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1. Introduction

Let g andn > 2 — 2g be non-negative integers. BY{, , we denote the moduli space
of n-pointed genug stable complex curves. Recall that the points of this space are in
one-to-one correspondence with isomorphism clafses;, . . ., p,] of (arithmetic) genus
g curves withn non-singular marked points and finitely many automorphisms.

The rich and fascinating structure of the spadg ,, has been intensively studied in the
past decades. Quite often, combinatorial tools have been rather useful in understanding the
geometry of this space. Conversely, geometric propertigg(pf, have been rarely used as
possible tools for combinatorial topics.

The aim of this paper is to introduce some natural symmetric polynorgijaésd 7,7,
which are associated with sheaf cohomology groupsf,,. This gives a concrete way of
calculating the rank of such groups. For these purposes, we apply standard vanishing results
which hold on normal, projective)-factorial varieties likeM, ,, - see Theorems 0.17 and
0.20.

When in particulagy = 0, we first give recursion relations to carry out an explicit calcula-
tion of 2 andr?; furthermore, we determine a natural way of defining symmetric functions
on several Cartier divisors 0¥ ,,, which are surprisingly defined as differences of sym-
metric functions on the ambient spaté ,, (cf. Claims 0.48 and 0.51).

The paper consists of five sections. In Section 1, we briefly recall basic terminology as
well as we introduce notation which will be used in the rest of the paper.

In Section 2, we focus our attention on the spadeg ,,. More precisely, we consider
two Weil divisorsAy(ay, . .., an) andDg(a1, . .., a,), which are defined for any-tuple of
non-negative integers, . . ., a,) # (0, ...,0) and which are invariant under the action of
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the symmetric grou'ym(n) on M, ,, - see Formulas (0.10), (0.11), (0.26) and Proposi-
tions 0.6, 0.12, respectively.

In Section 3, we apply some vanishing results to these divisors and the Hirzebruch-
Riemann-Roch Theorem in order to define symmetric functiondy,,

&(at,...,an) and 7J(ai,...,an),

whose definition is related to the geometry of the spadg,, (cf. Definitions 0.23 and
0.25).

In Section 4, we give examples in the genus zero case. Notably, we deduce recursive
relations for the symmetric polynomiaf8 (a1, ..., a,). In particular, we show that the
symmetric functionsy, (a1, . . .,a,) on My, in [13] are particular cases of the more gen-
eral family of symmetric functiong, (a1, ..., a,), which are defined for any gengs> 0
and not only in the genus-zero case. Furthermore, the funcfiidns, . . . , a,,) - when suit-
ably extended - can be used to compute the other symmetric polynatials . . ., a,,).

In Section 5 we also introduce other natural symmetric functions on suitable effective
Cartier divisors of the smooth projective variet,,,. These symmetric functions are
defined as a difference of ti§é's and ther;]’s, which exist on the ambient Spaﬁo,n (see
Claims 0.48 and 0.51).

As for notation and terminology, note that the waachemaewill throughout refer to an al-
gebraic scheme ovél. The termvariety will be used for an integral scheme. A general
convention adopted hereafter is to work additively with divisors and multiplicatively with
line bundles.
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2. Preliminaries and Notation

In this section we discuss some fundamental results and some basic facts we shall use
throughout. For further details and terminology that is not defined here, the reader is referred
to, for example [5].

Let X be a normal, irreducible, projective scheme. DenoteZbyX) (resp. Div(X))
the group of Weil divisors (resp. Cartier divisors) &h The symbolsv and= will denote
linear and numerical equivalence énv(X) andZ!(X), respectively. As customary, we
set

AYX)=2ZYX)/ = and Pic(X)= Div(X)/ ~.

An element of Z1(X) ® Q (resp. Div(X) ® Q) is called aQ-divisor (resp. Q-Cartier
divisor). By abuse of notation and terminologlx denotes theanonical divisorof X.

By definition, it is theQ-divisor which uniquely extends the canonical divisor on the smooth
algebraic schem& \ Sing(X).

We recall that a normal, irreducible, projective scheieés said to beQ-factorial if
ZHX)® Q = Div(X) ® Q, that is, anyQ-divisor is aQ-Cartier divisor. In such a case,
givenD € Z'(X) ® Q, the least positive integen such thatmp D is Cartier is called
theindex of D. In particular, the smallest positive integgf such thatjy K x is Cartier is
calledthe index of X
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We recall that aQ-divisor is callednefif its intersection with any irreducible curve in
X is non-negative. Furthermore, a r@fdivisor D is said to bebig if the highest self-
intersection numbeb™ is positive (we refer the reader to, for example, [10] for equivalent
definitions).

Finally, if D is aQ-divisor such thaf<x + D is Q-Cartier and ifi, is a log-resolution of
the pair(X, D), then consider

Kxiyx —p*(D) = Kxr — p*(Kx + D) = Y a;
:

where the;’s are distinct irreducible divisors (not necessarily.aktxceptionals); we recall
that the pain X, D) is called

(i) canonicalif a; > 0, for eachE; u-exceptional,

(i) Kawamata log-terminafk.l.t., for short) ifa; > —1 for eachE;.

SinceK 1, x is alwayspu-exceptional, therX is said to have onlganonical singularities
if the pair (X, 0) is canonical.

3. Some Fundamental Vanishing Theorems

Among the various results dj-divisors of normal varieties, we shall apply the machin-
ery of vanishing theorems as a general fundamental tool to define new symmetric functions.
In the sequel, we shall be mainly concerned with the following result.

Theorem 0.1. (see[10], page 73) (General Kodaira Vanishing Theorem) [&t A) be a
k.l.t. pair, whereX is a proper, algebraic scheme. L&t be aQ-Cartier Weil divisor onX
such thatV = M + A, whereM is a nef and bigQ-Cartier Q-divisor. Then

H'(X,0x(—N)) = (0), for each i < dim(X).

Note that, whenX is smooth, we will also use the standard Kodaira Vanishing Theorem
(see, for example, [10], page 62).

4. Some Geometric Properties of Moduli Spaces af-pointed Stable Curves

In this section we review some properties of moduli spaces of gerausves withn
marked points, which will be used in the next sections.

For any pair of non-negative integgfaandn, n > 2 — 2g, let (C;p1,...,p,) be are-
duced, connected, (at worst) nodal curve of arithmetic ggmish » non-singular marked
points. Recall thatC;pi,...,p,) is Deligne-Mumford stabléf wc (3", p;) is ample,
wherewc denotes the dualising sheaf 6f As customary, denote b, ,, the moduli
space ofstable curve®f arithmetic genug with n marked points. It is well known that
My, is projective and has complex dimensigg — 3 + n. Moreover, it is normalQ-
factorial and Cohen-Macaulay (see, for instance, [11]). Furthermore, when0 and

n > 3, My, is a smooth variety.

Theorem 0.2. (see[11], Theorem 2.5) Ley > 4 andn > 0 be integers. ThemM,, ,, has
only canonical singularities.

By Remark 7.25 in [5] and by what we recalled in Section , we have the following result.

Corollary 0.3. Letg > 4 andn > 0 be integers. Then the paiiM,, ,,, 0) is k.Lt.
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For the purpose of what follows, we need to recall the descriptidfiof M, ,,)q: see,
for instance, [1], [2] for further details. Here, Wic(M,,)o we mean the abelian group

Pic(Myn) ® Q.

Notation 0.4. Recall the following standard definitions.

e Let£;, 1 <i < n,betheline bundle oM, ,, whose fibre at the poifi€’; p1, . . . , py,]
is the cotangent space at the smooth ppjrb the curveC. Its first Chern class is
usually denoted by);.

e As customary, denote bythe first Chern class of the vector bundle whose fibre at
ann-pointed curveC is the space of holomorphic differentialg’ (C’; w¢), where
wc is the dualising sheaf of.

e Fix, now,0 < i < |g/2], S C {1,...,n}, where|S| > 2, n — |S]| > 2, if
i = 0. Moreover, ifg is even and = |g/2], we assume that € S. Following
standard notation, lef; s be the divisor class oM, ,, whose generic point is
given by a reducible curve with a single node. The removal of such a node yields
two irreducible curveg’; andC, of genusi andg — ¢, with |S|+1 andn — |S|+1
marked points, respectively. The assumptions fer0 on |S| guarantee that'; is
a stable curve; the requirement 8rfor i = | g/2], g even, avoids enumerating the
same class twice.

e Next, denote by;.. the divisor class whose generic point is an irreducible
pointed genug curve with just one node.

When for exampleg = 0, the class\ equald) and, following [1], we have

(0.5) vi= > dos,
i€S
i#kES
whereS C {1,...,n}, |S|,|S¢] > 2. Note that eacld, s is an irreducible subvariety of

Mo, since it is isomorphic to a product of moduli spaces of rational curves. Therefore the
divisorsy; are Cartier divisors. This depends on the more general faciMhgat is smooth,
for eachn > 3, so each Weil divisor is Cartier.

As proved in [3],Pic(M, ) is an abelian group generated by ., 1; (1 <i < n),
ando; s (0 <i < |g/2], S C {1,2,...,n}). Wheng = 0, the generators reduce to the
classedy s, |S| > 2 (see [9]).

We now consider some results on divisorshf, ,, which will be fundamental to apply-
ing Theorem 0.1. In this way, we will be able to define various symmetric functions on

Myn.

Proposition 0.6. ConsiderM,, ,,, with g > 0 andn > 2 — 2g.
(i) If g=0andn > 4, the Cartier divisor

n
(07) Dl(al, e ,an) = Z aﬂl)i — Z 50,5
i=1 |S|>2
is ample onM,,, fora; € N, 1 < i < n.
(i) Letg > 1 andn > 0 be integers such th&g — 2 +n > 0. Letaq,...,ay,,bbe
positive integers such that> 11. Then theQ-divisor

n

(0.8) Dy(a1,. .. an,b) =Y aihi +bA—8ipe — > > ig

i=1 >0 S
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is ample. Note that the last sum in (0.8) ranges over all pgir$) such that the
corresponding divisod; s is well defined.
Proof. (i) Clearly, for any reduced and irreducible subvarigty- M ,,, we have
n dim(Y') " dim(Y')
> aihi = Y dos Y>> = > s Y.
=1 1S1>2 =1 1S1>2
By the Grothendieck-Riemann-Roch Theorem, it follows fhigt | 4 — 3, 55 do,s = K1,

which is well known to be ample oM ,,. Thustim(Y) Y > 0, foreachY C My ,;
henceD; is ample by the Nakai-Moishezon criterion for ampleness.

(i) By what was proved in [4], the divisor

D i HbA =G — Y Y dis

i=1 >0 S
is ample onM, ,, forg > 1,n > 0, 2g — 2 +n > 0. Sincea; > 0, the claim easily follows
by applying Nakai-Moishezon'’s criterion as in (i). O

Sinceﬂgm is Q-factorial, denote byn; andm, the indices of);, 1 < ¢ < n, and of),

respectively. We set
(0.9) b; :=m;a;, 1 <i<mn, and B := m,b.

For the sake of simplicity, put := 0iy + 3,59 > ;.5 We thus define the (Weil) divisor
(0.10) >
Aglai,... ap) ::{ Di(ay, ..., an) for g =0,n > 4,

Yo by + BA—=2 forg>1,n>0,29—2+n>0,

which is ample by Proposition (0.6).
On the other hand, we can also consider the Weil divisor

(0.11) Dg(al, e ,an) = Z az(mﬂ,l),) = Z bl’gbl
i=1 i=1

(note thatm; = 1,1 < i < n, wheng = 0).
We now prove the following result (see for example [7] for an alternative approach).

Proposition 0.12.Letg > 0 andn > 2—2g. Let(ay,...,an) # (0,...,0) be non-negative
integers. The divisoD(az, . .., ay) in (0.11)is nef and big on\, ,,.

Proof. EachQ-divisor ¢;, 1 < ¢ < n, is nef, as follows from [8]. Since the integers
b; = m,a,; are non-negativey ;" , b;1; is nef too. To prove tha} ;" , b;v; is big, we first
show that each of the;’s has positive top self-intersection. This is equivalent to showing
that

w?)g—?»—i—n < 0.
My
As proved by purely geometric arguments in [6], we have
(0.13) P9I = N

Myom My g9!(24)9



82 Gilberto Bini and Flaminio Flamini

and
(0.14) / P =1
mOm,

Since eachy; is nef, this proves that it is also big. Furthermore, we also have
(0.15) gl i >0
when}~7_,i; = 3g — 3 + n. Indeed, whery = 0 andn > 3,
(0.16) il...w;n_<."_?’>>o.

11 ...%n

On the other hand, when= 1, denote byr). : M 11 — Mix, k > 1, the map which
forgets the last point and contracts unstable components. By apptyindor 1 < k <
n — 1, the push-forward of the cIaﬂ:‘{l ...1in is a positive multiple of the Mumford class
k1, which is known to be ample oM ;. Analogously, forg > 2, by a formula due to C.
Faber, (0.15) can be pushed forward to obtain a polynomial in the Mumford classes over
ﬂg with positive rational coefficients. Since Mumford classes are effective, then Formula
(0.15) holds. Therefore we have

n
(Z bith;)*9 3" > 0.
=1
Since) " | biy; is nef, it is also big. Hence the claim follows. O

5. Vanishing theorems onM, ,, and related symmetric functions

The aim of this section is to determine various symmetric functiondfyy,. When, in
particular,g = 0 andn > 3 we shall relate our symmetric functions with those studied in
[13] (see, for example, Section ).

Theorem 0.17.Letg > 0 andn > 2 — 2g be non-negative integers such thfatl,, ,,, 0) is
k.Lt. Let(aq,...,an) # (0,...,0) be non-negative integers. Then

HY (Mg, Oﬂg,n(_Dg(al’ ...,an)) = (0), for each ¢ < 3g — 3+ n.

In particular, the vanishings hold whepn= 0 andn > 4 or wheng > 4 andn > 0 (see
Theorem 0.2 and Corollary 0.3).

Proof. By Proposition 0.12, the divisdP, (a1, ..., ay) is big and nef. By Theorem 0.2 and
Corollary 0.3 applied to\,, ,,, we can apply Theorem 0.1. O

By Proposition 5.75 in [10], the dualising she@{;, is isomorphic twﬂg n(Kﬁg )
Thus by Serre’s duality we have the following result. ’ ’

Corollary 0.18. Under the assumptions of Theorem 0.17,
019  XEp,, T Dolen ) =Ky, o+ Dyfar, ) =
' B3935 (—Dy ay, .. an>> = (~1)% ¥y (= Dy(ar, ..., an)),

wherex(—) denotes the Euler characteristic of the sheafand 7 (M, ,,, —) the dimen-
sions of the cohomology vector spaces.
In particular, (0.19)holds whery = 0 andn > 4 or wheng > 4 andn > 0.
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Proof. Since we have

WOx, (Kgg, .+ Dylar,....an)) = (~1)* " (Oz (~Dylar,...,an))),

the claim follows from Theorem 3.1 and Serre’s duality. d

Since the divisot4,(ay, . .., ay) in (0.10) is ample, then it is in particular nef and big.
Thus, the same proof of Theorem 0.17 yields the following result.

Theorem 0.20.Letg > 0 andn > 2 — 2¢ be non negative integers such thia,, ,,, 0) is
k.l.t. Then, with the same notation adopted0riL0) we have

HY (Mg, Oﬂg,n(—Ag(ab ...yap))) = (0), for each ¢ < 3g — 3+ n.
In particular, the vanishings above hold when= 0 andn > 4 or wheng = 0 andn > 4.
Therefore we have the following result.
Corollary 0.21. Under the same assumptions of Theorem 0.20,

X(Kyg,  +Aglar,.. an)) =h(Kgg  +Ag(ar,... an)) =

0.22 : -
( ) h3g*3+n(_Ag(a1"“7an)) = (_1)39*3+"X(—Ag(a1,...,an ),

wherex(—) is the Euler characteristic of the sheaf andh’ (M, ,,, —) the dimensions of
the cohomology spaces.

In order to define some natural symmetric functions/efy ,,, one can use Corollary
0.21. Indeed, observe that the symmetric grégpn(n) (or X,,) acts in a natural way on
M, , by permuting the markings.

Recall Notation 0.4. The action 6fym(n) permutes the isomorphism classes of the line
bundlesZ; in the obvious manner. The divisdris Sym(n)-invariant, since it does not
depend on the marked points. By definition, the divi&er is Sym(n)-invariant. Finally,
even ifd; g is not.Sym(n)-invariant, the diviso_,_, g, di,s is. Therefore we have the
following definition.

Definition 0.23. For anyn-tuple (a4, ..., a,) of non-negative integers and either for>
11, g > 4andn > 1 or for g = 0 andn > 4, one has the symmetric function
0.24) (ay,...,ay) = ho(ﬂg,n, Omg,n (ng,n + Ag(ai, ... an)))

= X(Kﬂg,n + Ag(ai, ..., an)).

Other natural symmetric functions ow(,, ,, are determined by Corollary 0.18. Indeed,
we have the following.

Definition 0.25. For anyn-tuple (a1, ...,a,) # (0,...,0) of non-negative integers, and
either forg = 0 andn > 4 or for ¢ > 4 andn > 1, one has the symmetric function
(026) gg’(al’ T 7an) = ho(ﬂg:n’ Oﬂg n (Kﬂg,n + Dg(al’ e ’an)))

— X(Kﬂg,n + Dy(a1,...,an)).
Clearly, ifo;, 1 < i < n, denotes the’-elementary symmetric function, then

&(at,...,an) € Qo1,...,opn), and 7I(ai,...,an) € Qloi,...,0n]

whenever they are defined.
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Remark 0.27. Let R := QJoq, .. .| be the infinite polynomial ring in the indeterminates
{o4}4en. Define a grading ok by assigning to the variable; the weightd. For f € R,
the degree off is the highest weight of the monomials which appearg.inBy direct
inspection, the degree of and¢&j, is 3g — 3 + n, since they both contain monomials of
total degree8g — 3 + n.

5. The Symmetric Functionsr and £ in Genus Zero

In this section, we focus on the cage= 0. Sinceﬂom is smooth, all the integens;
in (0.9) are equal td. Thus, with the same notation adopted in (0/9)= a; for each
1 < i < n. Here we show how to compute recursive formulas for the symmetric functions
(a1, ...,a,)in (0.23) anc?(ay, . .., a,) in (0.26). Furthermore, this will also enable us
to define some symmetric functions on several effective Cartier divisokd©f .

In this section, we shall work under the assumptjos 0 andn > 3. Sinceﬂo,n is
smooth for eacth > 3, Ky is of index one. Additionally, it is possible to give a closed
expression fori5; ’

Proposition 0.28. Letn > 3 be an integer. Then

(0.29) sz —23 bos

1S|>2

Proof. We use induction om. Forn = 3, both sides of (0.29) are zero since the moduli
spaceM, 3 is a point. Denote byt,, : Mg ,, — Moy 1, n > 4, the map which forgets the
last point and passes to the ‘stable’ model. Singés a smooth morphism, then

Kﬂo,n (KMOn 1 + Yn — Z 0 S

i,neS
|5)=2

The result thus follows from the relation

7, (i) = Vi = 6o {in}-
O

Remark 0.30. By (0.5) and suitable relations in [9], Formula (0.29) can be further simpli-
fied (see, for instance, [14]). This expression shows more clearly the invaria#cg;of
with respect to the action of the symmetric group, as explained in Section .

Let us now consider the ample divisdp (a1, ..., a,) in (0.7). By (0.29), we get

(0.31) Kxq,, +Aolar,. . an) ~ Y (ai+ 19 =3 ) s
i=1 |S[>2

Therefore from Definition (0.23) we get the symmetric function

n

(0.32) (a1, an) = hO(Mom, ¥ (ai+ 1)t =3 > do.s),

i=1 |5>2

which is defined for each; > 0,1 <:¢ < n.
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On the other hand, by (0.11), (0.29) and by the factthat 1, 1 < i < n, we get
(0.33) Kz, + Dolar, .. an) ~ Y (a;+ D =2 > dos.
=1 |S|>2
Accordingly, from Definition (0.25) we obtain the symmetric function

(0.34) &(ar, ... an) =B (Mon, > (ai+ 1)t =2 > dos)
=1 |1S|>2
for anyn-tuple (a;, ..., an) # (0,...,0) of integers.
It is possible to compute the)’s via simple recursion relations, which can be derived
from the geometry oM, ,,. More precisely, we have the following result.

Theorem 0.35.The functiort? (a1, . . ., a,) € Qloy, . .., 0,] is determined by the recursive
relations
(0.36)
n a;—1
€2+1(CL1, <oy Qn, 0) = _én at,...,a + Z Z fn at, ... 7ai717j7 Qit1y---,0n, a3)
i=1 j=0

and the initial condition
(037) §g(a1,a2,a3) =1

Proof. First of all, note that the initial condition (0.37) holds sin&#, ; is a point. Next,
observe that, by Serre’s duality,

Qar,...,an) = h'(Mopn, Kx,, + Do(ai,...,an))
= hn_B(ﬂom, *Do(al, e ,an))
= (_1)n_3xn(_D0(a1""aaﬂ)>7
wherex,,(—Dq(a1,...,a,)) denotes the Euler characteristic of the sheaf associated with
—Dy(ai,...,a,). Our strategy is similar to that in [13]. Indeed, to obtain (0.36), we
compare the symmetric functiog$ and¢? . ;. By Remark 0.27¢0 is a symmetric function
of degree at most — 3. The map from the ring of symmetric functionsdn, . . . , a,, to the
ring of symmetric functions i, ..., a,_1 is bijective for symmetric functions of degree
at mostn — 1. Hencet! (ay, . . ., a,) is completely determined t&f) (a1, . .., an—1,0).
Let us denote by, ,, the Ilne bundle corresponding to the d|V|SQAr§on Mo, By

Tnt1 : Mo bl — /\/lo » We denote the map which forgets the last marked point and passes
to the ‘stable’ model. We recall that

(038) 7T;kL+1(['i,n) & @ (50,{i,n+1}) = Li,n—f—l) 7= 17 oo

In particular, sinc@y (; n+1190,{jn+13 = 0,7 # j, therestrictions of; .1 andm;, 1 (Li )
to do,{s,n+1} @re isomorphic. On the other hand, note that ., is trivial when restricted
to 0o {i,n+1}, Whereasr; 1 (L; ) is not. By what we recalled above, if we tensor the exact
sequence

0 - Oﬂﬂm(_éov{%n—"_l}) - Oﬂo’n - 060,{7;,714»1} - 0
by
b
n-l—l(ﬁv ) +1 (‘CZ n+1)

and we take the duals in (0.38), we obtain the exact sequence:

* vb va+1 vb+1 va va
0— 7Tn+1(£ 2,n)®[’ int+l = 7Tn+1 ([’ i,nJrl) ®L int+l 7Tn+1(£ i,n)®050,{i,n+1} — 0,
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wherea, b are non-negative integers. By repeated application of the last exact sequence, we
have (for the sake of simplicity we switch to divisor notation):
(039) Xn+1(*D0(a17 .- ’an)) = Xn+1(*7r;kz+1(D0(a1’ oo 7an)))

a;—1

3> X (—Wéﬂ(aﬂbl Yo F Yt antn) ® 050,{@“1}) :
i j=0
Sincer;, 1 (Oxg, ) = Oxy, ., Leray's isomorphism and Theorem 0.1 yield

n

X1 (=T 1 O ait)) = xn(= O aiyi)) = (=1)" & (ax, ., an).
=1 =1
Analogously,
Xn+1 <—7T:L+1(a1¢1 +oai i F Y ann) @ Oéoy{i,nH})

= (—1)"_3fg(ai, ey ai,l,j, N ,an).

Thus the claim follows since

Xn+1(— Z aiyi) = (=1)" & (a1, .. ., an, 0).
i=1
O
Remark 0.40. So far, the functiong®(ay, . . ., a,) have been defined for non-negative in-
tegers. However, by the Grothendieck-Riemann-Roch Theorem, we remark that

Vi n Kz, 2201 @i 3y
©041) Mo Kz, + 30 ann) = [fgg, € Mo T TA(Mo,n)
= fg(al, PN ,an).
By the second equality in (0.41), the functigiscan be extended to amytupleas, . . . , a,
of real numbers.

This allows us to relate the functiog$(as, . . . , a,,) to the symmetric polynomiatg, in
[13], which are defined as follows:

n
Vn(ala s 7an) = X(ﬂo,nv Z aiwi)a
=1
where(ay, ..., ay) is an arbitraryn-tuple of non-negative integefs, ..., a,). The next
result will show that functions,, in the genus-zero case, studied in [13], are particular cases
of the more general family of symmetric functio&$(as, . .., a,), defined for any genus
g=>0.
More precisely, the following result holds.

Theorem 0.42. For anyn-tuple of integergay, ..., a,) # (0,...,0), n > 3, we have
ar, ... a,) = (=1)" By (—ar,. .., —ay).
Proof. By Serre’s duality and by definition of the Euler characteristic of a sheaf, we have
ay,...,an) = h"(Mon, K, + Do(ai,...,an))

= hn_?’(ﬂo,na —a1Pr — ... — and}n)
= (1" 3x(—a1 — ... = anthn)
= (_l)n_g’yn(_alv ey _an)-
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Theorem 0.42 shows that the symmetric polynon§@l&, . . . , a,,) can be evaluated for
anyn-tuple of integers, thus extending the definition of the symmetric polynomials studied
in [13].

It is also possible to compute the symmetric polynomidlg:1, . . . , a,,) in terms of the
&,'s. To this end, we express the boundargs a linear combination of thg’s.

Proposition 0.43. Letn > 5 be an integer and consider the moduli spak#, ,,. There
exist rational numbers;, 1 < i < n, such that

n

(0.44) =3 e

i=1
whered is the boundary divisor oM, ,,.

Proof. We will prove the proposition by showing how to compute the numbgrdf we
multiply (0.44) by@z},:‘*‘*, 1 < k < n, we obtain a system of equations, namely

(0.45) ¢ 740 = crn) k1 ey e 1 < k<.

By (0.16), the intersection numbengb‘?’ andij,’j‘4 equall andn — 3 respectively.
The coefficient matrix of (0.45) is thus equal to

1 n—3 ... n—3
n—3 1 ... n—3

n—3 n—3 ... 1
It is easy to check that the determinant of such a matrix is non-singular. By dimensional

computations, the intersection numlzj;{r“*d is 1 only on the boundary componemts; ;3

wherei and; are indices {1, ..., n} other thark. Since there aré"; ') such components,
the system (0.45) is non-homogeneous with non-singular matrix coefficients. Therefore
Cramer’s rule allows computing the numbey's explicitly. O

We can finally show the relation between the symmetric functigrend<?.

Theorem 0.46.Let M, ,, be the moduli space of-pointed genus zero stable curves. Then
(1) 7'30(611, az, a3) =1

(2) Tf(alv a2, as, a/4) = 2?21 Qi — 47

) %(a1,...,an) = (a1 — c1,...,an — ), n > 5, Wherec;, 1 < i < n, are the
numbers computed in Proposition 0.43.

Proof. (1) and (2) follow from direct inspection, since{, 3 is a point andM 4 is isomor-
phic toP!. As for (3), note that

ar,. . an) = WO (K, + Y aithy — 0) = / ¢/ Fo P2tz O p g o
=1

MOA,n
By (0.44) and Remark 0.40, the claim follows. O

6. Symmetric functions on effective divisors of\, ,, defined via those existing on\ ,,

In this section we show how to define symmetric functions on effective Cartier divisors
of M, starting frome(ay, .. ., a,,). Analogous computations hold fof (a1, . . ., a).
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Case 1Take Ay(ai,...,an) = >, aih;, where(ay,...,a,) # (0,...,0) are non-
negative integers. Assume there exist at least two indices = h < n suchthaty, a;, >

1. Take such indices and consider the diviggrwhich is an effective Cartier divisor - see
(0.5). Now, tensor the exact sequence definindy OHO’H(KMM + Dy(ay,...,an)) =

(’)?O’H(Z?:l(ai + 1) — 2 Z|5|22 do,s)- If we apply the adjunction formula ony,, we
ge
0— Oﬂo,n (Zi;ﬁk(ai + 1) + apthy, — 2 Z\SEQ 50’5) —
(0.47) — Oxq,,, (Bxg, . + Dolar, ... an)) —
— Oy, (Ky, + Z?;ék(aiwi + (ar — Do) — 0,
since, by hypothesis,, > 1. Observe that
> (ai+ )i+ agthy —2 > Sog = K, + O ai) + (ak — 1)
itk |S|>2 itk

Indeed, by assumptiony, > 1, and then-tuple (a1,...,ar — 1,...,ap,...,a,) #

(0,...,0) is composed of non-negative integers. Therefore, from the Kodaira Vanishing
Theorem, it follows that

HI(Y (ait+Ditaryp =2 Y o) = H Ky, +Dolar, .., an)) = (0), ¥ j > 0.
i#k |S|>2
Thus, we have
H (O (K + ) aithi + (ax = 1)yx)) = (0), ¥ j > 0.
i#k
Therefore, by the Hirzebruch-Riemann-Roch formula, we get the following claim.
Claim 0.48. Let(aq,...,a,) # (0,...,0) be non-negative integers, such that a, > 1,

for somel < k # h < n. Letyy, be the effective Cartier divisor aM, ,, (see Formula
(0.5)). Then

Cpplar, .. ap—1,. . ap,...,a,) =
(0.49) hO(OTZ’k (Kyy, + Zz‘#k aih; + (ax — 1)tby)) =

X(Oupy (K, + 32 aithi + (ak — 1)),
is a symmetric function ony, which is defined for ang-tuple (a1, ...,ax — 1,...,a,) #
(0,...,0) of non-negative integers such thgt > 1, for some indext # k. Further-
more,(y, (a1,...,ar—1,...,ap,...,a,) is obtained from the difference of two symmetric

functions on the ambient spadéd, ,,.
More precisely, we have that

Cpplar,-..,ap—1,...ap,...,ap) =&%Ga,...,an) —Eay,...,a —1,...,a,),
wherea; > 1 anday, > 1 for some index: # k.

Example. Consider the moduli spac&ly4 = P!. Since each; = Opi(1), take, for
examplek = 1 andh = 2; this means thaiq, as > 1 andas, a4 > 0. Therefore from our
computations we have

&)(ay,az,a3,a4) = hO(PL,Op1(—2) ® Opi(as + az + az + as))
= ai+as+az+ag—1
== Jl(a17a27a37a4) - 17
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whereas

52(0,1 — l,ag,ag,a4) = ho(]P’l, OPI(—Q) ® OPI(Gl —14+as+as+ CL4)>
= ar+as+az+ags—2
== Jl(a17a27a37a4) _27

whereaq, as > 1. Furthermore,
Czpl (ala az, as, CL4) =1
is constant.

Case 2Let us now introduce a different symmetric function. Talg(ai,...,a,) =
Z?:l aiwi andDO(a1+1, ceey an—l—l) = Z?:l(ai—i-l)’(/}i, Where(al, R ,an) 7é (0, L. ,0)
are non-negative integers. From the fact that €gghis a subvariety inVo,n, Z|5|22 00,5
is effective, since it is a sum of effective Weil divisors.

TakeD ~ 23 ¢~, d0,5 as an effective Cartier divisor ok, .. Therefore, if we tensor

the exact sequence definidgby Oz (3o (ai + 1)1;), we get

(0.50) 0— O, (Cisa(a + 1) =23 5152 00,5) -
- Oz, iy (ai + 1)¢hi) — Op(isy (@i + D) — 0.

By (0.33), we have

n

Oty (O (ai+ i =2 >~ b0.5) = Ogy (Kg,  + Dolar, -, an)).
i=1 |S|>2

By Proposition 1 in [13], we observe that

H (Mo, Oq,  (Dolar +1,...,a, 4+ 1)) = (0), V j > 0.
Moreover, by the usual Kodéira Vanishing Theorem, we get

H? (Mo, Oxg,  (Ezg,.,, + Dola, - .., az))) = (0), ¥ j > 0.
This implies that

HY (Mo, Op(Do(ar 4+ 1,...,a, +1))) = (0), Vj > 0.

Therefore, by the Hirzebruch-Riemann-Roch formula, we get the following claim.
Claim0.51. Let(aq, . ..,ay) # (0,...,0) be non-negative integers and It~ 2 Z|5|22 0,5
be an effective, Cartier divisor aM ,,. Then

(plar+1,...,an,+1) =
(0.52) hO(OD(D()(al —|—1,...,an—|—1))) =
X(OD<D0<G,1 +1,...,an + 1))

is a symmetric function o®, which is defined for any-tuple (a; + 1,...,a, + 1) #
(1,...,1) of positive integers. Furthermorgp(a; + 1,...,a, + 1) is obtained from the
difference of two symmetric functions on the ambient spelge, .

More precisely, ify, (a1, ..., a,) denotes the symmetric function in [13], then we have
(plar +1,...5a,+ 1) =y(a1+1,...,a, + 1) —§2(a1,...,an),

for anyn-tuple (aq,...,a,) # (0,...,0) of non-negative integers.
Finally, from the previous discussion, it easily follows that

fg(al,...,an) <Aplar+1,...,a,+1)
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forany(aq,...,a,) # (0,...,0) n-tuple of non-negative integers.

Example. As before, we give a concrete example in the cas&tm. First, note that
L; = Op (1) andOxy (D) = Op1(6). Therefore we have

Eg(ala az, as, CL4) = hO(]P)l’ OPI(_Z) ® O]P?l (al + as + as + a4))
= ai+as+az+ag—1
- Ul(a17a27a37a4) - 17

whereasy,(a1+1, as+1,a3+1, ag+1) = 5+01 (a1, az, as, aq). Furthermore(p (a1, az, as, as) =
6 is constant.
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