisors of normal varieties, we shall apply the machin-
ery of vanishing theorems as a general fundamental tool to define new symmetric functions.
In the sequel, we shall be mainly concerned with the following result.

Theorem 0.1. (see[10], page 73) (General Kodaira Vanishing Theorem) Let(X,∆) be a
k.l.t. pair, whereX is a proper, algebraic scheme. LetN be aQ-Cartier Weil divisor onX
such thatN ≡M + ∆, whereM is a nef and bigQ-Cartier Q-divisor. Then

H i(X,OX(−N)) = (0), for each i < dim(X).

Note that, whenX is smooth, we will also use the standard Kodaira Vanishing Theorem
(see, for example, [10], page 62).

4. Some Geometric Properties of Moduli Spaces ofn-pointed Stable Curves

In this section we review some properties of moduli spaces of genusg curves withn
marked points, which will be used in the next sections.

For any pair of non-negative integersg andn, n > 2 − 2g, let (C; p1, . . . , pn) be a re-
duced, connected, (at worst) nodal curve of arithmetic genusg with n non-singular marked
points. Recall that(C; p1, . . . , pn) is Deligne-Mumford stableif ωC(

∑n
i=1 pi) is ample,

whereωC denotes the dualising sheaf ofC. As customary, denote byMg,n the moduli
space ofstable curvesof arithmetic genusg with n marked points. It is well known that
Mg,n is projective and has complex dimension3g − 3 + n. Moreover, it is normal,Q-
factorial and Cohen-Macaulay (see, for instance, [11]). Furthermore, wheng = 0 and
n ≥ 3,M0,n is a smooth variety.

Theorem 0.2. (see[11], Theorem 2.5) Letg ≥ 4 andn ≥ 0 be integers. ThenMg,n has
only canonical singularities.

By Remark 7.25 in [5] and by what we recalled in Section , we have the following result.

Corollary 0.3. Letg ≥ 4 andn ≥ 0 be integers. Then the pair(Mg,n, 0) is k.l.t.
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For the purpose of what follows, we need to recall the description ofPic(Mg,n)Q: see,
for instance, [1], [2] for further details. Here, byPic(Mg,n)Q we mean the abelian group
Pic(Mg,n)⊗Q.

Notation 0.4. Recall the following standard definitions.

• LetLi, 1 ≤ i ≤ n, be the line bundle onMg,n whose fibre at the point[C; p1, . . . , pn]
is the cotangent space at the smooth pointpi to the curveC. Its first Chern class is
usually denoted byψi.

• As customary, denote byλ the first Chern class of the vector bundle whose fibre at
ann-pointed curveC is the space of holomorphic differentialsH0(C;ωC), where
ωC is the dualising sheaf onC.

• Fix, now, 0 ≤ i ≤ bg/2c, S ⊂ {1, . . . , n}, where|S| ≥ 2, n − |S| ≥ 2, if
i = 0. Moreover, ifg is even andi = bg/2c, we assume thatn ∈ S. Following
standard notation, letδi,S be the divisor class onMg,n whose generic point is
given by a reducible curve with a single node. The removal of such a node yields
two irreducible curvesC1 andC2 of genusi andg− i, with |S|+1 andn−|S|+1
marked points, respectively. The assumptions fori = 0 on |S| guarantee thatC1 is
a stable curve; the requirement onS for i = bg/2c, g even, avoids enumerating the
same class twice.

• Next, denote byδirr the divisor class whose generic point is an irreduciblen-
pointed genusg curve with just one node.

When for exampleg = 0, the classλ equals0 and, following [1], we have

(0.5) ψi =
∑
i∈S

j 6=k/∈S

δ0,S ,

whereS ⊂ {1, . . . , n}, |S|, |Sc| ≥ 2. Note that eachδ0,S is an irreducible subvariety of
M0,n, since it is isomorphic to a product of moduli spaces of rational curves. Therefore the
divisorsψi are Cartier divisors. This depends on the more general fact thatM0,n is smooth,
for eachn ≥ 3, so each Weil divisor is Cartier.

As proved in [3],Pic(Mg,n)Q is an abelian group generated byλ, δirr,ψi (1 ≤ i ≤ n),
andδi,S (0 ≤ i ≤ bg/2c, S ⊂ {1, 2, . . . , n}). Wheng = 0, the generators reduce to the
classesδ0,S , |S| ≥ 2 (see [9]).

We now consider some results on divisors ofMg,n which will be fundamental to apply-
ing Theorem 0.1. In this way, we will be able to define various symmetric functions on
Mg,n.

Proposition 0.6. ConsiderMg,n, with g ≥ 0 andn > 2− 2g.

(i) If g = 0 andn ≥ 4, the Cartier divisor

(0.7) D1(a1, . . . , an) :=
n∑
i=1

aiψi −
∑
|S|≥2

δ0,S

is ample onM0,n for ai ∈ N, 1 ≤ i ≤ n.
(ii) Let g ≥ 1 andn ≥ 0 be integers such that2g − 2 + n > 0. Leta1, . . . , an, b be

positive integers such thatb > 11. Then theQ-divisor

(0.8) D2(a1, . . . , an, b) =
n∑
i=1

aiψi + bλ− δirr −
∑
i≥0

∑
S

δi,S
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is ample. Note that the last sum in (0.8) ranges over all pairs(i, S) such that the
corresponding divisorδi,S is well defined.

Proof. (i) Clearly, for any reduced and irreducible subvarietyY ⊂M0,n, we have n∑
i=1

aiψi −
∑
|S|≥2

δ0,S

dim(Y )

· Y ≥

 n∑
i=1

ψi −
∑
|S|≥2

δ0,S

dim(Y )

· Y.

By the Grothendieck-Riemann-Roch Theorem, it follows that
∑n

i=1 ψi−
∑

|S|≥2 δ0,S = κ1,

which is well known to be ample onM0,n. ThusDdim(Y )
1 · Y > 0, for eachY ⊂ M0,n;

henceD1 is ample by the Nakai-Moishezon criterion for ampleness.

(ii) By what was proved in [4], the divisor
n∑
i=1

ψi + bλ− δirr −
∑
i≥0

∑
S

δi,S

is ample onMg,n for g ≥ 1, n ≥ 0, 2g− 2 +n > 0. Sinceai > 0, the claim easily follows
by applying Nakai-Moishezon’s criterion as in (i). �

SinceMg,n is Q-factorial, denote bymi andmλ the indices ofψi, 1 ≤ i ≤ n, and ofλ,
respectively. We set

(0.9) bi := miai, 1 ≤ i ≤ n, and B := mλb.

For the sake of simplicity, putδ := δirr +
∑

i≥0

∑
S δi,S . We thus define the (Weil) divisor

(0.10)

Ag(a1, . . . , an) :=
{
D1(a1, . . . , an) for g = 0, n ≥ 4,∑n

i=1 biψi +Bλ− 2δ for g ≥ 1, n ≥ 0, 2g − 2 + n > 0,

which is ample by Proposition (0.6).
On the other hand, we can also consider the Weil divisor

(0.11) Dg(a1, . . . , an) :=
n∑
i=1

ai(miψi) =
n∑
i=1

biψi

(note thatmi = 1, 1 ≤ i ≤ n, wheng = 0).
We now prove the following result (see for example [7] for an alternative approach).

Proposition 0.12.Letg ≥ 0 andn > 2−2g. Let(a1, . . . , an) 6= (0, . . . , 0) be non-negative
integers. The divisorDg(a1, . . . , an) in (0.11)is nef and big onMg,n.

Proof. EachQ-divisor ψi, 1 ≤ i ≤ n, is nef, as follows from [8]. Since the integers
bi = miai are non-negative,

∑n
i=1 biψi is nef too. To prove that

∑n
i=1 biψi is big, we first

show that each of theψi’s has positive top self-intersection. This is equivalent to showing
that ∫

Mg,n

ψ3g−3+n
i > 0.

As proved by purely geometric arguments in [6], we have

(0.13)
∫
Mg,n

ψ3g−3+n
i =

∫
Mg,1

ψ3g−2
i =

1
g!(24)g
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and

(0.14)
∫
M0,n

ψn−3
i = 1.

Since eachψi is nef, this proves that it is also big. Furthermore, we also have

(0.15) ψi11 · ψi22 . . . · ψinn ≥ 0

when
∑n

j=1 ij = 3g − 3 + n. Indeed, wheng = 0 andn ≥ 3,

(0.16) ψi11 . . . ψinn =
(
n− 3
i1 . . . in

)
> 0.

On the other hand, wheng = 1, denote byπk : M1,k+1 →M1,k, k ≥ 1, the map which
forgets the last point and contracts unstable components. By applyingπk,∗ for 1 ≤ k ≤
n− 1, the push-forward of the classψi11 . . . ψinn is a positive multiple of the Mumford class
κ1, which is known to be ample onM1,1. Analogously, forg ≥ 2, by a formula due to C.
Faber, (0.15) can be pushed forward to obtain a polynomial in the Mumford classes over
Mg with positive rational coefficients. Since Mumford classes are effective, then Formula
(0.15) holds. Therefore we have

(
n∑
i=1

biψi)3g−3+n > 0.

Since
∑n

i=1 biψi is nef, it is also big. Hence the claim follows. �

5. Vanishing theorems onMg,n and related symmetric functions

The aim of this section is to determine various symmetric functions onMg,n. When, in
particular,g = 0 andn ≥ 3 we shall relate our symmetric functions with those studied in
[13] (see, for example, Section ).

Theorem 0.17.Let g ≥ 0 andn > 2− 2g be non-negative integers such that(Mg,n, 0) is
k.l.t. Let(a1, . . . , an) 6= (0, . . . , 0) be non-negative integers. Then

Hq(Mg,n,OMg,n
(−Dg(a1, . . . , an)) = (0), for each q < 3g − 3 + n.

In particular, the vanishings hold wheng = 0 andn ≥ 4 or wheng ≥ 4 andn ≥ 0 (see
Theorem 0.2 and Corollary 0.3).

Proof. By Proposition 0.12, the divisorDg(a1, . . . , an) is big and nef. By Theorem 0.2 and
Corollary 0.3 applied toMg,n, we can apply Theorem 0.1. �

By Proposition 5.75 in [10], the dualising sheafωMg,n
is isomorphic toOMg,n

(KMg,n
).

Thus by Serre’s duality we have the following result.

Corollary 0.18. Under the assumptions of Theorem 0.17,

(0.19)
χ(KMg,n

+Dg(a1, . . . , an)) = h0(KMg,n
+Dg(a1, . . . , an)) =

h3g−3+n(−Dg(a1, . . . , an)) = (−1)3g−3+nχ(−Dg(a1, . . . , an)),

whereχ(−) denotes the Euler characteristic of the sheaf−, andhj(Mg,n,−) the dimen-
sions of the cohomology vector spaces.

In particular, (0.19)holds wheng = 0 andn ≥ 4 or wheng ≥ 4 andn ≥ 0.
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Proof. Since we have

χ(OMg,n
(KMg,n

+Dg(a1, . . . , an))) = (−1)3g−3+nχ(OMg,n
(−Dg(a1, . . . , an))),

the claim follows from Theorem 3.1 and Serre’s duality. �

Since the divisorAg(a1, . . . , an) in (0.10) is ample, then it is in particular nef and big.
Thus, the same proof of Theorem 0.17 yields the following result.

Theorem 0.20.Let g ≥ 0 andn > 2− 2g be non negative integers such that(Mg,n, 0) is
k.l.t. Then, with the same notation adopted in(0.10), we have

Hq(Mg,n,OMg,n
(−Ag(a1, . . . , an))) = (0), for each q < 3g − 3 + n.

In particular, the vanishings above hold wheng = 0 andn ≥ 4 or wheng = 0 andn ≥ 4.

Therefore we have the following result.

Corollary 0.21. Under the same assumptions of Theorem 0.20,

(0.22)
χ(KMg,n

+Ag(a1, . . . , an)) = h0(KMg,n
+Ag(a1, . . . , an)) =

h3g−3+n(−Ag(a1, . . . , an)) = (−1)3g−3+nχ(−Ag(a1, . . . , an)),

whereχ(−) is the Euler characteristic of the sheaf−, andhj(Mg,n,−) the dimensions of
the cohomology spaces.

In order to define some natural symmetric functions onMg,n, one can use Corollary
0.21. Indeed, observe that the symmetric groupSym(n) (or Σn) acts in a natural way on
Mg,n by permuting the markings.

Recall Notation 0.4. The action ofSym(n) permutes the isomorphism classes of the line
bundlesLi in the obvious manner. The divisorλ is Sym(n)-invariant, since it does not
depend on the marked points. By definition, the divisorδirr is Sym(n)-invariant. Finally,
even ifδi,S is notSym(n)-invariant, the divisor

∑
i>0,|S|≥2 δi,S is. Therefore we have the

following definition.

Definition 0.23. For anyn-tuple (a1, . . . , an) of non-negative integers and either forb >
11, g ≥ 4 andn ≥ 1 or for g = 0 andn ≥ 4, one has the symmetric function

(0.24)
τ gn(a1, . . . , an) := h0(Mg,n,OMg,n

(KMg,n
+Ag(a1, . . . , an)))

= χ(KMg,n
+Ag(a1, . . . , an)).

Other natural symmetric functions onMg,n are determined by Corollary 0.18. Indeed,
we have the following.

Definition 0.25. For anyn-tuple (a1, . . . , an) 6= (0, . . . , 0) of non-negative integers, and
either forg = 0 andn ≥ 4 or for g ≥ 4 andn ≥ 1, one has the symmetric function

(0.26)
ξgn(a1, . . . , an) := h0(Mg,n,OMg,n

(KMg,n
+Dg(a1, . . . , an)))

= χ(KMg,n
+Dg(a1, . . . , an)).

Clearly, ifσi, 1 ≤ i ≤ n, denotes theith-elementary symmetric function, then

ξgn(a1, . . . , an) ∈ Q[σ1, . . . , σn], and τ gn(a1, . . . , an) ∈ Q[σ1, . . . , σn]

whenever they are defined.
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Remark 0.27. Let R := Q[σ1, . . .] be the infinite polynomial ring in the indeterminates
{σd}d∈N. Define a grading onR by assigning to the variableσd the weightd. Forf ∈ R,
the degree off is the highest weight of the monomials which appears inf . By direct
inspection, the degree ofτ gn andξgn is 3g − 3 + n, since they both contain monomials of
total degree3g − 3 + n.

5. The Symmetric Functionsτ and ξ in Genus Zero

In this section, we focus on the caseg = 0. SinceM0,n is smooth, all the integersmi

in (0.9) are equal to1. Thus, with the same notation adopted in (0.9),bi = ai for each
1 ≤ i ≤ n. Here we show how to compute recursive formulas for the symmetric functions
τ0
n(a1, . . . , an) in (0.23) andξ0n(a1, . . . , an) in (0.26). Furthermore, this will also enable us

to define some symmetric functions on several effective Cartier divisors ofM0,n.
In this section, we shall work under the assumptiong = 0 andn ≥ 3. SinceM0,n is

smooth for eachn ≥ 3, KM0,n
is of index one. Additionally, it is possible to give a closed

expression forKM0,n
.

Proposition 0.28. Letn ≥ 3 be an integer. Then

(0.29) KM0,n
=

n∑
i=1

ψi − 2
∑
|S|≥2

δ0,S .

Proof. We use induction onn. Forn = 3, both sides of (0.29) are zero since the moduli
spaceM0,3 is a point. Denote byπn : M0,n →M0,n−1, n ≥ 4, the map which forgets the
last point and passes to the ‘stable’ model. Sinceπn is a smooth morphism, then

KM0,n
= π∗n(KM0,n−1

) + ψn −
∑
i,n∈S
|S|=2

δ0,S .

The result thus follows from the relation

π∗n(ψi) = ψi − δ0,{i,n}.

�

Remark 0.30. By (0.5) and suitable relations in [9], Formula (0.29) can be further simpli-
fied (see, for instance, [14]). This expression shows more clearly the invariance ofKM0,n

with respect to the action of the symmetric group, as explained in Section .

Let us now consider the ample divisorA0(a1, . . . , an) in (0.7). By (0.29), we get

(0.31) KM0,n
+A0(a1, . . . , an) ∼

n∑
i=1

(ai + 1)ψi − 3
∑
|S|≥2

δ0,S .

Therefore from Definition (0.23) we get the symmetric function

(0.32) τ0
n(a1, . . . , an) = h0(M0,n,

n∑
i=1

(ai + 1)ψi − 3
∑
|S|≥2

δ0,S),

which is defined for eachai > 0, 1 ≤ i ≤ n.
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On the other hand, by (0.11), (0.29) and by the fact thatmi = 1, 1 ≤ i ≤ n, we get

(0.33) KM0,n
+D0(a1, . . . , an) ∼

n∑
i=1

(ai + 1)ψi − 2
∑
|S|≥2

δ0,S .

Accordingly, from Definition (0.25) we obtain the symmetric function

(0.34) ξ0n(a1, . . . , an) = h0(M0,n,
n∑
i=1

(ai + 1)ψi − 2
∑
|S|≥2

δ0,S)

for anyn-tuple(ai, . . . , an) 6= (0, . . . , 0) of integers.
It is possible to compute theξ0n’s via simple recursion relations, which can be derived

from the geometry ofM0,n. More precisely, we have the following result.

Theorem 0.35.The functionξ0n(a1, . . . , an) ∈ Q[σ1, . . . , σn] is determined by the recursive
relations
(0.36)

ξ0n+1(a1, . . . , an, 0) = −ξ0n(a1, . . . , an) +
n∑
i=1

ai−1∑
j=0

ξ0n(a1, . . . , ai−1, j, ai+1, . . . , an, a3)

and the initial condition

(0.37) ξ03(a1, a2, a3) = 1.

Proof. First of all, note that the initial condition (0.37) holds sinceM0,3 is a point. Next,
observe that, by Serre’s duality,

ξ0n(a1, . . . , an) = h0(M0,n,KM0,n
+D0(a1, . . . , an))

= hn−3(M0,n,−D0(a1, . . . , an))

= (−1)n−3χn(−D0(a1, . . . , an)),

whereχn(−D0(a1, . . . , an)) denotes the Euler characteristic of the sheaf associated with
−D0(a1, . . . , an). Our strategy is similar to that in [13]. Indeed, to obtain (0.36), we
compare the symmetric functionsξ0n andξ0n+1. By Remark 0.27,ξ0n is a symmetric function
of degree at mostn− 3. The map from the ring of symmetric functions ina1, . . . , an to the
ring of symmetric functions ina1, . . . , an−1 is bijective for symmetric functions of degree
at mostn− 1. Henceξ0n(a1, . . . , an) is completely determined byξ0n(a1, . . . , an−1, 0).

Let us denote byLi,n the line bundle corresponding to the divisorsψi on M0,n. By
πn+1 : M0,n+1 →M0,n we denote the map which forgets the last marked point and passes
to the ‘stable’ model. We recall that

(0.38) π∗n+1(Li,n)⊗O
(
δ0,{i,n+1}

) ∼= Li,n+1, i = 1, . . . , n.

In particular, sinceδ0,{i,n+1}δ0,{j,n+1} = 0, i 6= j, the restrictions ofLi,n+1 andπ∗n+1(Li,n)
to δ0,{i,n+1} are isomorphic. On the other hand, note thatLi,n+1 is trivial when restricted
to δ0,{i,n+1}, whereasπ∗n+1(Li,n) is not. By what we recalled above, if we tensor the exact
sequence

0 → OM0,n
(−δ0,{i,n+1}) → OM0,n

→ Oδ0,{i,n+1} → 0
by

π∗n+1(L∨i,n)b+1 ⊗ (L∨i,n+1)
a

and we take the duals in (0.38), we obtain the exact sequence:

0 → π∗n+1(L∨
b
i,n)⊗L∨

a+1
i,n+1 → π∗n+1(L∨

b+1
i,n+1)⊗L∨

a
i,n+1 → π∗n+1(L∨

a
i,n)⊗Oδ0,{i,n+1} → 0,
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wherea, b are non-negative integers. By repeated application of the last exact sequence, we
have (for the sake of simplicity we switch to divisor notation):

(0.39) χn+1(−D0(a1, . . . , an)) = χn+1(−π∗n+1(D0(a1, . . . , an)))

−
∑
i

ai−1∑
j=0

χn+1

(
−π∗n+1(a1ψ1 + . . . ai−1ψi−1 + jψi + . . .+ anψn)⊗Oδ0,{i,n+1}

)
.

Sinceπ∗n+1(OM0,n−1
) ∼= OM0,n

, Leray’s isomorphism and Theorem 0.1 yield

χn+1(−π∗n+1(
n∑
i=1

aiψi)) = χn(−(
n∑
i=1

aiψi)) = (−1)n−3ξ0n(a1, . . . , an).

Analogously,

χn+1

(
−π∗n+1(a1ψ1 + . . . ai−1ψi−1 + jψi + . . .+ anψn)⊗Oδ0,{i,n+1}

)
= (−1)n−3ξ0n(ai, . . . , ai−1, j, . . . , an).

Thus the claim follows since

χn+1(−
n∑
i=1

aiψi) = (−1)n−2ξ0n(a1, . . . , an, 0).

�

Remark 0.40. So far, the functionsξ0n(a1, . . . , an) have been defined for non-negative in-
tegers. However, by the Grothendieck-Riemann-Roch Theorem, we remark that

(0.41) h0(M0,n,KM0,n
+

∑n
i=1 aiψi) =

∫
M0,n

e
KM0,n

+
Pn

i=1 aiψi
Td(M0,n)

= ξ0n(a1, . . . , an).

By the second equality in (0.41), the functionsξ0n can be extended to anyn-tuplea1, . . . , an
of real numbers.

This allows us to relate the functionsξ0n(a1, . . . , an) to the symmetric polynomialsγn in
[13], which are defined as follows:

γn(a1, . . . , an) := χ(M0,n,

n∑
i=1

aiψi),

where(a1, . . . , an) is an arbitraryn-tuple of non-negative integers(a1, . . . , an). The next
result will show that functionsγn in the genus-zero case, studied in [13], are particular cases
of the more general family of symmetric functionsξgn(a1, . . . , an), defined for any genus
g ≥ 0.

More precisely, the following result holds.

Theorem 0.42.For anyn-tuple of integers(a1, . . . , an) 6= (0, . . . , 0), n ≥ 3, we have

ξ0n(a1, . . . , an) = (−1)n−3γn(−a1, . . . ,−an).
Proof. By Serre’s duality and by definition of the Euler characteristic of a sheaf, we have

ξ0n(a1, . . . , an) = h0(M0,n,KM0,n
+D0(a1, . . . , an))

= hn−3(M0,n,−a1ψ1 − . . .− anψn)
= (−1)n−3χ(−a1ψ1 − . . .− anψn)
= (−1)n−3γn(−a1, . . . ,−an).

�
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Theorem 0.42 shows that the symmetric polynomialsξ0n(a1, . . . , an) can be evaluated for
anyn-tuple of integers, thus extending the definition of the symmetric polynomials studied
in [13].

It is also possible to compute the symmetric polynomialsτ0
n(a1, . . . , an) in terms of the

ξ0n’s. To this end, we express the boundaryδ as a linear combination of theψi’s.

Proposition 0.43. Let n ≥ 5 be an integer and consider the moduli spaceM0,n. There
exist rational numbersci, 1 ≤ i ≤ n, such that

(0.44) δ =
n∑
i=1

ciψi,

whereδ is the boundary divisor ofM0,n.

Proof. We will prove the proposition by showing how to compute the numbersci. If we
multiply (0.44) byψn−4

k , 1 ≤ k ≤ n, we obtain a system ofn equations, namely

(0.45) ψn−4
k δ = c1ψ1ψ

n−4
k +. . . ck−1ψk−1ψ

n−4
k +ckψn−3

k +. . .+cnψnψn−4
k , 1 ≤ k ≤ n.

By (0.16), the intersection numbersψn−3
k andψjψ

n−4
k equal1 andn − 3 respectively.

The coefficient matrix of (0.45) is thus equal to
1 n− 3 . . . n− 3

n− 3 1 . . . n− 3
. . . . . . . . . . . .
n− 3 n− 3 . . . 1

 .

It is easy to check that the determinant of such a matrix is non-singular. By dimensional
computations, the intersection numberψn−4

k δ is1 only on the boundary componentsδ0,{i,j},
wherei andj are indices in{1, . . . , n} other thank. Since there are

(
n−1

2

)
such components,

the system (0.45) is non-homogeneous with non-singular matrix coefficients. Therefore
Cramer’s rule allows computing the numbersci’s explicitly. �

We can finally show the relation between the symmetric functionsτ0
n andξ0n.

Theorem 0.46.LetM0,n be the moduli space ofn-pointed genus zero stable curves. Then
(1) τ0

3 (a1, a2, a3) = 1;
(2) τ0

4 (a1, a2, a3, a4) =
∑n

i=1 ai − 4;
(3) τ0

n(a1, . . . , an) = ξ0n(a1 − c1, . . . , an − cn), n ≥ 5, whereci, 1 ≤ i ≤ n, are the
numbers computed in Proposition 0.43.

Proof. (1) and (2) follow from direct inspection, sinceM0,3 is a point andM0,4 is isomor-
phic toP1. As for (3), note that

τ0
n(a1, . . . , an) = h0(KM0,n

+
n∑
i=1

aiψi − δ) =
∫
M0,n

e
KM0,n

+
Pn

i=1 aiψi−δ
Td(M0,n).

By (0.44) and Remark 0.40, the claim follows. �

6. Symmetric functions on effective divisors ofM0,n defined via those existing onM0,n

In this section we show how to define symmetric functions on effective Cartier divisors
of M0,n starting fromξ0n(a1, . . . , an). Analogous computations hold forτ0

n(a1, . . . , an).
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Case 1TakeA0(a1, . . . , an) =
∑n

i=1 aiψi, where(a1, . . . , an) 6= (0, . . . , 0) are non-
negative integers. Assume there exist at least two indices1 ≤ k 6= h ≤ n such thatak, ah ≥
1. Take such indices and consider the divisorψk which is an effective Cartier divisor - see
(0.5). Now, tensor the exact sequence definingψk byOM0,n

(KM0,n
+D0(a1, . . . , an)) =

OM0,n
(
∑n

i=1(ai + 1)ψi − 2
∑

|S|≥2 δ0,S). If we apply the adjunction formula onψk, we
get

(0.47)

0 → OM0,n
(
∑

i6=k(ai + 1)ψi + akψk − 2
∑

|S|≥2 δ0,S) −→
→ OM0,n

(KM0,n
+D0(a1, . . . , an)) −→

→ Oψk
(Kψk

+
∑n

i6=k(aiψi + (ak − 1)ψk) → 0,

since, by hypothesis,ak ≥ 1. Observe that∑
i6=k

(ai + 1)ψi + akψk − 2
∑
|S|≥2

δ0,S = KM0,n
+ (

∑
i6=k

aiψi) + (ak − 1)ψk.

Indeed, by assumption,ah ≥ 1, and then-tuple (a1, . . . , ak − 1, . . . , ah, . . . , an) 6=
(0, . . . , 0) is composed of non-negative integers. Therefore, from the Kodaira Vanishing
Theorem, it follows that

Hj(
∑
i6=k

(ai+1)ψi+akψk−2
∑
|S|≥2

δ0,S) = Hj(KM0,n
+D0(a1, . . . , an)) = (0), ∀ j > 0.

Thus, we have

Hj(Oψk
(Kψk

+
∑
i6=k

aiψi + (ak − 1)ψk)) = (0), ∀ j > 0.

Therefore, by the Hirzebruch-Riemann-Roch formula, we get the following claim.

Claim 0.48. Let (a1, . . . , an) 6= (0, . . . , 0) be non-negative integers, such thatak, ah ≥ 1,
for some1 ≤ k 6= h ≤ n. Letψk be the effective Cartier divisor onM0,n (see Formula
(0.5)). Then

(0.49)
ζψk

(a1, . . . , ak − 1, . . . , ah, . . . , an) :=
h0(Oψk

(Kψk
+

∑
i6=k aiψi + (ak − 1)ψk)) =

χ(Oψk
(Kψk

+
∑

i6=k aiψi + (ak − 1)ψk)),

is a symmetric function onψk, which is defined for anyn-tuple(a1, . . . , ak − 1, . . . , an) 6=
(0, . . . , 0) of non-negative integers such thatah ≥ 1, for some indexh 6= k. Further-
more,ζψk

(a1, . . . , ak− 1, . . . , ah, . . . , an) is obtained from the difference of two symmetric
functions on the ambient spaceM0,n.

More precisely, we have that

ζψk
(a1, . . . , ak − 1, . . . , ah, . . . , an) = ξ0n(a1, . . . , an)− ξ0n(a1, . . . , ak − 1, . . . , an),

whereak ≥ 1 andah ≥ 1 for some indexh 6= k.

Example. Consider the moduli spaceM0,4
∼= P1. Since eachLi ∼= OP1(1), take, for

example,k = 1 andh = 2; this means thata1, a2 ≥ 1 anda3, a4 ≥ 0. Therefore from our
computations we have

ξ04(a1, a2, a3, a4) = h0(P1,OP1(−2)⊗OP1(a1 + a2 + a3 + a4))
= a1 + a2 + a3 + a4 − 1
= σ1(a1, a2, a3, a4)− 1,



Symmetric functions from moduli spaces of curves via vanishing theorems 89

whereas
ξ04(a1 − 1, a2, a3, a4) = h0(P1,OP1(−2)⊗OP1(a1 − 1 + a2 + a3 + a4))

= a1 + a2 + a3 + a4 − 2
= σ1(a1, a2, a3, a4)− 2,

wherea1, a2 ≥ 1. Furthermore,

ζψ1(a1, a2, a3, a4) = 1

is constant.

Case 2Let us now introduce a different symmetric function. TakeD0(a1, . . . , an) =∑n
i=1 aiψi andD0(a1+1, . . . , an+1) =

∑n
i=1(ai+1)ψi, where(a1, . . . , an) 6= (0, . . . , 0)

are non-negative integers. From the fact that eachδ0,S is a subvariety inM0,n,
∑

|S|≥2 δ0,S
is effective, since it is a sum of effective Weil divisors.

TakeD ∼ 2
∑

|S|≥2 δ0,S as an effective Cartier divisor onM0,n. Therefore, if we tensor
the exact sequence definingD byOM0,n

(
∑n

i=1(ai + 1)ψi), we get

(0.50)
0 → OM0,n

(
∑n

i=1(ai + 1)ψi − 2
∑

|S|≥2 δ0,S) →
→ OM0,n

(
∑n

i=1(ai + 1)ψi) → OD(
∑n

i=1(ai + 1)ψi) → 0.

By (0.33), we have

OM0,n
(
n∑
i=1

(ai + 1)ψi − 2
∑
|S|≥2

δ0,S) ∼= OM0,n
(KM0,n

+D0(a1, . . . , an)).

By Proposition 1 in [13], we observe that

Hj(M0,n,OM0,n
(D0(a1 + 1, . . . , an + 1))) = (0), ∀ j > 0.

Moreover, by the usual Kodaira Vanishing Theorem, we get

Hj(M0,n,OM0,n
(KM0,n

+D0(a1, . . . , an))) = (0), ∀ j > 0.

This implies that

Hj(M0,n,OD(D0(a1 + 1, . . . , an + 1))) = (0), ∀ j > 0.

Therefore, by the Hirzebruch-Riemann-Roch formula, we get the following claim.

Claim 0.51. Let(a1, . . . , an) 6= (0, . . . , 0) be non-negative integers and letD ∼ 2
∑

|S|≥2 δ0,S

be an effective, Cartier divisor onM0,n. Then

(0.52)
ζD(a1 + 1, . . . , an + 1) :=
h0(OD(D0(a1 + 1, . . . , an + 1))) =
χ(OD(D0(a1 + 1, . . . , an + 1))

is a symmetric function onD, which is defined for anyn-tuple (a1 + 1, . . . , an + 1) 6=
(1, . . . , 1) of positive integers. Furthermore,ζD(a1 + 1, . . . , an + 1) is obtained from the
difference of two symmetric functions on the ambient spaceM0,n.

More precisely, ifγn(a1, . . . , an) denotes the symmetric function in [13], then we have

ζD(a1 + 1, . . . , an + 1) = γn(a1 + 1, . . . , an + 1)− ξ0n(a1, . . . , an),

for anyn-tuple(a1, . . . , an) 6= (0, . . . , 0) of non-negative integers.
Finally, from the previous discussion, it easily follows that

ξ0n(a1, . . . , an) ≤ γn(a1 + 1, . . . , an + 1)
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for any(a1, . . . , an) 6= (0, . . . , 0) n-tuple of non-negative integers.

Example. As before, we give a concrete example in the case ofM0,4. First, note that
Li ∼= OP1(1) andOM0,4

(D) ∼= OP1(6). Therefore we have

ξ04(a1, a2, a3, a4) = h0(P1,OP1(−2)⊗OP1(a1 + a2 + a3 + a4))
= a1 + a2 + a3 + a4 − 1
= σ1(a1, a2, a3, a4)− 1,

whereasγ4(a1+1, a2+1, a3+1, a4+1) = 5+σ1(a1, a2, a3, a4). Furthermore,ζD(a1, a2, a3, a4) =
6 is constant.
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