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Lectures on Brill-Noether theory

Flaminio Flamini

Abstract. These notes are the summary of lectures given by the author, in

the framework of Joint Lectures of F. Flamini and E. Sernesi, at the Work-
shop ”Curves and Jacobians”, held on October 18-21, 2010, Sol Beach Resort,
Yangyang (Korea).

1. Preliminaries and notation

In this section, we will fix once and for all our assumptions and notation. We
shall also recall some basic, well-known facts which will be frequently used in the
next chapters. For non-reminded terminology, the reader is referred to standard
references as [3, 5]

From now on, C will denote a smooth, irreducible, projective curve over C, the
field of complex numbers. The non-negative integer g denotes the geometric genus
(or simply, the genus) of C.

Div(C) will denote the group of Cartier divisors on C and, for any D1, D2 ∈
Div(C), D1 ∼ D2 will denote the linear equivalence of divisors. The symbol KC

will denote a canonical divisor on C and ωC = OC(KC) the canonical line-bundle.
Given D ∈ Div(C), OC(D) ∈ Pic(C) will denote the line bundle (equivalently

invertible sheaf) on C determined by D, where Pic(C) is the Picard group of C.
Given L = OC(D) ∈ Pic(C), for some D ∈ Div(C), we will denote indifferently by

H0(C,OC(D)) = H0(C,L) = H0(C,D)

the associated vector space of global sections.

1.1. Basics on linear systems. For any subspace V ⊆ H0(C,D), |V | will
denote the linear system (or linear series) determined by V ; therefore |V | = P(V )
canonically, where P(V ) denote the projective space parametrizing one-dimensional
subspaces of V . If deg(D) = n and dim(V ) = r + 1 ≥ 1, then |V | of degree n and
of (projective) dimension r, or simpler, |V | is a grn. If V = H0(C,L) = H0(C,D),
then |V | = |L| = |D| is the complete linear system associated to L.

Assume to have a |V | = grn with no base points (if |V | = |L|, this means L
globally generated); thus, the grn defines a morphism

(1) ϕ = ϕV : C → P(V ∨) ∼= Pr,
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(where the isomorphism on the target space is NOT canonical), defined by

ϕ(p) := {σ ∈ V |σ(p) = 0}, for any p ∈ C.

If otherwise B := base locus of(|V |), then the morphism ϕ is defined as ϕ :=
ϕV (−B). For complete linear system, we simply use either ϕL or ϕD, when L =
OC(D). Let

Γ := Im(ϕ) ⊂ P(V ∨).

By construction Γ is non-degenerate (i.e. not contained in a hyperplane of P(V ∨)).
If |V | = grn is base-point-free, then

n = deg(Γ) deg(ϕ).

(i) If deg(ϕ) = 1, i.e. ϕ is birational onto Γ, then |V | is said to be simple or
birational very-ample and ϕV is the normalization of Γ.

(ii) If deg(ϕ) = k > 1, then |V | is said to be composite or composed with an
involution f , i.e. one has a commutative diagram

(2)
C

ϕ−→ Γ
↘f ↗ψ

Γ′

where
• Γ′ is a smooth curve of genus g′;
• f is an involution of degree k and genus g′, i.e. a non constant, finite
morphism of degree k between two smooth, projective curves of genera g
and g′, respectively;
• ψ is the normalization of Γ.

Recall that C is said to be hyperelliptic if it admits a |∆| = g1
2 complete and

base-point-free; in other words, ϕ∆ is a rational involution of degree 2. Recall that
the g1

2 is uniquely determined on C (cf. [1, Ex. D-9, p. 41] or § 2).

Definition. Let |Vi| ⊆ |Di| be non-empty linear series, where Di ∈ Div(C)
effective, , 1 ≤ i ≤ 2. The minimal sum |V1|+ |V2| is the smallest linear subseries of
|D1 +D2| containing every divisor of the form ∆1 +∆2, where ∆i ∈ |Vi|, 1 ≤ i ≤ 2.

Notation: if |V | ⊆ |D|, for some effective D ∈ Div(C), then

h|V | := |V |+ |V |+ · · ·+ |V |,

where the above sum contains h summands.

Remark 1.1. It is obvious that dim(|V1| + |V2|) ≥ dim(|V1|) + dim(|V2|). In
particular, dim(h|V |) ≥ h dim(|V |).

Definition. Let L ∈ Pic(C) be a line bundle. If L is very-ample, ϕL is an
embedding and Γ = ϕL(C) is said to be linearly normal in P(H0(L)∨), i.e. Γ
is not obtained as the birational projection of a curve from a higher dimensional
projective space.

L is said to be k-normal if the natural multiplication map

(3) mk : Symk(H0(L)) −→ H0(L⊗k)

is surjective (observe that linearly normal means 1-normal). It is said to be normally
generated if the multiplication maps mk are surjective for all k ≥ 0.
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Remark 1.2. By definition of minimal sum, one has

k|L| = Im(mk),

for any k ≥ 1. Therefore, L normally generated means that the linear systems
cut-out on Γ = ϕL(C) by the hypersurfaces of every degree k ≥ 1 in P(H0(L)∨)
are complete, i.e. k|L| = |L⊗k|. In such a case Γ is said to be projectively normal
in P(H0(L)∨).

Exercise Let Q2 ⊂ P3 be a smooth quadric. Let `1, `2 be two skew lines in the
same ruling of Q2. Let Q4 be a general quartic surface passing through `1 and `2.
Show that

X := Q2 ∩Q4 = `1 ∪ `2 ∪ Y,
where Y is a smooth, irreducible curve of degree 6 which is linearly normal but not
2-normal in P3, where L = OY (1).

Remark 1.3. [Geometric consequence of k-normality] Assume L to be very
ample and k-normal. Let Γ = ϕL(C) ⊂ P(H0(L)∨) ∼= Pr. Consider the exact
sequence defining Γ as a subscheme of Pr:

0 → IΓ/Pr → OPr → OΓ → 0

and tensor it by OPr (k); one gets

0 → IΓ/Pr (k) → OPr (k) → OΓ(k) → 0.

Passing to cohomology, one gets

0 → H0(IΓ/Pr (k)) → H0(OPr (k))
ρk−→ H0(OΓ(k)) → H1(IΓ/Pr (k)) → 0.

Since Γ is non-degenerate, then

Symk(H0(L)) ∼= H0(OPr (k)), H0(OΓ(k)) ∼= H0(L⊗k), ρk = mk.

Therefore Γ is k-normal if and only if h1(IΓ/Pr (k)) = 0, i.e.

(4) h0(IΓ/Pr (k)) =
(
r + k

k

)
− h0(L⊗k),

where the last summand is easily computable via Riemann-Roch theorem on C (cf.
Thorem 1.4). Therefore, if Γ is k-normal one knows exactly the number of linearly
independent hypersurfaces of degree k in P(H0(L)∨) containing Γ.

Recall the following well-known results:

Theorem 1.4. For any D ∈ Div(C), one has
(i) [Riemann-Roch theorem] h0(D)− h1(D) = deg(D)− g + 1;
(ii) [Serre duality] h1(D) = h0(KC −D).

The non-negative integer h1(D) is called the index of speciality of |D|, which
is usually also denoted by i(D). The divisor D is said to be special if i(D) > 0,
non-special otherwise. From Serre duality, if D is special then, deg(D) ≤ 2g − 2
and all the divisors in |D| are of the same speciality; thus, |D| is said to be a special
linear system. Observe, in particular, that |ωC | is a linear system of speciality 1.

If |D| = grn of speciality i := i(D), the Riemann-Roch theorem states

(5) r − i = n− g.
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If g = 0, 1, there are no special divisors on C. On the other hand, for g ≥ 2,
any D ∈ Divn(C) with n ≤ g − 1 is special (cf. also Remark 2.4-(1)).

The study of special linear systems on a given curve C plays a central role in
the theory of algebraic curves and their moduli. Indeed, from the point of view of
NON-SPECIAL linear systems, all curves of the same genus g look alike. It is at
the level of SPECIAL linear systems that differences appear.

Example If C is of genus g ≥ 3, then it admits a g1
2 (of speciality i = g− 1) if and

only if it is hyperelliptic. On the other hand, we shall recall in § 4, that the general
curve of genus g ≥ 3 is non-hyperelliptic.

As it follows from the previous example, the existence of ”particular” special
linear systems on a given curve gives strong constraints on its geometry. With this
set-up, natural questions which arise are the following:

Problems Let C be a smooth, projective curve of genus g ≥ 2.
(i) What are the possible values of r and n for which there exists a special

grn on C?
(ii) If C admits a special grn, how many other special grn’s C actually admits?
(iii) How does the set (or the scheme) describing such grn’s looks like?
(iv) Which kind of geometric properties are induced on projective embeddings

of C by the existence on C of a (family of) special grn?
Answers to the above questions are very intricate and will depend in general

not only on g but also on the choice of the curve C of genus g. This is the core of
the so called Brill-Noether theory, which we will discuss in § 4.

Anyhow, some first remarks can still be done. If |V | ⊆ |D| is a grn on C of
genus g, a necessary condition is n ≥ r. More precisely, dim(|V |) ≤ dim(|D|) =
n − g + i(D); therefore, i(D) < g and n > r unless g = 0; in this latter case,
necessarily i(D) = 0, |V | = |D| and n = r. In other words, C has a grr (necessarily
complete and non-special) if and only if g = 0.

If g = 0, for every P ∈ P1, one has |P | = g1
1. Therefore any two points on P1

are linearly equivalent; it follows that, for any r ≥ 1, there is only one grr := |rP |
on P1, which is necessarily very-ample.

Consequence Every irreducible, non-degenerate curve Γ ⊂ Pr has degree at least
r; equality holds if and only if Γ is a smooth, rational curve of degree r.

1.2. Rational normal curves. Let P ∈ P1 be any point. For any r ∈ Z,
consider OP1(rP ); from what recalled above, if r ≥ 1, OP1(rP ) is very ample on
P1, so the morphism ϕrP associated to |rP | is an embedding, which is called the
Veronese embedding of P1 into Pr. Its image Γ := ϕrP (P1) ⊂ Pr is called a rational
normal curve; from the above discussion, it is a rational, non-degenerate curve of
degree r, which is the minimal possible degree of an irreducible, non-degenerate
curve. Up to projective transformations in Pr, the map ϕrP : P1 −→ Pr is nothing
but

(6) [T0, T1]
ϕrp−→ [T r0 , T

r−1
0 T1, . . . , T0T

r−1
1 , T r1 ].

Proposition 1.5. Any rational normal curve Γ ⊂ Pr is projectively normal,
for any r ≥ 2. In particular, OΓ(1) is normally generated.

Proof. Since by the r-tuple Veronese embedding, we have the identification
OΓ(1) ∼= OP1(rP ), for any P ∈ P1, then OΓ(k) ∼= OP1(krP ), for any k ≥ 1. For
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dimensional reasons, one has k|rP | = |krP | on P1, for any k ≥ 1. By Remark 1.2,
one concludes. �

From (4) and Proposition 1.5, it follows that h0(IΓ/Pr (2)) =
(
r
2

)
, i.e. any

rational normal curve is contained in
(
r
2

)
linearly independent quadrics. A basis

for H0(IΓ/Pr (2)) can be easily constructed by using (6); indeed, up to projective
transformations, this basis is given by the maximal minors of the (2× r)-matrix of
linear forms

(7)
(
X0 X1 · · · Xr−1

X1 X2 · · · Xr

)
.

It is easy to check that the intersections of these independent quadrics is exactly
Γ. One could even be more precise; indeed,

Proposition 1.6. Γ is scheme-theoretically the intersection of the
(
r
2

)
quadrics

generating H0(IΓ/Pr (2)).

Proof. The reader is referred to [2, 7].
�

1.3. Surfaces of minimal degree. Let r ≥ 3 and let S ⊂ Pr be a reduced,
irreducible, non-degenerate surface. From § 1.2, deg(S) ≥ r − 1; indeed r − 1 is
the minimal possible degree for a general hyperplane section of S, which must be
irreducible and non-degenerate.

Definition. Let S ⊂ Pr be a reduced, irreducible, non-degenerate surface of
deg(S) = r − 1. Then S is said to be a reduced, irreducible surface of minimal
degree.

Examples of reduced, irreducible surfaces of minimal degree are the following:
(i) a cone projecting a rational normal curve Γ ⊂ Pr−1 ⊂ Pr from a point

O ∈ Pr \ Pr−1;
(ii) the Veronese surface V4 of degree 4 in P5 (i.e. V4 = v2(P2), where v2 is

the Veronese double embedding of P2 via the complete linear system of
conics);

(iii) a rational ruled surface (or rational scroll) Sk,r−k−1, 1 ≤ k ≤ r− 2, which
is the joint variety of a rational normal curve Γk ⊂ Λk and a rational
normal curve Γr−k−1 ⊂ Λr−k−1, where Λk and Λr−k−1 are two linear
subspaces which are skew in Pr.

Observe that only Example (i) is singular.
Surfaces of minimal degree are characterized by the following well-known result

(for a proof, see e.g. [3, p. 525]).

Theorem 1.7. [Del Pezzo] Let r ≥ 3. Every reduced, irreducible surface of
minimal degree in Pr belongs to the list of examples above.

Observe, in particular, that the general hyperplane section of a surface of min-
imal degree is a rational normal curve.

2. The canonical curve

Given C of genus g, consider its canonical line-bundle ωC , which is of speciality
1 and degree 2g − 2.

If g = 0, then C ∼= P1; thus ωC ∼= OP1(−2) and |KC | = ∅. Otherwise, one has:
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Proposition 2.1. Let g > 0. Then |KC | is base-point-free; moreover, it is the
unique gg−1

2g−2 on C.

Proof. As in [3, pg. 247]. �

From Proposition 2.1, |KC | defines a morphism ϕKC
(which will be also denoted

by κ, [8, §2]), called the canonical morphism,

(8) κ : C → P(H0(ωC)∨) ∼= P(H1(OC)).

From now on, P(H0(ωC)∨) ∼= P(H1(OC)) will be simply denoted by P and called
the canonical space; observe that P ∼= Pg−1 not canonically.

For g = 1, κ is constant. For g = 2, κ is the hyperelliptic involution of degree 2
and genus 0 on C (in other words, κ represents C as a 2-1 cover of P1). Otherwise

Proposition 2.2. Let g ≥ 3. Then |KC | is very ample if and only if C is
non-hyperelliptic.

Proof. As in [3, pg. 247]. �

Consequences: Let C be of genus g ≥ 3.

• If C is non-hyperelliptic, then κ is an embedding and κ(C) = Γ ⊂ P, where Γ is
a smooth curve of genus g and of degree 2g − 2 in Pg−1. Since ωC ∼= ωΓ = OΓ(1),
then Γ is called a canonical curve.

• If otherwise C is hyperelliptic, then it admits a g1
2, call it |∆|; therefore, for any

p ∈ C there exists a Dp ∈ |∆| such that p ∈ Supp(Dp). This happens if and only if
h0(KC − p) = h0(KC −Dp) = g − 1, i.e. if and only if |KC | is composed. Looking
to diagram (2), since deg(κ) ≥ 2, then deg(Γ) ≤ g − 1. On the other hand, since
κ(C) = Γ ⊂ P is non degenerate, then deg(Γ) ≥ g − 1. Therefore, Γ is a rational
normal curve of degree g− 1 in P ∼= Pg−1 (cf. §1.2). In particular, in this situation,
diagram (2) is nothing but

(9)
C

κ−→ Γ
↘ϕ∆ ↗ϕ(g−1)q

P1

where q ∈ P1 is any point, ϕ(g−1)q is the (g−1)-tuple Veronese embedding (cf. § 1.2).
In particular, from Proposition 2.1, we refind that the hyperelliptic involution on
C is uniquely determined (cf. § 1.1 and [1, Ex. D-9, p. 41]).

2.1. Geometric version of Riemann-Roch Theorem. In this paragraph,
we want to underline the geometric consequences which are behind the definition
of speciality of a linear system and the Riemann-Roch theorem.

Definition. Let Γ ⊂ Pr be a smooth curve and let D ∈ Divn(Γ) be any
effective divisor. The linear span of D, denoted by 〈D〉, is the intersection of all
the hyperplanes in Pr such that OΓ(H −D) is effective (i.e. D ⊆ H · Γ)

Assume C to be a smooth, non-hyperelliptic, projective curve of genus g ≥ 3.
From Proposition 2.2, let Γ ⊂ P be the canonical model of C, as a non-degenerate
curve of genus g and degree 2g − 2. If D ∈ Divn(C) is of speciality i := i(D), let
κ(D) ∈ Γ. Since ωC ∼= OΓ(1) then, by Serre duality,

(10) i = h0(KC −D) =
{

number of linearly independent hyperplanes
in P passing through κ(D)

}
.
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In other words, i = codimP(〈κ(D)〉). Therefore, D ∈ Divn(C) is special if and only
if 〈κ(D)〉 has positive codimension, i.e. it is contained in at least one hyperplane of
P. In particular, this implies that 〈κ(D)〉 does not span the whole canonical space
P (even if Γ does).

By Grassmann formula, we have

(11) dim(〈κ(D)〉) = g − 1− i.

Proposition 2.3. [Geometric version of Riemann-Roch theorem] Let C be a
smooth, non-hyperelliptic, projective curve of genus g ≥ 3. Let Γ = κ(C) ⊂ P be its
canonical model. If D ∈ Divn(C) is effective such that |D| = grn, then

dim(〈κ(D)〉) = n− r − 1.

In other words, if Γ has one linear space Λ of dimension n−r−1 which is a n-secant
linear space for Γ, then Γ admits a (linear) family of dimension r of such n-secant
spaces.

Proof. dim(〈κ(D)〉) = g−1−i = n−r−1, as it follows by the Riemann-Roch
theorem. �

Remark 2.4. (1) The study of effective divisors and linear systems (in par-
ticular the special ones) on a non-hyperelliptic curve translates into the study of
projective geometry and linear secant spaces of the canonical model of C.
(2) Since, from (11), D is special if and only if dim(〈κ(D)〉) ≤ g− 2, we refind that
any D of degree at most g − 1 must be special.
(3) On a non-hyperelliptic curve C a special divisor D ∈ Divn(C) moves in a linear
system whose dimension is proportional to the failure of the points κ(D) to be in
general position on the canonical model of C, i.e. r = r(D) is the number of linearly
independent relations among the n points κ(D).

Examples (1) Let C of genus g ≥ 3, non-hyperelliptic, and assume there exists a
|D| = g1

3 (necessarily base-point-free). This happens for example if C is trigonal
(see Proposition 2.9-(b)). Then Γ admits a 1-dimensional family of 3-secant lines
in P
(2) Let C be non-hyperelliptic of genus g = 4. Its canonical model Γ ⊂ P3 is a
space curve of degree 6. Let D ∈ Div5(C).
• If D is non special, dim(〈κ(D)〉) = 3 and r = r(D) = 1, i.e. any 5-tuples of points
of this 1-dimensional family spans the whole P3.
• If D is special, then r = i + 1. Since Γ ⊂ P3, by (11) and the speciality of D,
i(D) is either 2 or 1.
(i) i(D) = 2 if and only if dim(〈κ(D)〉) = 1 and r = 3, which means that Γ admits
a 3 dimensional family of 5-secant lines. This is in contradiction with projective
geometry standard results as the Trisecant lemma (cf. [1, Lemma, p. 109])).
(ii) i(D) = 1 if and only if dim(〈κ(D)〉) = 2 and r = 2. This means that Γ admits
a 2-dimensional family of 5-secant planes. We shall see that it actually occurs (cf.
§ 5).

2.2. Clifford’s theorem. As already mentioned at the end of § 1.1, given
an effective divisor D of degree n on C of genus g, are there any bounds for r,
equivalently for i, for |D| = grn? For n ≥ 2g − 2, the answer is trivial since i = 0,
unless D ∼ KC , in which case n = 2g − 2 and i = 1.

For n ≤ 2g − 1, a first answer is given by the following well-known result:
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Theorem 2.5. [Clifford’s theorem (1882)] Let C be a smooth, projective curve
of genus g ≥ 2, 0 ≤ n ≤ 2g − 1 and |D| = grn on C. Then 2r ≤ n.

Moreover, equality holds if and only if either
• D ∼ 0, or
• D ∼ KC , or
• C is hyperelliptic and |D| = |r∆| = r|∆|, where |∆| = g1

2 on C.

Proof. The reader is referred to e.g. [1, p. 107]. �

Remark 2.6. Let us comment the second part of the Theorem 2.5. By Riemann-
Roch theorem, note that 2r = n if and only if r + i = g, i.e.

2r = n⇔ r(D) + r(KC −D) = g − 1 ⇔ |D|+ |KC −D| = |KC |.

Thus, if D ∼/ 0,KC , by Clifford’s theorem C is hyperelliptic and the condition
|D|+ |KC −D| = |KC | is equivalent to the surjectivity of the multiplication map

µ0(D) : H0(D)⊗H0(KC −D) → H0(KC).

Therefore C is hyperelliptic if and only if µ0(D) is surjective.
As we shall see in § 4, the multiplication map µ0(D) will play a fundamental

role in the Brill-Noether theory (cf. formula (20)).

2.3. Nother’s theorem. We want to recall some fundamental results con-
cerning the intrinsic geometry of the canonical model of a non-hyperelliptic curve.

Let g ≥ 3 and C non-hyperelliptic of genus g. From Propositions 2.1 and 2.2,
ωC is globally generated and very ample. The evaluation map

H0(ωC)⊗OC
ev−→ ωC

is so a surjective morphism of vector bundles on C. Denote by Mω := Ker(ev),
which is a vector bundle on C of rank g − 1.

Exercise By using the canonical embedding κ : C → P and the Euler sequence in
P restricted to Γ, show that Mω = κ∗(Ω1

P)⊗ ωC .

With this set-up, one has the exact sequence

(12) 0 →Mω → H0(ωC)⊗OC → ωC → 0.

Tensoring (12) by ω⊗kC , for any k ≥ 1, and passing to cohomology one gets the
maps

(13) · · · → H0(ωC)⊗H0(ω⊗kC )
σk+1−→ H0

(
ω
⊗(k+1)
C

)
→ · · · ,

which are simply multiplication maps of global sections.
By recalling (3) and by using the same diagram as in [4, p. 132], with L = ωC ,

ρk+1 = mk+1 and νk = σk+1, it is easy to show that

mk surjective ⇔ σk surjective.

Thus, one can translate the normal generation of the canonical bundle ωC of a
non-hyperelliptic curve of genus g ≥ 3 into a surjectivity of multiplication maps of
global sections. Morover, since for k ≥ 1, h1(ω⊗kC ) = 0, the surjectivity of σk+1 is
equivalent to showing h1(Mω ⊗ ω⊗kC ) = 0, which simply is a vanishing condition.

Using this, one can give a proof of the following fundamental result:
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Theorem 2.7. [Noether’s theorem] Let C be a smooth, non-hyperelliptic, pro-
jective curve of genus g ≥ 3. Then ωC is normally generated. In particular, its
canonical model Γ = κ(C) ⊂ P is projectively normal.

Proof. The reader is referred to [4, Application 2.5]. �

Remark 2.8. If C is hyperelliptic, ωC is not normally generated, because κ is
not even very ample, as it is composed with the hyperelliptic involution on C. On
the other hand, Γ = κ(C) ⊂ P is a rational normal curve, therefore it is projectively
normal in P (cf. Proposition 1.5).

Exercise Let C be hyperelliptic of genus g ≥ 3. Show that

m2 : Sym2(H0(ωC)) → H0(ω⊗2
C )

has corank g − 2

2.4. Enriques-Babbage’s theorem and Petri’s theorem. There are some
fundamental consequences of Noether’s theorem. Let C be a smooth, non-hyperelliptic,
projective curve of genus g ≥ 3 and let Γ = κ(C).

• If g = 3, then Γ is a smooth plane quartic.
• If g = 4, Γ is a space curve of degree 6. From the fact that ωC is normally

generated and by recalling Remark 1.3, we have h0(IΓ/P3(2)) = 1 and
h0(IΓ/P3(2)) = 5. Since Γ is non degenerate, the quadric containing it is
either a smooth quadric or a quadric cone. Moreover, among the cubics
containing Γ, there are some irreducible ones. By Bezout’s theorem, Γ is
set-theoretically a complete intersection in P3 of a quadric and a cubic (a
stronger result actually holds, cf. Theorem 2.12).

• If g ≥ 5, h0(IΓ/P(2)) =
(
g−2
2

)
. Note that, since g ≥ 5, we have

(
g−2
2

)
≥

g − 2 = codimP(Γ).
From the previous analysis, it is natural to ask if Γ could be the intersection of

the quadrics containing it, for g ≥ 5 (for g = 3, 4 it is false). Consider

S :=
⋂

Q∈H0(IΓ/P(2))

Q.

Proposition 2.9. Let g ≥ 5 and let C be a smooth, non-hyperelliptic, projective
curve of genus g. If either
(a) g = 6 and C is isomorphic to a smooth, plane quintic (i.e. C admits a very
ample |D| = g2

5), or
(b) g ≥ 5 and C is trigonal (i.e. it admits a complete g1

3), then

Γ = κ(C) ⊂ S.

Proof. The reader is referred to [1, (3.1) Proposition, p. 124]. �

The preceding proposition is the central step in the proof of the following
fundamental result stating that, with only the exceptions listed above, a canonical
curve is set-theoretically an intersection of quadrics.

Theorem 2.10. [Enriques (1919) - Babbage (1939)] Let Γ ⊂ P be a canonical
curve of genus g, with g ≥ 5. Then

S = Γ
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unless Γ is either
• trigonal of genus g ≥ 5, or
• g = 6 and Γ is isomorphic to a smooth plane quintic.

In all these cases, S is a smooth surface of minimal degree (cf. § 1.3). More
precisely, S is either a rational scroll or the Veronese surface in P5, respectively.

Proof. The reader is referred to [1, Enriques-Babbage Theorem, p. 124].
�

Remark 2.11. (1) A curve of genus g = 6 cannot be simultaneously trigonal
and isomorphic to a smooth plane quintic.
(2) For g = 3, S = ∅. As we said before, Γ ⊂ P2 is a smooth plane quartic, therefore
it is trigonal (take the pencil of 3-secant lines through any point of Γ). For g = 4,
Γ ⊂ P3 is a sextic curve. Since, as we saw before, it lies on either a smooth quadric
or a quadric cone, in any case Γ is trigonal and Γ ⊂ S.

Enriques-Babbage’s theorem gives only a set-theoretical information and states
nothing about the generators of the homogeneous ideal IΓ of the canonical curve.
By using the same strategy, via vector bundle methods as in the proof of Theorem
2.7, one can prove the following:

Theorem 2.12. [Petri (1922), Saint-Donat (1973)] Let g ≥ 4 and let C be a
smooth, non-hyperelliptic, projective curve of genus g. Let Γ ⊂ P be its canonical
model, IΓ its homogeneous ideal.

Then IΓ is generated by polynomials of degree 2 and 3. Moreover IΓ is generated
by only quadrics if and only if C is neither trigonal nor isomorphic to a smooth
plane quintic.

Proof. The reader is referred to [4, § 3. Proof of the Theorem, p.138]. �

3. Symmetric products and Jacobians

For any n ≥ 1, denote by Cn the n-th symmetric product of C: it can be
identified with the set of all effective divisors of degree n on C. It has a natural
structure of smooth, projective variety of dimension n (cf. [3, 236]). Let

Dn := {(D, p) | p ∈ D} ⊂ Cn × C;

one has

(14)
Dn

j
↪→ Cn × C

p→ C
↓qn

Cn .

The fibre over D ∈ Cn of the composition qn ◦ j is the divisor D ⊂ Cn. For this
reason, Dn is called the universal (or tautological) divisor of Cn × C.

One has the following identification:

Proposition 3.1. There is a natural identification

T[D](Cn) ∼= H0(C,OD(D)),

where T[D](Cn) is the Zariski tangent space of Cn at the point [D] ∈ Cn.

Proof. The reader is referred to [1, pp. 160-165]. �
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The Picard group Pic(C) decomposes according to the degree, as

Pic(C) =
∐
n∈Z

Picn(C),

and Pic0(C) is a subgroup which has the structure of an abelian variety, i.e. a
projective algebraic group, non singular and of dimension g. With this structure,
Pic0(C) is often denoted by J(C) and called the jacobian variety of C. By transla-
tion, the structure of algebraic variety is extended to any Picn(C), for all n ∈ Z, in
such a way that Picn(C) ∼= J(C) as projective varieties, for all n ∈ Z. On the other
hand, these isomorphisms are not canonically defined if n 6= 0, so that in particular
Picn(C) does not inehrit the structure of algebraic group, for n 6= 0. By taking
into account these isomorphisms at projective variety level, one has the following
identification:

Proposition 3.2. For any line bundle L of degree n, let [L] ∈ Picn(C) be the
corresponding point. There is a canonical identification

T[L](Picn(C)) ∼= H1(C,OC),

where T[L](Picn(C)) is the Zariski tangent space of Picn(C) at [L].

Proof. The reader is referred to [1, pp. 166-170]. �

Due to the functorial definitions of Dn and J(C) and the existence of a Poincaré
line-bundle, one has a natural morphism of projective varieties

(15) un : Cn → Picn(C), D → OC(D),

which is called the Abel-Jacobi morphism (at level n). By the very definition, the
fibres of un are complete linear systems, in particular they are connected.

As we shall see in § 4, the Abel-Jacobi morphism is the key tool to introduce
the Brill-Noether loci in Picn(C).

Notation as in Diagram (14). Consider the exact sequence on Cn × C

0 → OCn×C → OCn×C(Dn) → ODn
(Dn) → 0;

since Cn is smooth, applying qn,∗ gives
(16)

0→ OCn → qn,∗(OCn×C(Dn))→ qn,∗(ODn (Dn))
∂−→ R

1
qn,∗(OCn×C)→ R

1
qn,∗(OCn×C(Dn))→ 0.

From the functorial definitions of Dn, of J(C) and the existence of the Poincaré
line-bundle, one has

Proposition 3.3. There are natural identifications of vector bundles on Cn:

TCn
∼= qn,∗(ODn

(Dn)), u∗n(TPicn(C)) ∼= R1qn,∗(OCn×C);

moreover ∂ coincides with un,∗, the differential of the Abel-Jacobi morphism.

Proof. The reader is referred e.g. to [1, (2.3) Lemma].
�

Remark 3.4. From Proposition 3.3 it follows that, when we restrict (16) to a
point [D] ∈ Cn, we get the exact sequence of vector spaces

(17) 0→ H
0
(OC)→ H

0
(OC(D))→ H

0
(OD(D))

∂D−→ H
1
(OC)→ H

1
(OC(D))→ 0.

In other words, given the natural exact sequence of sheaves on C

0 → OC → OC(D) → OD(D) → 0,
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the coboundary map ∂D of the associated exact sequence in cohomology identifies
with the differential

dun,D : TD(Cn) → Tun(D)(Picn(C)),

where Tx(X) denotes the Zariski tangent space of the projective variety X at the
point x ∈ X (cf. also [8, Lemma 2.1]).

Corollary 3.5. Let D ∈ Cn. Then

P(Im(∂D)) = P(Im(dun,D)) = 〈κ(D)〉 ⊂ P(H1(OC)) = P.
In other words, the projiectivized image of the differential of the Abel-Jacobi map
at D ∈ Cn coincides with the linear span 〈κ(D)〉 in the canonical space P.

Proof. The reader is referred to [1, pp. 189-190].
�

4. Basics on Brill-Nother theory

With notation as in the previous section, let g ≥ 3. Consider

TCn
∼= qn,∗(ODn

(Dn))
∂−→ R1qn,∗(OCn×C) ∼= u∗n(TPicn(C)),

which is a map of vector-bundles on Cn, the first of rank n, the second of rank g.

Definition. For any integer 0 ≤ r ≤ n, define the closed (possibly empty)
subscheme of Cn
(18) Crn := {[D] ∈ Cn | rk(dun,D) ≤ n− r}
and

(19) W r
n := un(Crn) ⊂ Picn(C)

as its scheme-theoretic image.

Since rk(∂D) ≤ n−r if and only if dim(ker(∂D)) ≥ r, set-theoretically we have:

Supp(Crn) = {[D] ∈ Cn | dim(|D|) ≥ r}
and

Supp(W r
n) =

{
[L] ∈ Picn(C) | h0(C,L) ≥ r + 1

}
.

The scheme W r
n is said to be the Brill-Noether locus parametrizing complete linear

series of degree n and dimension at least r on C.
Note that Crn and W r

n can be empty, singular, reducible, even non-reduced. We
shall see several examples (cf. § 5). It is clear from the definitions that C0

n = Cn,
whereas W 0

n := Wn = un(Cn) ⊆ Picn(C) is the subscheme parametrizing effective
line bundles of degree n.

• If n ≥ g, from Riemann-Roch theorem

C0
n = C1

n = . . . = Cn−gn = Cn and W 0
n = W 1

n = . . . = Wn−g
n = Picn(C).

In particular, un is surjective. If moreover n ≥ 2g − 1, since i(D) = 0 for any
[D] ∈ Cn, Cn is a projective space bundle over Picn(C) with fibres Pn−g and
Cn−g+kn = Wn−g+k

n = ∅, for any k ≥ 1.

• If n ≤ g, given [D] ∈ Cn general, D imposes independent conditions to |KC |,
i.e. h0(KC − D) = g − n. Therefore, by Riemann-Roch theorem r(D) = 0, i.e.
for [D] ∈ Cn general dim(u−1

n (un(D)) = dim(|D|) = 0. Since the fibres of un are
always connected, in this case we have:
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(i) Wn is birational to Cn; in particular dim(Wn) = n;
(ii) Cn 6= C1

n;
(iii) Wn 6= W 1

n ;
(iv) un is generically injective.

Particular cases (1) For n = 1, u1 : C → Pic1(C) is injective, as it follows from
what discussed above and from g ≥ 3. Moreover since r(P ) = 0, for any P ∈ C,
dun,P is injective for any P ∈ C. This means that u1 is an embedding. If we fix a
point P0 ∈ C, we can compose the embedding u1 with the translation in Pic(C),
tOC(−P0) : Pic1(C)

∼=−→ J(C). By composition, one determines an embedding of
C ↪→ J(C), defined up to translation. From Corollary 3.5, du1 induces the Gauss
map

γ : C → P, P → 〈κ(P )〉,
which actually coincides with the canonical morphism κ.

(2) For n = g, ug is birational, since it is surjective and generically injective. In
particular, Picg(C) (equivalently J(C)) is birational to Cg, W 0

g = Picg(C) and ug
contracts special linear systems.

(3) For n = g − 1, W 0
g−1 ⊂ Picg−1(C) is a divisor, parametrizing effective line

bundles of degree g − 1. This is called the theta divisor, denoted also by Θ, which
is intrinsically defined in Picg−1(C). The theta divisor and the rich projective
geometry associated to it will be studied in more details in [8, § 3].

Let us comment some general facts.

Proposition 4.1. If n ≤ g, the map un is birational onto its image and induces
an isomorphism Cn \ C1

n

∼=→ Wn \W 1
n . Moreover Wn is reduced, irreducible and

normal.

Proof. The first part is a direct consequence of what we discussed above.
The second part is a consequence of the Stein factorization theorem and the Zariski
Main Theorem. �

One also has:

Lemma 4.2. If r ≥ 1 and n ≤ g, W r
n does not coincide with the whole Picn(C).

Moreover Cr+1
n ⊂ Crn and W r+1

n ⊂W r
n.

Proof. For a proof, see e.g. [1, (3.5) Lemma] (cf. also [8, Proposition 2.2]).
�

From the previuos lemma, one has:

Lemma 4.3. Let r ≥ 1 and n ≤ g. Take D ∈ Crn \ Cr+1
n and let

(20) µ0(D) : H0(D)⊗H0(KC −D) → H0(KC)

the natural multiplication map, called the Petri map of OC(D).
Then

Tun(D)(W r
n) ∼= (Im(µ0(D)))⊥B ⊂ H1(OC) = Tun(D)(Picn(C)),

where the orthogonality is with respect to the natural, non-degenerate, bilinear
form B : H0(KC) ⊗ H1(OC) → H1(KC). In particular, dimun(D)(W r

n) ≤ g −
dim(Im(µ0(D)).
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Proof. For a proof, see e.g. [1, (4.2) Proposition]. �

Remark 4.4. Denote L = OC(D) ∈ Picn(C). Then one can speak equivalently
of the Petri map for the line bundle L as

(21) µ0(L) : H0(L)⊗H0(ωC ⊗ L∨) → H0(ωC).

Since
(Im(µ0(L)))⊥B ∼= Coker(µ0(L)),

from Lemma 4.3 one has that |L| = grn and that dim(T[L](W r
n)) = dim(Coker(µ0(L)) =

g − h0(L)h0(ωC ⊗ L∨) + dim(ker(µ0(L)). One defines

(22) ρ(L) = ρ(g, r, n) := g − h0(L)h0(ωC ⊗ L∨) = g − (r + 1)(g − n+ r)

the Brill-Noether number. Thus, one can restate what observed before in this way:

(23) dim(T[L](W r
n)) = ρ(g, r, n) + dim(ker(µ0(L)).

Given r and n, the structure of the morphism

urn : Crn →W r
n ,

induced by the Abel-Jacobi map, can be very complicated. Its fibres have dimension
at least r, therefore it is clear that for every irreducible component Z ⊆ Crn one has

dim(urn(Z)) ≤ dim(Z)− r

and equality holds if and only if Cr+1
n ∩Z 6= Z. In the special case n ≤ g−1, r = 0,

the morphism un : Cn →Wn is a resolution of singularities.

Natural questions (1) Can we say something more precise about the dimension
of any irreducible component of W r

n (if not empty)?
(2) Can we say something more precise about the smoothness of [L] ∈W r

n?

4.1. Martens theorem and the Brill-Noether inequality. It is not possi-
ble to give a formula for the dimension W r

n on a curve of genus g only as a function
of g, r, n because in general such dimension depends on the curve C. It may
happen that W r

n = ∅ for some curves of genus g and that W r
n 6= ∅ for some other

curves of the same genus: for examples, given C a curve of genus g ≥ 3, W 1
2 (C) 6= ∅

if and only C is hyperelliptic.
On the other hand, there are some results which give upper and lower bounds

for dim(W r
n) which hold for every curve of genus g and characterize the curves on

which W r
n has maximal dimension. It is evident that the only interesting cases

occur for r ≥ 1 and 2 ≤ n ≤ 2g− 2. Moreover, because of the natural isomorphism

W r
n
∼= W g−n+r−1

2g−2−n

induced by the correspondence L→ ωC ⊗ L∨ and the Riemann-Roch theorem, we
may limit ourselves to considering the cases 2 ≤ n ≤ g − 1 and r ≥ 1.

Theorem 4.5. [Brill-Noether (1873); Martens (1967)] Let g, r, n be integers
such that r ≥ 1, 2 ≤ n ≤ g − 1. Let C be a smooth, projective curve of genus g.
For any irreducible component Z 6= ∅ of W r

n, one has

(24) ρ(g, r, n) ≤ dim(Z) ≤ n− 2r.

Moreover, the equality to the upper-bound holds, for some Z, if and only if C is
hyperelliptic.
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Proof. The inequality on the left easily follows from the definition of W r
n as

a degeneracy-locus of a vector bundle map on Cn. For a proof of the inequality on
the right and the last part of the statement, the reader is referred to e.g. [1, (5.1)
Theorem, p. 191]. �

The inequality on the lef side of (24) is called the Brill-Noether inequality; the
other inequality together with the last part of the statement are the content of
Martens’ theorem.

When C is hyperelliptic, one can stress the above statements. Indeed, one has

Proposition 4.6. Let C be a smooth, hyperelliptic curve of genus g ≥ 2 and
let |∆| be the (unique) g1

2 on C. Then for any special |A| = grn, with A ∈ Picn(C),
there exist points P1, . . . , Pn−2r ∈ C such that |A| = r|∆|+ P1 + · · ·+ Pn−2r.

In particular, W r
n(C) ∼= Cn−2r.

Proof. The reader is referred to [1, Exercise D-9, p.41]. �

From Theorem 4.5, if W r
n 6= ∅, it follows that

(25) expdim(W r
n) = ρ(g, r, n) and expdim(Crn) = ρ(g, r, n) + r.

Thus, from (23), we have the following:

Theorem 4.7. [Smoothness via the Petri map] Assume W r
n 6= ∅ and let [L] ∈

W r
n \W r+1

n . Then
(i) W r

n is smooth and of the expected dimension ρ(g, r, n) at [L] if and only if the
Petri map µ0(L) is injective, and
(ii) Crn is smooth and of the expected dimension ρ(g, r, n)+ r at any [D] ∈ u−1

n ([L])
if and only if the Petri map µ0(L) is injective.

Proof. Statement (i) trivially follows from what discussed up to now.
For what concerns (ii), observe that ker(µ0(L)) = 0 if and only if rank(dun,D) =

n− r, for any D ∈ |L| = u−1
n ([L]). Recall that (17) reads as

0 → T[D](|L|) → T[D](Cn)
dun,D−→ T[L](W r

n);

therefore, rank(dun,D) = n− r means that dun,D is surjective. Since from the first
part [L] is a smooth point of W r

n , the same holds for any [D] ∈ u−1
n ([L]), as a point

of Crn. �

Exercise Let g ≥ 4, C be a smooth, non-hyperelliptic curve of genus g and let
L ∈ Picg−1(C) such that |L| = g1

g−1 is base-point-free. Show that the map µ0(L)
fails to be injective if and only if L is a theta characteristic, i.e. L⊗2 ∼= ωC .

What about the singularities of W r
n? A preliminary answer is given by the

following

Theorem 4.8. [Singularity] Let [L] ∈W r+1
n . Then

T[L](W r
n) = T[L](Picn(C)).

In particular, if W r
n has the expected dimension ρ(g, r, n) and r > n − g (i.e. g >

ρ(g, r, n)) then [L] ∈ Sing(W r
n). In other words, W r+1

n ⊆ Sing(W r
n).

Proof. The reader is referred to [1, (4.2) Proposition, p. 189]. �

We conclude this section by recalling a refinement of Martens theorem.
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Definition. Let C be a smooth, non-hyperelliptic curve of genus g. Then C
is said to be bielliptic if C admits an elliptic involution of degree 2, i.e. there exists
a surjective morphism ε : C → E such that deg(ε) = 2 and E is elliptic.

It is not difficult to show that C is bielliptic if and only if Γ := κ(C) lies on a
cone Σ ⊂ Pg−1 projecting from a point P ∈| Γ a non-degenerate curve of genus g,
degree g − 1 in Pg−2 and Γ is a 2-section of Σ (left as an exercise).

Then, one has

Theorem 4.9. [Mumford’s theorem] Let C be a smooth, non-hyperelliptic curve
of genus g ≥ 4 and let n ≤ g − 2. Assume there exists a component Z ⊂ W r

n s.t.
dim(Z) = n− 2r − 1. Then C is either trigonal, or isomorphic to a smooth plane
quintic or bielliptic.

Observe that the first two cases in Mumford’s theorem have been already en-
countered as exceptional cases of the Enriques-Babbage theorem (cf. Theorem 2.10)
and of the Petri’s theorem (cf. Theorem 2.12). This kind of curves determines also
exceptional cases of the behaviour of ΘSing, i.e. of the singular subscheme of the
theta divisor (cf. [8, § 5]).

Exercise Let g ≥ 4 and n ≤ g−2. Show that, if C is bielliptic then dim(W 2
n(C)) =

n− 5.

5. Some examples

In this section we want to discuss some examples.

(1) Let C be of genus 2; J(C) is an abelian surface.
• u1 is an embedding and u1(C) = Θ ⊂ Pic1(C) (cf. Particular cases (1) and (3),
before Proposition 4.1). In other words, Θ is smooth and isomorphic to C.
• u2 is bijective outside the points in u−1

2 ([ωC ]) = |KC | = g1
2, i.e. u2 contracts

a rational curve E ⊂ C2. From the Castelnuovo criterion of contraction, E is a
(−1)-curve in C2. In other words, C2 is birational to J(C), obtained by blowing-up
a point on this abelian surface. W 1

2 is smooth and irreducible (just one reduced
point, cf. Proposition 4.6).

(2) Let C be of genus 3. u1 is always an embedding.
• u2(C2) = Θ ⊂ Pic2(C). Two cases have to be considered.
C non-hyperelliptic: for any D ∈ C2, by Riemann-Roch theorem and Clifford’s
theorem, r(D) = 0 and i(D) = 1, which implies that u2 is an isomorphism onto its
image, i.e. Θ is smooth.
C hyperelliptic: the unique |∆| = g1

2 on C determines a rational curve E ⊂ C2

which is contracted at a point u2(E) ∈ Pic2(C). Since Θ = W 0
2 ⊂ Pic2(C) has the

expected dimension, from Theorem 4.8, its only singularity is the point u2(E) ∈W 1
2

(by using the Riemann singularity theorem [1, p. 226], it is a double point of Θ;
cf. also [8, § 3]).
• u3 is an isomorphism on the locus of non-special divisor. As above, we have two
cases:
C non-hyperelliptic: recall that when C is non-hyperelliptic, its canonical image is
a smooth, plane quartic Γ, so C is trigonal. Indeed, from Proposition 2.3, D ∈ C3

special on C implies that 〈κ(D)〉 is a line. The triples 〈κ(D)〉 are cut out by
pencils of lines through a point. The fourth point of intersection is general in Γ, i.e.
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Im(u3) ∼= C = {set of fourth points}. In other words, u3 is not an isomorphism
over a curve γ ⊂ Pic3(C) isomorphic to C and Pic3(C) is obtained from C3 by
collapsing each ruling of a ruled surface birationally isomorphic to C × P1.
C hyperelliptic: if |∆| = g1

2, any special D ∈ C3 is |D| = |∆| + P , for P ∈ C.
Therefore u3 as above contracts each ruling of C × P1 to a point.

(3) Let C be a smooth curve of genus 4.
C non-hyperelliptic: its canonical image is a smooth sextic Γ ⊂ P3 and, from
Noether’s theorem, it lies on a unique irreducible quadric Q ⊂ P3. We have two
possibilities.
• if Q is smooth, it is doubly ruled. Each of the two rulings on Q defines a g1

3

on C. Let L1, L2 ∈ Pic3(C) be the two line bundles corresponding to these two
(inequivalent) g1

3’s. From the fact that |Li| is a pencil, it follows thatKer(µ0(Li)) ∼=
H0(ωC ⊗ L⊗2

i ) (use the Base-point-free pencil trick). Since OΓ(1) ∼= ωC , then
h0(ωC ⊗ L⊗2

i ) = 0 because its global sections correspond to hyperplanes in P3

containing two lines of the same ruling of Q and lines of the same ruling are skew.
Therefore µ0(Li) is injective, 1 ≤ i ≤ 2. Since ρ(4, 1, 3) = 0, from Theorem 4.7,
W 1

3 = {L1, L2} is smooth, reducible and of the expected dimension.
• if Q is a quadric cone, it is ruled. In other words, the two distinct g1

3’s of the
previous case become equivalent L1 = L2 = L. This means that the support of W 1

3

is just one point. On the other hand dim(Ker(µ0(L))) = h0(ωC ⊗L⊗2) = 1 (i.e. L
is a theta characteristic), which means that W 1

3 is of the expected dimension but
not reduced. Note also that W 2

3 = ∅ by Clifford’s theorem; therefore this example
also shows that in general the inclusion in Theorem 4.8 W r+1

n ⊆ Sing(W r
n) is strict.

C hyperelliptic: any W r
n
∼= Cn−2r. Θ = W 0

3 is birational to C3; since any element
of W 1

3 is of the form |∆| + P , where |∆| = g1
2 and P ∈ C, as above W 1

3 = γ ∼= C
is a singular curve for Θ and C3 obtained by blowing-up this curve. In particular,
dim(W 1

3 ) = 1 as Marten’s theorem predicts (note ρ(4, 1, 3) = 0).

(4) Let Γ ⊂ P2 be a smooth quintic. Its abstract model is a curve C of genus 6
admitting a very-ample g2

5 = |L|, where L ∼= OΓ(1).
First of all, this g2

5 is uniquely determined on C (Exercise), so Supp(W 2
5 (C)) =

{L}; in particular W 2
5 6= ∅ even if ρ(6, 2, 5) = −3 < 0.

Now, take P ∈ C be a general point. Thus L(−P ) determines a g1
4 on C.

Therefore W 1
4 (C) ∼= C (as Mumford’s theorem 4.9 predicts) even if ρ(6, 1, 4) = 0.

6. Final remarks and curves with general moduli

All the results and the examples discussed up to now show that, in general,
the behaviour of the W r

n ’s - even in low genera - seems to be unpredictable and
actually depends on C. On the other hand, one can be more precise, at least for
some questions related to W r

n ’s.

Theorem 6.1. [Existence theorem - Kempf and Kleiman-Laksov (1972)] Let
C be any smooth, projective curve of genus g. Assume ρ(g, n, r) ≥ 0, for integers
n ≥ 1, r ≥ n − g. Then W r

n(C) 6= ∅ and every irreducible component has at least
the expected dimension ρ(g, r, n).

Proof. The proof involves ampleness of suitable vector bundles on Picn(C)
and non-emptyness of related degeneracy loci of vector bundle maps. The reader
is referred to [1, Chapter VII]. �
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Theorem 6.2. [Connectedness theorem - Fulton and Lazarsfeld (1981)] As-
sume ρ(g, n, r) ≥ 1. Then W r

n(C) is connected.

Proof. The reader is referred to [1, Chapter VII]. �

If C is a general curve of genus g, i.e. if it corresponds to a general point of the
moduli space Mg, the situation is clearer.

Theorem 6.3. [Dimension theorem or Brill-Noether theorem - Griffiths and
Harris (1980)] Let C be a general curve of genus g. Assume ρ(g, n, r) < 0, for
integers n ≥ 1, r ≥ n− g. Then W r

n(C) = ∅

Proof. The reader is referred to [1, p. 214] and the original article. �

The nice aspect of C to be with general moduli is that also the infinitesimal
structure of W r

n(C), as in Lemma 4.3 and (23), is much more precise.

Theorem 6.4. [Smoothness theorem or Petri’s theorem - Gieseker (1982)] Let
C be a general curve of genus g. Let n ≥ 1, r ≥ n − g be integers. Then W r

n(C)
is smooth and of the expected dimension ρ(g, r, n) at each point [L] ∈ W r

n(C) \
W r+1
n (C)

Proof. The reader is referred to [1, p. 214] and the original article. �

The proofs of both the previous results are based on degeneration techniques.
In particualar, one has:

Corollary 6.5. Let C be a general curve of genus g. Let n ≥ 1, r ≥ n− g be
integers.
(i) If ρ(g, r, n) ≥ 1, then W r

n(C) si irreducible.
(ii) Sing(W r

n(C)) = W r+1
n (C).

Proof. (i) follows at once from Theorems 6.2 and 6.4. (ii) follows from
Thorems 4.8 and 6.4. �

It is noteworthy that, for special curves C, W r
n(C) does not respect the previous

statements: it may well be reducible even if ρ > 0 and if it has the expected
dimension ρ (see e.g. C trigonal of genus 5 in [1]) and W r+1

n (C) ⊂ Sing(W r
n(C))

(cf. Example (3), when the canonical model of C lies on a quadric cone).
By recalling Theorem 4.7, an alternative version of Theorem 6.4 is the following:

Theorem 6.6. [Smoothness theorem or Petri’s theorem - VERSION II] Let
C be a general curve of genus g. Let n ≥ 1, r ≥ n − g be integers. For any
[L] ∈W r

n(C) \W r+1
n (C), the Petri map (21) is injective.

This is the version that Gieseker proved (1982) and this is the one that K. Petri
(1925) stated.

We conclude this section by showing some nice applications of the previous
results on curves with general moduli. Recall first the following:

Definition. Let C be a smooth, projective curve. If C admits a complete and
base-point-free g1

k but no g1
k−1’s, then C is said to be k-gonal and k is denoted by

gon(C).

Proposition 6.7. Let C be a curve of genus g with general moduli. Then
gon(C) = b g+3

2 c.
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Proof. By Theorem 6.3, a g1
k exists if and only if ρ(g, 1, k) ≥ 0. On the other

hand, ρ(g, 1, k) ≤ 1. Indeed, if ρ(g, 1, k) ≥ 2, this would give 0 ≤ 2k − g − 4 =
ρ(g, 1, k − 1) so, by Theorem 6.1, W 1

k−1 6= ∅, against assumptions. Therefore
0 ≤ ρ(g, 1, k) ≤ 1, which gives k = g+2

2 , if g is even, and k = g+3
2 , if g is odd, as we

had to show. �

Proposition 6.8. Let C be a curve of genus g with general moduli. Let [L] ∈
W r
n(C) \W r+1

n (C), with r ≥ 3. Then ϕL si an embedding.

Proof. Let L = OC(D), for some D ∈ Cn. Then r(D) = r and i(D) = i. Let
∆ ∈ C2 be any effective divisor. Thus 0 < r − 2 ≤ r(D −∆) ≤ r.

If r(D − ∆) = r, then we would have |D| = |D − ∆|. On the other hand,
r(D−∆) = r implies i(D−∆) = i+ 2 so, by Theorem 6.3, we have g− (r+ 1)i =
dim(W r

d ) > dim(W r
d−2) = g− (r+ 1)i− 2(r+ 1), since 2(r+ 1) ≥ 6: contradiction.

If r(D − ∆) = r − 1, then any |D − ∆| = |D − P |, for some P ∈ C. In
this case r(D − P ) = r − 1 and i(D − P ) = i. But, from Theorem 6.3, we have
g − ri = dim(W r−1

d−1 ) > dim(W r−1
d−2 ) = g − ri− r, since r ≥ 3: contradiction.

Therefore r(D −∆) = r − 2, for any ∆ ∈ C2, which means that |D| separates
points and tangent vectors. �
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