
ar
X

iv
:0

70
7.

01
57

v1
  [

m
at

h.
A

G
] 

 2
 J

ul
 2

00
7

NODAL CURVES WITH GENERAL MODULI ON K3 SURFACES

FLAMINIO FLAMINI

(1)
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(2)
, GIANLUCA PACIENZA

(3)
AND EDOARDO

SERNESI

(4)

Abstrat. We investigate the modular properties of nodal urves on a low genus K3 surfae. We

prove that a general genus g urve C is the normalization of a δ-nodal urve X sitting on a primitively

polarized K3 surfae S of degree 2p − 2, for 2 ≤ g = p − δ < p ≤ 11. The proof is based on a loal

deformation-theoreti analysis of the map from the stak of pairs (S, X) to the moduli spae of urves

Mg that assoiates to X the isomorphism lass [C] of its normalization.

1. Introdution

Nonsingular urves of low genus on a K3 surfae have interesting modular properties, related to

the existene of Fano 3-folds of index one of the orresponding setional genus. These properties

have been investigated by Mukai who settled, in partiular, a problem raised by Mayer in [14℄. He

showed that a general urve of genus g ≤ 9 or g = 11 an be embedded as a nonsingular urve in

a K3 surfae, and that this is not possible for urves of genus g = 10, despite an obvious ount of

onstants indiating the opposite. These fats have been proved again by Beauville in the last setion

of [2℄ from a di�erent point of view, by means of a loal deformation-theoreti analysis.

In the present paper we take a point of view similar to Beauville's with the purpose of studying

the orresponding questions about moduli of singular (nodal) urves of low genus on a K3 surfae.

To this end we onsider the following algebrai staks:

Bp: the stak of smooth K3 surfaes S marked by a globally generated, primitive line bundle H
of setional genus p ≥ 2; it is smooth and irreduible of dimension 19.

Vp,δ: the stak of pairs (S,X) suh that (S,H) ∈ Bp and X ∈ |H| is an irreduible urve with δ
nodes and no other singularities, for given 0 ≤ δ ≤ p; it is smooth of dimension 19+ g, where
g = p − δ.

We also onsider an étale atlas Vp,δ → Vp,δ and the morphisms:

Vp,δ

πδ

��

cp,δ
// Mg

Bp

where Mg is the moduli stak of nonsingular urves of genus g = p − δ; cp,δ and πδ are indued by

assoiating to a point parametrizing a pair (S,X) the isomorphism lass of the normalization of X
and [S] respetively.

We study this on�guration when 3 ≤ p ≤ 11. Our main result is the following:

Theorem 1.1. Let 3 ≤ p ≤ 11 and 0 ≤ δ ≤ p − 2, so that 2 ≤ g = p − δ ≤ p. Let V ⊂ Vp,δ be an

irreduible omponent, and let

cp,δ|V : V −→ Mg
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be the restrition to V of the morphism cp,δ. Then, for any 2 ≤ g < p ≤ 11, cp,δ|V is dominant. In

partiular, for the general �bre Fp,δ of cp,δ|V we have:

dim(Fp,δ) = 22 − 2g = expdim(Fp,δ)

The theorem is proved by studying deformations of a pair (S,X) in Vp,δ. The loally trivial

deformation theory of suh a pair is ontrolled by a loally free sheaf of rank 2, namely the sheaf

TS〈X〉 of tangent vetors to S that are tangent to X. Spei�ally, H1(S,TS〈X〉) is the tangent spae
to Vp,δ at (S,X) and H2(S,TS〈X〉) is an obstrution spae. These ohomology groups are studied

by pulling bak TS〈X〉 to the blow-up S̃ of S at the singular points of X. Then the loal study of

the morphism cp,δ is arried out on S̃, and the theorem is redued to proving the vanishing of an

appropriate ohomology group.

The ase p = 11, δ = 1 of the theorem appears to be somehow unexpeted. Note that, in fat, the

theorem says that every irreduible omponent V of V11,1 dominates M10. This ontrasts the fat

that, aording to Mukai, V10,0 does not dominate M10.

Another interesting ase is p = 10, δ = 1. Again the theorem says that every irreduible omponent

of V10,1 dominates M9. But, sine V10,0 is mapped to a divisor of M10 by c10 := c10,0, it follows that

the nodal urves in V10,1 only �ll a divisor on the boundary ∂M10 of M10, despite the fat that their

normalizations are general urves of genus 9. This means that on a general urve C of genus 9, the
e�etive divisors P + Q, with P 6= Q, suh that the nodal urve X = C/(P = Q) an be embedded

in a K3 surfae, belong to a 1-dimensional yle Γ ⊂ C(2)
. It would be interesting to ompute the

numerial lass of Γ.
The paper onsists of 5 setions inluding the introdution. After realling the relevant deformation

theory in � 2, we survey the known results about moduli of smooth urves on marked K3 surfaes in

� 3. In � 4 we develop our approah for the ase of nodal urves, and in � 5 we disuss the existene

of nodal urves having normalizations with general moduli. In the end we raise some related open

questions.

Aknowledgements. We warmly thank B. Fantehi and M. Roth for useful onversations and C.

Voisin for her omments.

2. Some basi results of deformation theory

In this setion we will review some results on deformation theory that are needed for our aims.

For omplete details, we refer the reader to e.g. [17, � 3.4.4℄.

Let Y be a smooth variety and let j : X →֒ Y be a losed embedding of a Cartier divisor X. The

loally trivial deformations of j are studied by means of suitable sheaves on Y .

Let NX/Y be the normal sheaf of X in Y , and N′
X/Y ⊆ NX/Y the equisingular normal sheaf of X

in Y (f. [17, Proposition 1.1.9℄). One an de�ne a oherent sheaf TY 〈X〉 of rank dim(Y ) on Y via

the exat sequene :

(2.1) 0 −→ TY 〈X〉 −→ TY −→N
′
X/Y −→ 0,

whih is alled the sheaf of germs of tangent vetors to Y that are tangent to X (f. [17, � 3.4.4℄).

Of ourse, when X is smooth, then N′
X/Y in (2.1) is nothing but the normal bundle NX/Y .

One has a natural surjetive restrition map

(2.2) r : TY 〈X〉 −→ TX ,

giving the exat sequene

(2.3) 0 −→ TY (−X) −→ TY 〈X〉 −→ TX −→ 0,

where TY (−X) is the vetor bundle of tangent vetors of Y vanishing along X and where TX is the

tangent sheaf of X, i.e. the dual sheaf of the sheaf of Kähler di�erentials of X (f. [17, � 3.4.4℄).

Observe that, when X is a divisor with simple normal rossings (see [13℄), TY 〈X〉 is a loally free

subsheaf of the holomorphi tangent bundle TY , whose restrition to X is TX and whose loalization
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at any point x ∈ X is given by

TY,x =

l∑

i=1

OY,x · zi
∂

∂zi
+

n∑

j=1+1

OY,x ·
∂

∂zj
,

where the loal oordinates z1, z2, . . . , zn around x are hosen in suh a way that X = {z1z2 · · · zl = 0}.
In fat, TY 〈X〉 = (Ω1

Y (log X))∨, where Ω1
Y (log X) denotes the sheaf of meromorphi 1-forms on Y

that have at most logarithmi poles along X.

Also, when X is an integral urve sitting on a smooth surfae Y , by (2.1) the sheaf TY 〈X〉 is an
elementary transformation of the loally free sheaf TY , and then it is loally free (see e.g. [12, Lemma

2.2℄).

Reall the following basi result:

Proposition 2.4. (see [17, Proposition 3.4.17℄) The loally trivial deformations of the pair (Y,X)
(equivalently of the losed embedding j) are ontrolled by the sheaf TY 〈X〉; namely,

• the obstrutions lie in H2(Y,TY 〈X〉);
• �rst-order, loally trivial deformations are parametrized by H1(Y,TY 〈X〉);
• in�nitesimal automorphisms are parametrized by H0(Y,TY 〈X〉).

The map that assoiates to a �rst-order, loally trivial deformation of (Y,X) the orresponding

�rst-order deformation of X is the map

(2.5) H1(r) : H1(Y,TY 〈X〉) −→ H1(X,TX ),

indued in ohomology by (2.2).

In the rest of the paper we will fous on the ase of nodal urves on a surfae.

3. Mukai's results on smooth, anonial urves on general, marked K3 surfaes

and Beauville's infinitesimal approah

In this setion, we shall brie�y reall some results of Mukai [15, 16℄ and the in�nitesimal approah

onsidered by Beauville [2, � 5℄.

Let p ≥ 2 be an integer. Let Bp be the moduli stak of smooth K3 surfaes marked by a globally

generated, primitive line bundle of setional genus p. That is, the elements of Bp are pairs (S,H)
where S is a smooth K3 surfae and H is a globally generated line bundle on S with H2 = 2p − 2
and suh that H is nondivisible in Pic(S). It is well-known that Bp is smooth, irreduible and of

dimension 19 (f. e.g. [1, Thm.VIII 7.3 and p. 366℄ for the sheme struture; the same onlusions

hold also for the stak struture of Bp).

De�nition 3.1. Let KCp be the algebrai stak of pairs (S,C), where (S,H) ∈ Bp, p ≥ 2, and

C ∈ |H| is a smooth irreduible urve.

Observe that there is an indued, surjetive morphism of staks

(3.2) π : KCp −→ Bp

given by the natural projetion. From [2, � (5.2)℄, for any (S,C) ∈ KCp, by Serre duality one has

(3.3) H2(S,TS〈C〉) = H0(S,Ω1
S(log C))∨ = (0).

Furthermore, sine C is a smooth urve of genus p ≥ 2 and sine TS
∼= Ω1

S, being S a K3 surfae

and TS a rank-two vetor bundle on it, by (2.3) we have

H0(S,TS〈C〉) = (0).

In partiular, from Proposition 2.4, KCp is a smooth stak of dimension

dim(KCp) = h1(S,TS〈C〉) = 19 + p.

Sine the �bers of π are onneted, KCp is also irreduible.
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Let Mp be the moduli stak of smooth urves of genus p, whih is irreduible and of dimension

3p − 3, sine p ≥ 2 by assumption. One has a natural morphism of staks

(3.4) cp : KCp −→ Mp

de�ned as

cp((S,C)) = [C] ∈ Mp,

where [C] denotes the isomorphism lass of C ⊂ S.
Observe that:

dim(KCp) > dim(Mp), for p ≤ 10,
dim(KCp) = dim(Mp), for p = 11,
dim(KCp) < dim(Mp), for p ≥ 12.

(3.5)

If we denote by Fp the general �bre of cp, then the expeted dimension of Fp is:

(3.6) expdim(Fp) =
{ 22 − 2p for p ≤ 10,

0 for p ≥ 11.

The main results onerning the morphism cp are ontained in the following:

Theorem 3.7 (Mukai). With notation as above:

(i) cp is dominant for p ≤ 9 and p = 11 (f. [15℄);

(ii) cp is not dominant for p = 10 (f. [15℄). More preisely, its image is a hypersurfae in M10

(f. [6℄);

(iii) cp is generially �nite onto its image, for p = 11 and for p ≥ 13, but not for p = 12 (f. [16℄).

Remark 3.8. (1) In partiular, from (3.6) and from Theorem 3.7, one has

dim(Fp) = expdim(Fp),

unless either

• p = 10, in whih ase dim(Fp) = expdim(Fp) + 1 = 3, or
• p = 12, in whih ase dim(Fp) ≥ 1.

(2) When the map cp is not dominant, one an look at it as a way to produe hopefully interesting

yles in the moduli spae of urves. The ase p = 10 is partiularly relevant, as the divisor in M10

parametrizing urves lying on a K3 surfae was the �rst ounterexample to the slope onjeture (see

[8℄).

In [2, � (5.2)℄ Beauville onsidered the morphism cp from a di�erential point of view. Let (S,C) ∈
KCp be any point. From Proposition 2.4, the di�erential of cp at the point (S,C) an be identi�ed

with the map

H1(r) : H1(TS〈C〉) −→ H1(TC),

as in (2.5). From (2.3) and (3.3) it follows that H1(r) �ts in the exat sequene:

0 −→ H1(S,TS(−C)) −→ H1(S,TS〈C〉)
H1(r)
−→ H1(C,TC) −→ H2(S,TS(−C)) −→ 0.

Using Serre duality and the fat that ωS is trivial, we get

(3.9) Hj(S,TS(−C)) ∼= H2−j(S,Ω1
S(C))∨, 0 ≤ j ≤ 2.

From (3.9) we obtain that the morphism cp is:

• smooth at (S,C) ∈ KCp (i.e. the di�erential (cp)∗ at the point (S,C) is surjetive) if and

only if H0(S,Ω1
S(C)) = (0);

• unrami�ed at (S,C) ∈ KCp (i.e. the di�erential (cp)∗ at the point (S,C) is injetive) if and
only if H1(S,Ω1

S(C)) = (0).
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Note that the above onditions depend only on the marking H = OS(C) and not on the partiular

urve C in |H|.
With this approah, Theorem 3.7 is equivalent to:

Proposition 3.10. (see [2, � (5.2)℄). Let (S,H) be a general primitively polarized K3 surfae of

genus p ≥ 2. We have:

(i) h0(S,Ω1
S(H)) = 0, for p ≤ 9 and p = 11;

(ii) h0(S,Ω1
S(H)) = 1, for p = 10;

(iii) h1(S,Ω1
S(H)) = 0, for p = 11 and p ≥ 13;

(iv) h1(S,Ω1
S(H)) ≥ 1, for p = 12.

Remark 3.11. Sine h2(Ω1
S(H)) = h0(TS(−H)) = 0, c1(Ω

1
S(H)) = 2H and c2(Ω

1
S(H)) = H2 +24 =

2p + 22, we have, by Riemann-Roh

h0(Ω1
S(H)) = χ(Ω1

S(H)) + h1(Ω1
S(H))

=
c1(Ω

1
S(H))2

2
− c2(Ω

1
S(H)) + 2 rk(Ω1

S(H)) + h1(Ω1
S(H))

= 2p − 22 + h1(Ω1
S(H)) ≥ 2p − 22.

In partiular, h0(Ω1
S(H)) ≥ 3 if p ≥ 12 (f. also Question 5.7).

4. The approah to the nodal ase

By using Proposition 2.4 and a similar approah as in � 3, we want to dedue some extensions of

Theorem 3.7 to irreduible, nodal urves in the primitive linear system |H| on a general primitively

polarized K3 surfae of genus p ≥ 3. In partiular, we are interested in determining when the

normalization of suh a singular urve is an (abstrat) smooth urve with general moduli.

To do this, we have to �x some notation and to prove some results that will be used in what

follows. First we reall that, for any smooth surfae S and any line bundle H on S, suh that |H|
ontains smooth, irreduible urves of genus p := pa(H), and any positive integer δ ≤ p, one denotes
by

V|H|,δ(S) or simply V|H|,δ

the loally losed and funtorially de�ned subsheme of |H| parametrizing the universal family of

irreduible urves in |H| having δ nodes as the only singularities and, onsequently, geometri genus

g := p − δ. These are lassially alled Severi varieties of irreduible, δ-nodal urves on S in |H|.
It is well-known, as a diret onsequene of Mumford's theorem on the existene of nodal rational

urves on K3 surfaes (see e.g. [1, pp. 365-367℄) and standard results on Severi varieties (see e.g.

[19, 5, 9℄), that if (S,H) ∈ Bp is general, p ≥ 2, then

(4.1) V|H|,δ is nonempty and regular,

i.e. it is smooth and (eah of its irreduible omponents is) of the expeted dimension g = p− δ, for
eah δ ≤ p. (In fat, the regularity holds whenever V|H|,δ is nonempty.)

From now on, we shall always onsider

(4.2) p ≥ 3 and 0 ≤ δ ≤ p − 2, so that g ≥ 2.

Similarly as in De�nition 3.1, we have:

De�nition 4.3. For any p and δ as in (4.2), let Vp,δ be the stak of pairs (S,X), suh that (S,H) ∈
Bp and [X] ∈ V|H|,δ(S).

Of ourse Vp,0 = KCp as in De�nition 3.1.

For any �xed p and any δ as in (4.2), the staks Vp,δ are loally losed substaks of a natural

enlargement KCp of KCp, whih is de�ned as the stak of pairs (S,C), where (S,H) ∈ Bp and

C ∈ |H|. It follows that the staks Vp,δ are algebrai beause KCp is.

Consider B0
p ⊂ Bp the open dense substak parametrizing elements (S,H) in Bp that verify (4.1).
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For any δ as above, let

(4.4) πδ : Vp,δ −→ B
0
p

be the surjetive morphism given by the projetion.

Let (S,X) ∈ Vp,δ. From (2.1), we an onsider the exat sequene

(4.5) 0 −→ TS〈X〉 −→ TS −→ N
′
X/S −→ 0.

Sine S is a K3 surfae

H2(TS) ∼= H0(Ω1
S) ∼= H0(TS) = (0).

Therefore, passing to ohomology in (4.5), we get

(4.6) 0 −→ H0(N′
X/S) −→ H1(TS〈X〉)

H1(r)
−→ H1(TS)

α
−→ H1(N′

X/S) −→ H2(TS〈X〉) −→ 0,

where H1(r) is as in (2.5).

From [19, Lemma 2.4 and Theorem 2.6℄, we have

(4.7) H1(N′
X/S) ∼= C, H0(N′

X/S) ∼= T[X](V|H|,δ(S)).

Moreover, reall that V|H|,δ(S) is regular at [X] (i.e. it is smooth at [X] and of the expeted dimension

g). This means that, despite the fat that h1(N′
X/S) = 1, the in�nitesimal, loally trivial deformations

of the losed embedding X
j
→֒ S, with S �xed, are unobstruted and the nodes impose independent

onditions to loally trivial deformations (f. [19, Remark 2.7℄).

We want to show that, for δ > 0, the properties of the stak Vp,δ are similar to those of the stak

KCp.

Proposition 4.8. Let p, δ and g be positive integers as in (4.2).

Then, for any (S,X) ∈ Vp,δ, we have

(4.9) h0(TS〈X〉) = 0, h2(TS〈X〉) = 0.

In partiular,

(i) the stak Vp,δ is smooth.

(ii) Any irreduible omponent V ⊆ Vp,δ has dimension h1(TS〈X〉) = 19 + g.
(iii) The morphism πδ is smooth and any irreduible omponent V ⊆ Vp,δ smoothly dominates B0

p.

Proof. The �rst equality in (4.9) diretly follows from (4.5).

For what onerns the seond equality in (4.9), we onsider (4.6) above: for any point (S,X) ∈ Vp,δ

we have that

(4.10) 0 −→ H0(N′
X/S) −→ H1(TS〈X〉) −→ Ker(α) −→ 0

an be read as the natural di�erential sequene

(4.11) 0 −→ T[X](V|H|,δ(S)) −→ T(S,X)(Vp,δ) −→ T[S](B
0
p) −→ 0;

indeed, B0
p is smooth of dimension 19, whereas h1(TS) = 20 and h1(N′

X/S) = 1 by (4.7), thus we have

Im(α) = H1(N′
X/S) ∼= H1(NX/S), i.e. the elements of Ker(α) an be identi�ed with the �rst-order

deformations of S preserving the genus p marking.

Moreover, it follows that H2(TS〈X〉) = (0), i.e. the in�nitesimal deformations of the losed

embedding X
j
→֒ S, with S not �xed, are unobstruted.

Now, (i) diretly follows from Proposition 2.4, whereas (ii) and (iii) follow from Proposition 2.4,

(4.11) and from what realled above on Severi varieties on general K3 surfaes. �

In partiular, we have:

Corollary 4.12. There exists an open, dense substak Up ⊆ B0
p suh that the number of irreduible

omponents of V|H|,δ(S) is onstant, for (S,H) varying in Up.

Proof. This diretly follows from Proposition 4.8 (iii) and from the fat that, V being irreduible, the

general �bre of πδ|V has to be irreduible. �
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Remark 4.13. Notie that it is not known whether, for a general primitively polarized K3 surfae

(S,H), the Severi varieties V|kH|,δ(S), for any integer k ≥ 1, are irreduible as soon as they have

positive dimension. Interesting work on this topi has been done reently by Dedieu in [7℄.

We need a reformulation of Proposition 2.4 in this spei� situation, that will be partiularly useful

for our aims.

First we have to reall some general fats. Let (S,X) ∈ Vp,δ be any pair as above. Let

ϕ : C −→ X ⊂ S

be the normalization morphism. By the fat that X is a urve on S, one an onsider the exat

sequene:

(4.14) 0 −→ TC −→ ϕ∗(TS) −→ Nϕ −→ 0,

de�ning Nϕ as the normal sheaf to ϕ. Sine X is a nodal urve, it is well-known that Nϕ is a line

bundle on C (f. e.g. [17℄).

Remark 4.15. Denote as above by ϕ : C → X ⊂ S the normalization morphism of a urve sitting

on a surfae S. Suppose moreover that S is a K3 surfae. Then Nϕ = ωC . Therefore, unless C is

hyperellipti, we always have the surjetivity of the map :

H0(C,Nϕ) ⊗ H0(C,ω⊗2
C ) −→ H0(C,Nϕ ⊗ ω⊗2

C ).

Arguing as in [3, Proposition 1℄, we get that the splitting of the exat sequene (4.14) is equivalent

to the triviality, as abstrat deformations of C, of the in�nitesimal deformations parametrized by

H0(C,Nϕ), i.e. the oboundary map H0(C,Nϕ) −→ H1(C,TC ) is zero.

Lemma 4.16. With notation as above, one has

ϕ∗(Nϕ) ∼= N
′
X/S .

In partiular,

(4.17) H i(N′
X/S) ∼= H i(Nϕ), 0 ≤ i ≤ 1

Proof. The reader is referred to [18, p. 111℄ where, with the notation therein, sine X is nodal, the

Jaobian ideal J oinides with the ondutor ideal C, i.e. N′
X/S = J NX/S = C NX/S

∼= ϕ∗(Nϕ). �

On the other hand, if N = Sing(X), let

µN : S̃ −→ S

be the blow-up of S along N . Thus, µN indues the embedded resolution of X in S, i.e. we have the
following ommutative diagram:

C ⊂ S̃
↓ ϕ ↓ µN

X ⊂ S ,

where µN |C = ϕ.
Sine

ϕ∗(TS) ∼= µ∗
N (TS) ⊗ OC

and sine µN |C = ϕ, we also have the exat sequene on S̃:

(4.18) 0 −→ µ∗
N (TS)(−C) −→ µ∗

N (TS) −→ ϕ∗(TS) −→ 0.

We denote by

(4.19) µ∗
N (TS)

λ
−→ Nϕ −→ 0

the omposition of the two surjetions in (4.18) and (4.14).

De�nition 4.20. With notation as above, let

µ∗
N (TS)〈C〉 := Ker(λ).
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From (4.14), (4.18) and (4.19), the sheaf µ∗
N (TS)〈C〉 sits in the following natural exat diagram:

(4.21)

0 0
↓ ↓

0 −→ µ∗
N (TS)(−C)

=
−→ µ∗

N (TS)(−C) −→ 0
↓ ↓ ↓

0 −→ µ∗
N (TS)〈C〉 −→ µ∗

N (TS)
λ

−→ Nϕ −→ 0
↓τ ↓ ||

0 −→ TC −→ ϕ∗(TS) −→ Nϕ −→ 0
↓ ↓ ↓
0 0 0

We have

Proposition 4.22. Let (S,X) ∈ Vp,δ. Then

(4.23) H i(S,TS〈X〉) ∼= H i(S̃, µ∗
N (TS)〈C〉), 0 ≤ i ≤ 2.

In partiular, the loally trivial deformations of the pair (S,X) are also governed by the sheaf

µ∗
N (TS)〈C〉, i.e.

• the obstrutions lie in H2(S̃, µ∗
N (TS)〈C〉);

• �rst-order, loally trivial deformations are parametrized by H1(S̃, µ∗
N (TS)〈C〉);

• in�nitesimal automorphisms are parametrized by H0(S̃, µ∗
N (TS)〈C〉).

Proof. Observe that, in this situation, we have the exat sequene (4.5), i.e.:

(4.24) 0 −→ TS〈X〉 −→ TS −→ N
′
X/S −→ 0.

On the other hand, as above, let µN : S̃ −→ S be the blow-up of S along N and let C ⊂ S̃ be the

proper transform of X ⊂ S. From the seond row of (4.21), we get

(4.25) 0 −→ µ∗
N (TS)〈C〉 −→ µ∗

N (TS) −→ Nϕ −→ 0.

Sine S is smooth then, by the projetion formula, we have

µN ∗(µ
∗
N (TS)) ∼= TS ⊗ µN ∗(OeS

) ∼= TS .

Now we apply µN ∗ to (4.25), getting

(4.26) 0 −→ µN ∗(µ
∗
N (TS)〈C〉) −→ µN ∗(µ

∗
N (TS)) −→ ϕ∗(Nϕ),

where the equality µN ∗(Nϕ) = ϕ∗(Nϕ) diretly follows from the fats that Nϕ is a line-bundle on C
and that, as above, µN |C = ϕ.

By using the exat sequenes (4.24) and (4.26), together with Lemma 4.16, we get:

(4.27)

0 −→ TS〈X〉 −→ TS −→ N′
X/S −→ 0

↓ ↓
∼= ↓

∼=

0 −→ µN ∗(µ
∗
N (TS)〈C〉) −→ µN ∗(µ

∗
N (TS)) −→ ϕ∗(Nϕ) −→ 0.

This implies TS〈X〉 ∼= µN ∗(µ
∗
N (TS)〈C〉). Sine µN is birational, by Leray's isomorphism we obtain

(4.23).

The last part of the statement diretly follows from Proposition 2.4. �

Let now Vp,δ → Vp,δ be an étale atlas and let

(4.28) X

ρ
!!C

C

C

C

C

C

C

C

�

�

// S

��

Vp,δ,
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be the family indued by the universal one. Sine Vp,δ is a smooth, in partiular normal, sheme we

are in position to apply the results in [20, p. 80℄, i.e. there exists a ommutative diagram

(4.29) C

eρ !!B
B

B

B

B

B

B

B

Φ
// X

ρ

��

Vp,δ,

where

• Φ is the normalization morphism,

• ρ̃ is smooth,

• ρ̃ gives the simultaneous desingularization of the �bres of the family ρ; namely, for eah

v ∈ Vp,δ, C(v) is a smooth urve of genus g = p − δ, whih is the normalization of the

irreduible, nodal urve X(v).

Thus, as in (3.4), the family ρ̃ de�nes the natural morphism

(4.30)

Vp,δ
cp,δ

// Mg,

by sending v to the birational isomorphism lass [C(v)] ∈ Mg.

As disussed in � 3 for smooth urves, by Propositions 2.4 and 4.22, and by passing to ohomology

in the left-hand-side olumn of diagram (4.21), the di�erential of the morphism cp,δ at a point v ∈ Vp,δ

parametrizing a pair (S,X) an be identi�ed with the ohomology map

(4.31) H1(µ∗
N (TS)〈C〉)

H1(τ)
−→ H1(TC).

As in (3.5), we have

dim(Vp,δ) > dim(Mg), for g ≤ 10,
dim(Vp,δ) = dim(Mg), for g = 11,
dim(Vp,δ) < dim(Mg), for g ≥ 12.

(4.32)

In partiular, independently from p ≥ 3, for any g ≤ 11 the morphism cp,δ is expeted to be

dominant. Moreover, as in the smooth ase of � 3, if we denote by Fp,δ the general �bre of cp,δ then,

for any p ≥ 3, the expeted dimension of Fp,δ is:

(4.33) expdim(Fp,δ) =
{

22 − 2g for g ≤ 10, p ≥ g + 1,
0 for g ≥ 11, p ≥ g + 1.

5. General moduli for g < p ≤ 11

The aim of this setion is to give some partial a�rmative answers to the above expetations.

Namely, we show that on a general, primitively polarized K3 surfae of genus 3 ≤ p ≤ 11, the
normalizations of δ-nodal urves in |H|, with δ > 0 as in (4.2), de�ne families of smooth urves with

general moduli.

Preisely, by realling Proposition 4.8, we have:

Theorem 5.1. Let 3 ≤ p ≤ 11 be an integer. Let δ and g = p − δ be positive integers as in (4.2).

Let V ⊆ Vp,δ be any irreduible omponent and let

cp,δ|V : V −→ Mg

be the restrition to V of the morphism cp,δ as in (4.30).

Then, for any 2 ≤ g < p ≤ 11, cp,δ|V is dominant. In partiular, for the general �bre Fp,δ of

cp,δ|V , we have:

dim(Fp,δ) = 22 − 2g = expdim(Fp,δ).
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Remark 5.2. (1) Reall that, if (S,H) is general in B10, smooth urves in |H| are not with general

moduli (f. Theorem 3.7(ii)). On the ontrary, from Theorem 5.1, if (S,H) is general in B11, then

nodal urves in V|H|,1 have normalizations of geometri genus g = 10 that are urves with general

moduli.

(2) At the same time, if (S,H) is general in B10, from Theorem 5.1, it follows that the general,

irreduible, δ-nodal urve in the linear system |H| has a normalization of genus g = 10 − δ with

general moduli.

In partiular, we have the following situation: onsider the rational map

KC10 99K M10,

whih is de�ned on the open substak KC
0
10 of pairs (S,X) s.t. S = (S,H) is in B0

10 and X is nodal

and irreduible. Let

c10 : KC
0
10 −→ M10

be the indued morphism. Then Im(c10) is a divisor in M10 suh that

Im(c10) ∩ ∂M10 ⊂ ∆0

is a divisor whose general element has normalization a general urve of genus 9.
Sine this divisor has dimension

dim(∆0) − 1 = dim(M10) − 2 = 25,

the universal urve

X

↓
Im(c10) ∩ ∆0

indues a rational map

(Im(c10) ∩ ∆0) 99K M9

that is dominant by Theorem 5.1, and whose general �bre has dimension 1. Preisely, this �bre

determines a 1-dimensional subsheme in the seond symmetri produt of the urve of genus 9
parametrized by the image point in M9.

Proof of Theorem 5.1. From (4.31) and the left vertial olumn in (4.21), a su�ient ondition for

the surjetivity of the di�erential of cp,δ|V at a point v ∈ V parametrizing a pair (S,X) is that

(5.3) H2(µ∗
N (TS)(−C)) = (0).

If E =
∑δ

i=1 Ei denotes the µN -exeptional divisor on S̃, by Serre duality,

H2(µ∗
N (TS)(−C)) ∼= H0(µ∗

N (Ω1
S)(C + E)) ∼= H0(µ∗

N (Ω1
S(H))(−E)),

sine µ∗
N (X) = C + 2E and sine X ∼ H on S.

By the Leray isomorphism,

H0(µ∗
N (Ω1

S(H))(−E)) ∼= H0(IN/S ⊗ Ω1
S(H)),

where IN/S denotes the ideal sheaf of N in S. One has the exat sequene:

(5.4) 0 −→ IN/S ⊗ Ω1
S(H) −→ Ω1

S(H) −→ Ω1
S(H)|N −→ 0.

For what onerns the ases either 3 ≤ p ≤ 9 or p = 11, from (5.4) and from Proposition 3.10(i),

we get that also H0(IN/S ⊗ Ω1
S(H)) = (0), whih onludes the proof in this ase.

For what onerns the ase p = 10, from Proposition 3.10(ii) we know that, if (S,H) is general

in B10, then H0(Ω1
S(H)) ∼= C. For any δ as above, let W ⊆ V|H|,δ be any irreduible omponent of

the Severi variety of irreduible, δ-nodal urves in |H| on S. Let [X] ∈ W be a general point and let

N = Sing(X).
From the exat sequene (5.4), we know that

H0(IN/S ⊗ Ω1
S(H)) →֒ H0(Ω1

S(H)) ∼= C.

We laim that this implies h0(IN/S ⊗ Ω1
S(H)) = 0, so the statement.
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Indeed, if h0(IN/S ⊗ Ω1
S(H)) 6= 0, then we would have

H0(IN/S ⊗ Ω1
S(H)) ∼= H0(Ω1

S(H)),

whih means that the unique (up to salar multipliation) non-zero global setion of H0(Ω1
S(H))

would pass through N = Sing(X). Sine X is general in a g ≥ 2 dimensional family of urves, this

is a ontradition. �

Our result naturally leads to some questions.

Question 5.5. When X is smooth, the surjetivity of the Wahl map

φωX
: ∧2H0(X,ωX) −→ H0(X,ω⊗3

X )

is an obstrution to embed X in a K3 surfae (see [21℄ and also [3℄). It is natural to ask whether

a similar result holds in the singular ase. Preisely it would be interesting to understand whether

there exists a Wahl-type obstrution for a smooth urve to have a nodal model lying on a K3 surfae.

Question 5.6. Does the image of the map cp,δ meet the hyperellipti lous Hg in Mg ? If yes, and

(S0,X0) is a pair mapped into the hyperellipti lous, does the dimension of the lous of urves in

V|X0|,δ(S0) having hyperellipti normalizations oinide with the expeted one, whih is two, f. [11,

Lemma 5.1℄? In fat, in [11, Lemma 5.1℄ we show that the dimension is two if Pic(S) ≃ Z[X0].
Answers to these questions, as explained in [11, �6℄, would yield a better understanding of rational

urves in the Hilbert square S[2]
of the general K3 surfae S, and then of its Mori one NE(S[2]).

The answers seem to be subtle, as they do not depend only on the geometri genus of X0 but also

on the number of nodes. For instane, for a general (S,H) ∈ Bp, the lous of urves in V|H|,δ(S)
having hyperellipti normalizations is empty when δ ≤ (p − 3)/2 ([10, Theorem 1℄), and nonempty,

and two-dimensional, for p − 3 ≤ δ ≤ p − 2 (for δ = p − 2 is obvious; for δ = p − 3 f. [11, Theorem

5.2℄). Of ourse, similar questions may be asked for other gonality strata in Mg.

Question 5.7. What about the ases p ≥ 12? From (4.32) and Theorem 5.1, one ould in priniple

expet the following situation:

Let p ≥ 12 be an integer. Let δ and g = p − δ be positive integers as in (4.2). For any irreduible

omponent V ⊆ Vp,δ, onsider

cp,δ|V : V −→ Mg.

Then:

(i) for any 2 ≤ g ≤ 11, the morphism cp,δ|V is dominant.

(ii) for any 12 ≤ g < p, cp,δ|V is generially �nite.

Possible approahes to investigate the above expetations are the following:

• for (i), as in the proof of Theorem 5.1, a su�ient ondition for cp,δ|V to be smooth at a point

v ∈ V parametrizing a pair (S,X) is H0(IN/S ⊗ Ω1
S(H)) = (0), where N = Sing(X). By Remark

3.11, one an say that

h0((IN/S ⊗ Ω1
S(H)) ≥ h0(Ω1

S(H)) − 2δ ≥ 2(p − δ) − 22 = 2g − 22

(note that 2g − 22 ≤ 0 by assumption). On the other hand,

h0((IN/S ⊗ Ω1
S(H)) > 0 if g ≥ 12,

as it must be (f. (4.32));

• for (ii) above, a su�ient ondition for cp,δ|V to be unrami�ed at a point v ∈ V parametrizing a

pair (S,X) is H1(IN/S ⊗ Ω1
S(H)) = (0), where N = Sing(X). Observe that, for p ≥ 13, from (5.4)

we have the exat sequene

· · · −→ H0(Ω1
S(H))

ev2
N−→ H0(Ω1

S(H)|N ) −→ H1(IN/S ⊗ Ω1
S(H)) −→ 0,

sine H1(Ω1
S(H)) = (0) from Proposition 3.10(iii). Thus, the surjetivity of the evaluation morphism

ev2
N as above would imply that the di�erential of cp,δ|V at v is unrami�ed.
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