arXiv:0707.0157v1l [math.AG] 2 Jul 2007

NODAL CURVES WITH GENERAL MODULI ON K3 SURFACES

FLAMINIO FLAMINI®Y, ANDREAS LEOPOLD KNUTSEN(®  GIANLUCA PACIENZA® AND EDOARDO
SERNESI®

ABsTRACT. We investigate the modular properties of nodal curves on a low genus K3 surface. We
prove that a general genus g curve C'is the normalization of a d-nodal curve X sitting on a primitively
polarized K3 surface S of degree 2p — 2, for 2 < g =p — 3§ < p < 11. The proof is based on a local
deformation-theoretic analysis of the map from the stack of pairs (5, X) to the moduli space of curves
M, that associates to X the isomorphism class [C] of its normalization.

1. INTRODUCTION

Nonsingular curves of low genus on a K3 surface have interesting modular properties, related to
the existence of Fano 3-folds of index one of the corresponding sectional genus. These properties
have been investigated by Mukai who settled, in particular, a problem raised by Mayer in [14]. He
showed that a general curve of genus ¢ < 9 or ¢ = 11 can be embedded as a nonsingular curve in
a K3 surface, and that this is not possible for curves of genus g = 10, despite an obvious count of
constants indicating the opposite. These facts have been proved again by Beauville in the last section
of [2] from a different point of view, by means of a local deformation-theoretic analysis.

In the present paper we take a point of view similar to Beauville’s with the purpose of studying
the corresponding questions about moduli of singular (nodal) curves of low genus on a K3 surface.
To this end we consider the following algebraic stacks:

Bp: the stack of smooth K3 surfaces S marked by a globally generated, primitive line bundle H
of sectional genus p > 2; it is smooth and irreducible of dimension 19.

Vps: the stack of pairs (S, X) such that (S, H) € B, and X € |H| is an irreducible curve with &
nodes and no other singularities, for given 0 < § < p; it is smooth of dimension 19+ g, where

g=p-—20.

We also consider an étale atlas V,, 5 — V, s and the morphisms:

Cp,s

%,5 - Mg

|

B,

where M, is the moduli stack of nonsingular curves of genus g = p — 9; ¢, 5 and 7s are induced by
associating to a point parametrizing a pair (S, X) the isomorphism class of the normalization of X
and [S] respectively.

We study this configuration when 3 < p < 11. Our main result is the following:

Theorem 1.1. Let 3<p <11 and0 < d <p—2, 50 that2<g=p—0 <p. Let V C V5 be an
wrreducible component, and let
Cp,6|V : V —_— Mg
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be the restriction to V' of the morphism ¢, 5. Then, for any 2 < g < p < 11, ¢, 5y 15 dominant. In
particular, for the general fibre Fy, 5 of ¢, 5 we have:

dim(F, ) = 22 — 29 = expdim(F}, 5)

The theorem is proved by studying deformations of a pair (S,X) in V,s. The locally trivial
deformation theory of such a pair is controlled by a locally free sheaf of rank 2, namely the sheaf
Ts(X) of tangent vectors to S that are tangent to X. Specifically, H!(S, Ts(X)) is the tangent space
to V,s5 at (S, X) and H%(S,Tg(X)) is an obstruction space. These cohomology groups are studied
by pulling back Tg(X) to the blow-up S of S at the singular points of X. Then the local study of
the morphism ¢, s is carried out on S, and the theorem is reduced to proving the vanishing of an
appropriate cohomology group.

The case p = 11, § = 1 of the theorem appears to be somehow unexpected. Note that, in fact, the
theorem says that every irreducible component V' of Vi1 ; dominates Mjg. This contrasts the fact
that, according to Mukai, V10,0 does not dominate Mjg.

Another interesting case is p = 10,0 = 1. Again the theorem says that every irreducible component
of V10,1 dominates Mg. But, since Vig is mapped to a divisor of Myg by c1g := c10,0, it follows that
the nodal curves in Vig 1 only fill a divisor on the boundary OMo of Mg, despite the fact that their
normalizations are general curves of genus 9. This means that on a general curve C of genus 9, the
effective divisors P 4+ @, with P # @, such that the nodal curve X = C'/(P = Q) can be embedded
in a K3 surface, belong to a I-dimensional cycle I' ¢ C®). It would be interesting to compute the
numerical class of I.

The paper consists of 5 sections including the introduction. After recalling the relevant deformation
theory in § 2, we survey the known results about moduli of smooth curves on marked K3 surfaces in
§ 3. In § 4 we develop our approach for the case of nodal curves, and in § 5 we discuss the existence
of nodal curves having normalizations with general moduli. In the end we raise some related open
questions.

Acknowledgements. We warmly thank B. Fantechi and M. Roth for useful conversations and C.
Voisin for her comments.

2. SOME BASIC RESULTS OF DEFORMATION THEORY

In this section we will review some results on deformation theory that are needed for our aims.
For complete details, we refer the reader to e.g. [I7, § 3.4.4].

Let Y be a smooth variety and let j : X <— Y be a closed embedding of a Cartier divisor X. The
locally trivial deformations of j are studied by means of suitable sheaves on Y.

Let Nx/y be the normal sheaf of X in Y, and N’X/Y C Nx/y the equisingular normal sheaf of X

in Y (cf. [17, Proposition 1.1.9]). One can define a coherent sheaf Ty (X) of rank dim(Y’) on Y via
the exact sequence :
(2.1) 0— Ty (X) — ‘TY—>:N,X/Y — 0,
which is called the sheaf of germs of tangent vectors to Y that are tangent to X (cf. [17, § 3.4.4]).
Of course, when X is smooth, then N’X/Y in (2.I) is nothing but the normal bundle N y-.

One has a natural surjective restriction map

(2.2) T ‘Ty(X> — ‘Tx,
giving the exact sequence
(2.3) 0 — Ty (—X) — Ty(X) — Tx — 0,

where Ty (—X) is the vector bundle of tangent vectors of Y vanishing along X and where Tx is the

tangent sheaf of X, i.e. the dual sheaf of the sheaf of Kéhler differentials of X (cf. [I7, § 3.4.4]).
Observe that, when X is a divisor with simple normal crossings (see [13]), Ty (X) is a locally free

subsheaf of the holomorphic tangent bundle Ty, whose restriction to X is Tx and whose localization
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at any point x € X is given by

l n
0 0
Y, Z Yz 2 o7 + Z Y, 0z;
=1 Jj=1+1

where the local coordinates z1, 29, . . ., 2z, around z are chosen in such a way that X = {z129--- 2, = 0}.
In fact, Ty (X) = (Q (log X))V, where Q1 (log X) denotes the sheaf of meromorphic 1-forms on Y
that have at most logarithmic poles along X.

Also, when X is an integral curve sitting on a smooth surface Y, by (2.1]) the sheaf Ty (X) is an
elementary transformation of the locally free sheaf Ty, and then it is locally free (see e.g. [12), Lemma
2.2]).

Recall the following basic result:

Proposition 2.4. (see [I7, Proposition 3.4.17|) The locally trivial deformations of the pair (Y, X)
(equivalently of the closed embedding j) are controlled by the sheaf Ty (X); namely,

e the obstructions lie in H*(Y, Ty (X));
e first-order, locally trivial deformations are parametrized by H' (Y, Ty (X));
e infinitesimal automorphisms are parametrized by HO(Y, Ty (X)).

The map that associates to a first-order, locally trivial deformation of (Y,X) the corresponding
first-order deformation of X is the map

(2.5) H'(r): HY(Y, Ty (X)) — HY(X,Tx),
induced in cohomology by [2.2]).

In the rest of the paper we will focus on the case of nodal curves on a surface.

3. MUKAI’S RESULTS ON SMOOTH, CANONICAL CURVES ON GENERAL, MARKED K3 SURFACES
AND BEAUVILLE’S INFINITESIMAL APPROACH

In this section, we shall briefly recall some results of Mukai [15], [16] and the infinitesimal approach
considered by Beauville [2], § 5.

Let p > 2 be an integer. Let B, be the moduli stack of smooth K3 surfaces marked by a globally
generated, primitive line bundle of sectional genus p. That is, the elements of B, are pairs (S, H)
where S is a smooth K3 surface and H is a globally generated line bundle on S with H? = 2p — 2
and such that H is nondivisible in Pic(S). It is well-known that B, is smooth, irreducible and of
dimension 19 (cf. e.g. [I, Thm.VIII 7.3 and p. 366| for the scheme structure; the same conclusions
hold also for the stack structure of By).

Definition 3.1. Let XC, be the algebraic stack of pairs (S,C), where (S,H) € By, p > 2, and
C € |H| is a smooth irreducible curve.

Observe that there is an induced, surjective morphism of stacks
(3.2) m:KC, — B,
given by the natural projection. From [2, § (5.2)], for any (S, C) € XC,, by Serre duality one has

(3-3) H?(8,7s(C)) = H*(8,95(log €))" = (0).

Furthermore, since C' is a smooth curve of genus p > 2 and since Tg = Q}g, being S a K3 surface
and Tg a rank-two vector bundle on it, by (23] we have

H°(8,T5(C)) = (0).
In particular, from Proposition 2.4] KC), is a smooth stack of dimension
dim(XC,) = h'(S,T(C)) = 19 + p.

Since the fibers of m are connected, XC), is also irreducible.



4 F. FLAMINI, A. L. KNUTSEN, G. PACIENZA, E. SERNESI

Let M, be the moduli stack of smooth curves of genus p, which is irreducible and of dimension
3p — 3, since p > 2 by assumption. One has a natural morphism of stacks

(3.4) cp: KC, — M,
defined as
p((S5,C)) = [C] € My,
where [C] denotes the isomorphism class of C' C S.
Observe that:
dim(XCp) > dim(M,,), for p <10,
(3.5) dim(XCp) = dim(M,,), for p=11,
dim(XCp) < dim(M,,), for p>12.

If we denote by F), the general fibre of ¢,, then the expected dimension of F, is:

22 —-2p for p <10,
0 for p>11.

The main results concerning the morphism ¢, are contained in the following:

(3.6) expdim(F)) = {

Theorem 3.7 (Mukai). With notation as above:
(i) ¢p is dominant for p <9 and p =11 (cf. [15]);
(ii) ¢p is not dominant for p =10 (cf. [15]). More precisely, its image is a hypersurface in Mg

(cf- [6]);

(iii) ¢y is generically finite onto its image, for p =11 and for p > 13, but not for p =12 (cf. [16]).

Remark 3.8. (1) In particular, from (3.6) and from Theorem B.7], one has
dim(F),) = expdim(F,),
unless either
e p =10, in which case dim(F}) = expdim(F,) +1 =3, or
e p =12, in which case dim(F},) > 1.
(2) When the map ¢, is not dominant, one can look at it as a way to produce hopefully interesting

cycles in the moduli space of curves. The case p = 10 is particularly relevant, as the divisor in Mg
parametrizing curves lying on a K3 surface was the first counterexample to the slope conjecture (see

[8])-

In 2, § (5.2)] Beauville considered the morphism ¢, from a differential point of view. Let (S,C) €
XC, be any point. From Proposition [Z4], the differential of ¢, at the point (S,C) can be identified
with the map

H'(r) : HY(Ts(C)) — H'(Tc),
as in (Z3). From (Z3) and (B3] it follows that H'(r) fits in the exact sequence:

0— Hl(S’ TS(_C)) - Hl(Sa TS<C>) Iﬂ) Hl(c’ r‘TC) - H2(Sa ‘-TS(_C)) — 0.

Using Serre duality and the fact that wg is trivial, we get
(3.9) HY(8,Ts(~C)) = H*7(8,925(C))", 0<j<2
From (B.3) we obtain that the morphism ¢, is:
e smooth at (S,C) € KC), (i.e. the differential (cp), at the point (S,C) is surjective) if and
only if H(S,Q&(C)) = (0);
o unramified at (S,C) € KXC, (i.e. the differential (c,). at the point (S, C) is injective) if and
only if H!(S,QL(C)) = (0).
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Note that the above conditions depend only on the marking H = Og(C') and not on the particular
curve C'in |H|.
With this approach, Theorem [3.7] is equivalent to:

Proposition 3.10. (see [2 § (5.2)]). Let (S,H) be a general primitively polarized K3 surface of
genus p > 2. We have:

(i) (S, QL(H)) =0, for p <9 and p = 11;

(i) K(S.QL(H)) = 1, for p = 10;

(iii) A'(S,QL(H)) =0, for p=11 and p > 13;

(iv) h'(S,Q5(H)) > 1, for p =12.

;:{emQazrk 3.111. SigceF??(Qé(Hgg :hho(‘J'S(—H)) =0, c1(Q5(H)) =2H and (U4 (H)) = H?+24 =
p + 22, we have, by Riemann-Roc
W(Qs(H)) = x(Qs(H))+ 0 (Q5(H))
_ CI(QE(H))Q e (OL(H 0l 1l
= ——y—— — aQs(H)) + 2rk(Qs(H)) + 1" (Q5(H))
= 2p—22+ KL (QL(H)) > 2p — 22.

In particular, h%(QL(H)) > 3 if p > 12 (cf. also Question 5.7).
4. THE APPROACH TO THE NODAL CASE

By using Proposition 2:4] and a similar approach as in §[B] we want to deduce some extensions of
Theorem 3.1 to irreducible, nodal curves in the primitive linear system |H| on a general primitively
polarized K3 surface of genus p > 3. In particular, we are interested in determining when the
normalization of such a singular curve is an (abstract) smooth curve with general moduli.

To do this, we have to fix some notation and to prove some results that will be used in what
follows. First we recall that, for any smooth surface S and any line bundle H on S, such that |H|
contains smooth, irreducible curves of genus p := p,(H ), and any positive integer § < p, one denotes
by

Vig|s(S) or simply Vig s
the locally closed and functorially defined subscheme of |H| parametrizing the universal family of
irreducible curves in |H| having § nodes as the only singularities and, consequently, geometric genus
g :=p — 9. These are classically called Severi varieties of irreducible, é-nodal curves on S in |H]|.

It is well-known, as a direct consequence of Mumford’s theorem on the existence of nodal rational
curves on K3 surfaces (see e.g. [I, pp. 365-367]) and standard results on Severi varieties (see e.g.
[19, 5, @]), that if (S, H) € B, is general, p > 2, then

(4.1) Vim|,s is nonempty and regular,

i.e. it is smooth and (each of its irreducible components is) of the expected dimension g = p — ¢, for
each § < p. (In fact, the regularity holds whenever V| 5 is nonempty.)
From now on, we shall always consider

(4.2) p>3 and 0<6<p-—2, sothat g> 2.
Similarly as in Definition Bl we have:

Definition 4.3. For any p and 6 as in [f2), let 'V, 5 be the stack of pairs (S, X), such that (S,H) €
By and [X] € Viy 5(5)-

Of course V), o = KC), as in Definition B.11

For any fixed p and any ¢ as in ([&2]), the stacks V, s are locally closed substacks of a natural
enlargement @p of KXCp, which is defined as the stack of pairs (S,C), where (S,H) € B, and

C € |H|. It follows that the stacks V,, ; are algebraic because XC), is.
Consider Bg C B, the open dense substack parametrizing elements (S, H) in B, that verify (4.I]).
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For any ¢ as above, let
(4.4) 5 Vps — Bg
be the surjective morphism given by the projection.

Let (S, X) € Vps. From (2.1)), we can consider the exact sequence
(4.5) 0 — Tg(X) — Tg —)N/X/S — 0.
Since S is a K3 surface

H*(Ts) = H(Q2g) = H'(Ts) = (0).
Therefore, passing to cohomology in (£.5), we get
H'(r)
(16) 0 — HONy5) — H'(Ts(x)) T 1) (T5) 2 H Ny 5) — HA(Ts(X)) — 0,
where H'(r) is as in (2.3).
From [19, Lemma 2.4 and Theorem 2.6|, we have

(4.7) H'(N')5) = C, H*(N'/5) = Tix) (Vi 6(5))-

Moreover, recall that V| 5(5) is regular at [X] (i.e. it is smooth at [X] and of the expected dimension
g). This means that, despite the fact that hl(N’X / g) = 1, the infinitesimal, locally trivial deformations

of the closed embedding X <8 , with S fixed, are unobstructed and the nodes impose independent
conditions to locally trivial deformations (cf. [I9] Remark 2.7]).

We want to show that, for 4 > 0, the properties of the stack V, s are similar to those of the stack
X,
Proposition 4.8. Let p, 0 and g be positive integers as in (4.2).

Then, for any (S, X) € V, 5, we have
(4.9) R(Ts(X)) =0, h*(Ts(X)) =0.

In particular,

(i) the stack Vs is smooth.
(ii) Any irreducible component V C V5 has dimension h'(Ts(X)) = 19+ g.
(iii) The morphism ms is smooth and any irreducible component V C 'V, s smoothly dominates Bg.

Proof. The first equality in (£3) directly follows from (Z3]).
For what concerns the second equality in (£9]), we consider (&6l above: for any point (S, X) € V, 5
we have that

(4.10) 0 — H(NY/5) — H'(Ts(X)) — Ker(a) — 0
can be read as the natural differential sequence
(4.11) 0 — Tixj(Va1.s(5) — Tis,x)(Vp.s) — Tis(Bp) — 0;

indeed, Bg is smooth of dimension 19, whereas h!(Ts) = 20 and hl(N’X/S) =1 by ([@7), thus we have
Im(a) = HY( ’X/S) = Hl(NX/S), i.e. the elements of Ker(a) can be identified with the first-order
deformations of .S preserving the genus p marking.

Moreover, it follows that H?(Ts(X)) = (0), i.e. the infinitesimal deformations of the closed

embedding X L5 , with S not fixed, are unobstructed.
Now, (i) directly follows from Proposition 2.4, whereas (ii) and (iii) follow from Proposition 2:4],
(@11) and from what recalled above on Severi varieties on general K3 surfaces. O

In particular, we have:

Corollary 4.12. There exists an open, dense substack U, C Bg such that the number of irreducible
components of V|g| 5(S) is constant, for (S, H) varying in Up,.

Proof. This directly follows from Proposition [£.8] (iii) and from the fact that, V being irreducible, the
general fibre of 75|y has to be irreducible. O
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Remark 4.13. Notice that it is not known whether, for a general primitively polarized K3 surface
(S, H), the Severi varieties V|,p 5(S), for any integer k > 1, are irreducible as soon as they have
positive dimension. Interesting work on this topic has been done recently by Dedieu in [7].

We need a reformulation of Proposition 2:4]in this specific situation, that will be particularly useful
for our aims.
First we have to recall some general facts. Let (S, X) € V), s be any pair as above. Let

p:C—XCS

be the normalization morphism. By the fact that X is a curve on S, one can consider the exact
sequence:

(4.14) 0— T — ¢"(Ts) — Ny, — 0,

defining N, as the normal sheaf to ¢. Since X is a nodal curve, it is well-known that N, is a line
bundle on C' (cf. e.g. [17]).

Remark 4.15. Denote as above by ¢ : C' — X C S the normalization morphism of a curve sitting
on a surface S. Suppose moreover that S is a K3 surface. Then N, = wc. Therefore, unless C' is
hyperelliptic, we always have the surjectivity of the map :

H°(C,N,) @ H°(C,w&?) — H°(C,N, @ w&?).

Arguing as in [3, Proposition 1], we get that the splitting of the exact sequence ([LI4) is equivalent
to the triviality, as abstract deformations of C, of the infinitesimal deformations parametrized by
H%(C,N,), i.e. the coboundary map H°(C,N,) — H'(C,T¢) is zero.

Lemma 4.16. With notation as above, one has
px(Np) = Ny /-
In particular,
(4.17) H'(N'y/g) = H'(Ny), 0<i<1
Proof. The reader is referred to [I8, p. 111] where, with the notation therein, since X is nodal, the
Jacobian ideal J coincides with the conductor ideal €, i.e. N’X/S =JINx/s = € Nx/s = 0.(Ny). O
On the other hand, if N = Sing(X), let
UN S— 5

be the blow-up of S along N. Thus, uy induces the embedded resolution of X in S, i.e. we have the
following commutative diagram:

!
X -
where un|c = ¢.
Since

©"(Ts) = un(Ts) ® O¢
and since uy|c = ¢, we also have the exact sequence on S:
(4.18) 0 — un(Ts)(=C) — un(Ts) — ¢*(Ts) — 0.
We denote by
(4.19) 1i(Ts) 25N, — 0
the composition of the two surjections in (£I8]) and ([@.I4).
Definition 4.20. With notation as above, let
1y (T6)(C) = Ker(\).
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From (£14), (@I8) and ([£I9), the sheaf p}3 (Ts)(C) sits in the following natural exact diagram:
0 0
! ) !
0— un(Ts)(=C) — py(Ts)(=C) — 0
! ! !
(421) 0— pi(TC) —  un(Ts) S Ny —0
I | |
0— To — ©*(Tg) — N, —0
! ! |
0 0 0
We have
Proposition 4.22. Let (S,X) €V, 5. Then
(4.23) H'(S,Ts(X)) = H'(S, i (Ts)(C)), 0<i<2.

In particular, the locally trivial deformations of the pair (S,X) are also governed by the sheaf
13y (T5)(C), ice.
o the obstructions lie in H2(S, % (Ts)(C));
e first-order, locally trivial deformations are parametrized by H(S, ui (Ts)(C));
e infinitesimal automorphisms are parametrized by H°(S, ui (Ts)(C)).
Proof. Observe that, in this situation, we have the exact sequence (L3, i.e.:
(4.24) 0 — Ts(X) —>‘TS—>NIX/S—>O.
On the other hand, as above, let uy : S — S be the blow-up of S along N and let C' C S be the
proper transform of X C S. From the second row of (£2I]), we get
(4.25) 0 — ui(T5)(C) — i (Ts) — N — 0.
Since S is smooth then, by the projection formula, we have
1Ny (BN (Ts)) = Ts ® pn,(0g) = Ts.
Now we apply un, to (£25]), getting
(4.26) 0 — un(un (Ts)NC)) — pn.(un(Ts)) — ©x(Nyp),

where the equality pn,(Ny) = @« (Ny) directly follows from the facts that N, is a line-bundle on C
and that, as above, uy|c = ¢.
By using the exact sequences (£.24]) and (4.26), together with Lemma .10, we get:

0— Ts(X) — ‘TE — NIXN/S —0
(1.27) = K

l
0 — pn(py(Ts)(C) — pne(uny(Ts)) — ©Ny) — 0.
(T)(C)). Since py is birational, by Leray’s isomorphism we obtain

E23).

The last part of the statement directly follows from Proposition 241 O
Let now V), s — V), 5 be an étale atlas and let

(4.28) Y—>§

N

Vp.s5
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be the family induced by the universal one. Since V), 5 is a smooth, in particular normal, scheme we
are in position to apply the results in [20], p. 80], i.e. there exists a commutative diagram

(4.29) e——=X

where
e & is the normalization morphism,
e [ is smooth,
e p gives the simultaneous desingularization of the fibres of the family p; namely, for each
v € V,5, C(v) is a smooth curve of genus g = p — §, which is the normalization of the
irreducible, nodal curve X(v).

Thus, as in (3.4), the family p defines the natural morphism

Cp,s

(4.30) Vps —= My,

by sending v to the birational isomorphism class [C(v)] € M.

As discussed in §[3 for smooth curves, by Propositions 4] and [£.22], and by passing to cohomology
in the left-hand-side column of diagram (Z21)), the differential of the morphism ¢, 5 at a point v € V}, 5
parametrizing a pair (S, X) can be identified with the cohomology map

(4.31) H (1 (Ts)(C)) 22 B (70).
As in (B3), we have

dim(V,5) > dim(M,), for g <10,
(4.32) dim(V, ) = dim(M,), for g =11,
dim(V, ) < dim(M,), for g > 12.

In particular, independently from p > 3, for any g < 11 the morphism ¢, s is expected to be
dominant. Moreover, as in the smooth case of § 3] if we denote by F, 5 the general fibre of ¢, 5 then,
for any p > 3, the expected dimension of F), s is:

22—-2g for ¢g<10,p>g+1,

(4.33) expdim(Fp ) = { 0 for g>11,p>g+1.

5. GENERAL MODULI FOR g < p < 11

The aim of this section is to give some partial affirmative answers to the above expectations.
Namely, we show that on a general, primitively polarized K3 surface of genus 3 < p < 11, the
normalizations of §-nodal curves in |H|, with § > 0 as in ([£2]), define families of smooth curves with
general moduli.

Precisely, by recalling Proposition L8], we have:

Theorem 5.1. Let 3 < p < 11 be an integer. Let § and g = p —  be positive integers as in ([{L2).
Let V' C V), 5 be any irreducible component and let

cpslv iV — M,

be the restriction to V' of the morphism ¢, s as in ([E30).
Then, for any 2 < g < p < 11, ¢, slv is dominant. In particular, for the general fibre F, 5 of

cpslv, we have:
dim(F, 5) = 22 — 2¢g = expdim(F}, 5).
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Remark 5.2. (1) Recall that, if (S, H) is general in Big, smooth curves in |H| are not with general
moduli (cf. Theorem B.7(ii)). On the contrary, from Theorem B.1], if (S, H) is general in Bi;, then
nodal curves in Vg, have normalizations of geometric genus g = 10 that are curves with general
moduli.

(2) At the same time, if (S, H) is general in Bjg, from Theorem [5.]], it follows that the general,
irreducible, d-nodal curve in the linear system |H| has a normalization of genus g = 10 — § with
general moduli.

In particular, we have the following situation: consider the rational map

@10 -—* M10a

which is defined on the open substack @(1)0 of pairs (5, X) s.t. S = (S, H) is in BY, and X is nodal
and irreducible. Let — o

610 . 9{010 —_— Ml(]
be the induced morphism. Then Im(¢y¢) is a divisor in Mo such that

Im(@lo) N Gﬁw C Ap

is a divisor whose general element has normalization a general curve of genus 9.
Since this divisor has dimension

dim(Ag) — 1 = dim(Myg) — 2 = 25,
the universal curve X

!
Im(Elo) N Ag

induces a rational map

(Im(Elo) N Ao) --3 My
that is dominant by Theorem Bl and whose general fibre has dimension 1. Precisely, this fibre
determines a 1-dimensional subscheme in the second symmetric product of the curve of genus 9
parametrized by the image point in M.

Proof of Theorem [5.1. From (L31)) and the left vertical column in ({21]), a sufficient condition for
the surjectivity of the differential of ¢, s[v at a point v € V' parametrizing a pair (S, X) is that

(5.3) H?(uy(Ts)(=C)) = (0).
If £= Zle FE; denotes the upn-exceptional divisor on S , by Serre duality,

H? (1 (Ts)(=C)) = HO(uy () (C + E)) = HO(uy (s (H))(—E)),
since pj(X) = C + 2E and since X ~ H on S.
By the Leray isomorphism,
H°(uy (Q5(H))(—E)) = H(Inys ® Q5(H)),
where Jy/g denotes the ideal sheaf of N in S. One has the exact sequence:
(5.4) 0 — In/s @ Q(H) — Q5(H) — Qg(H)|y — 0.

For what concerns the cases either 3 < p < 9 or p = 11, from (5.4)) and from Proposition BI0[i),
we get that also HO(JN/S ® QL(H)) = (0), which concludes the proof in this case.

For what concerns the case p = 10, from Proposition B.I0(ii) we know that, if (S, H) is general
in Byg, then HO(QL(H)) = C. For any § as above, let W C Vin|,s be any irreducible component of
the Severi variety of irreducible, é-nodal curves in |H| on S. Let [X] € W be a general point and let
N = Sing(X).

From the exact sequence (0.4]), we know that

HO(Inys ® Qs(H)) — HO(Q5(H)) = C.
We claim that this implies h°(Jy/s ® Qg(H)) = 0, so the statement.
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Indeed, if hO(JN/S ® QL(H)) # 0, then we would have
H(Inys © Qs(H)) = HO(Q5(H)),

which means that the unique (up to scalar multiplication) non-zero global section of H°(Q24(H))
would pass through N = Sing(X). Since X is general in a g > 2 dimensional family of curves, this
is a contradiction. O

Our result naturally leads to some questions.
Question 5.5. When X is smooth, the surjectivity of the Wahl map
buy : NPHY (X, wx) — H(X,w?)

is an obstruction to embed X in a K3 surface (see [2I] and also [3]). It is natural to ask whether
a similar result holds in the singular case. Precisely it would be interesting to understand whether
there exists a Wahl-type obstruction for a smooth curve to have a nodal model lying on a K3 surface.

Question 5.6. Does the image of the map ¢, s meet the hyperelliptic locus H, in M, 7 If yes, and
(S0, Xo) is a pair mapped into the hyperelliptic locus, does the dimension of the locus of curves in
Vix,|,6(S0) having hyperelliptic normalizations coincide with the expected one, which is two, cf. [11}
Lemma 5.1]7 In fact, in [II, Lemma 5.1] we show that the dimension is two if Pic(S) ~ Z[Xj].
Answers to these questions, as explained in [11} §6], would yield a better understanding of rational
curves in the Hilbert square Sl of the general K3 surface S, and then of its Mori cone NE(S1).
The answers seem to be subtle, as they do not depend only on the geometric genus of X but also
on the number of nodes. For instance, for a general (S, H) € B, the locus of curves in Vi 5(5)
having hyperelliptic normalizations is empty when § < (p — 3)/2 (|10, Theorem 1]), and nonempty,
and two-dimensional, for p —3 < § < p — 2 (for § = p — 2 is obvious; for § = p — 3 cf. |11, Theorem
5.2|). Of course, similar questions may be asked for other gonality strata in M.

Question 5.7. What about the cases p > 12?7 From (£32]) and Theorem [B.1], one could in principle
expect the following situation:

Let p > 12 be an integer. Let § and g = p — § be positive integers as in ([L2)). For any irreducible
component V- C V), 5, consider
cpslv iV — M.
Then:
(i) for any 2 < g < 11, the morphism c, s|y is dominant.
(ii) for any 12 < g < p, cp5|v is generically finite.

Possible approaches to investigate the above expectations are the following:

e for (i), as in the proof of Theorem [B.1], a sufficient condition for ¢, ;|1 to be smooth at a point
v € V parametrizing a pair (S, X) is H(Jy/g ® Qg(H)) = (0), where N = Sing(X). By Remark
[BI1] one can say that

hO((Inys @ Qs(H)) > BO(Qg(H)) — 26 > 2(p — 8) — 22 = 2 — 22
(note that 2¢g — 22 < 0 by assumption). On the other hand,
hO((Inys @ Qs(H)) > 0if g > 12,
as it must be (cf. (£32));

e for (ii) above, a sufficient condition for ¢, 5|y to be unramified at a point v € V' parametrizing a
pair (S,X) is H'(Jy/s ® Q5(H)) = (0), where N = Sing(X). Observe that, for p > 13, from (5.4)
we have the exact sequence
2
- HOQY(H)) =% HOQY(H)|v) — H'(Oyys © O5(H)) — 0,

since H'(QL(H)) = (0) from Proposition BI0(iii). Thus, the surjectivity of the evaluation morphism
61)12\, as above would imply that the differential of ¢, 5|y at v is unramified.
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