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BRILL–NOETHER LOCI OF STABLE RANK–TWO VECTOR BUNDLES ON A

GENERAL CURVE

C. CILIBERTO AND F. FLAMINI

Abstract. In this note we give an easy proof of the existence of generically smooth components of the
expected dimension of certain Brill–Noether loci of stable rank 2 vector bundles on a curve with general
moduli, with related applications to Hilbert scheme of scrolls.

Introduction

The Brill–Noether theory of linear series on a smooth, irreducible, complex, projective curve C of genus g
was initiated in the second half of XIX century and fully developed about one century later by the brilliant
work of several mathematicians (see [2] for a general reference). As a result, we have now a complete
understanding of the Brill–Noether loci of line bundles L of degree d with h0(C,L) > r on a curve C with

general moduli. They can be described as determinantal loci inside Picd(C) and we know their Zariski tangent
spaces, their dimension, their singularities, how they are contained in each other, etc.

The study of n–dimensional scrolls over curves (with n ≥ 2) also goes back to the second half of XIX
century. It is equivalent to the study of rank n vector bundles over curves, and as such it has received a lot
of attention in more recent times. In order to have reasonable moduli spaces for these bundles, one has to
restrict the attention to semistable ones. For them it has been set up an analogue of Brill–Noether’s theory.
Unfortunately the results here are not so complete as in the rank one case, and we are still far from having
a full understanding of the situation. We refer the reader to [9] (and to the references therein) for a general
account on the subject.

In this paper we deal with the rank 2 case and C with general moduli and genus g. A result by M.
Teixidor (see Theorem 1.6) provides examples of components of the expected dimension (see (1.2) below) of
Brill–Noether loci of stable, rank 2 vector bundles F of degree d with h0(C,F) > ℓ, in suitable ranges for d, g
and ℓ. Teixidor’s ingenuous, but not easy, proof uses a degeneration of C to a rational g–cuspidal curve C0

and analyses the limits of the required bundles on C0.
This note is devoted to prove a similar result (i.e. Theorem 2.1). The ranges for d, g and ℓ for which we

prove the existence of our components of the Brill–Noether loci are slightly worse than Teixidor’s ones. On
the other hand we are able to prove a bit more than Teixidor does: not only the components in questions
have the expected dimension, but they are also generically smooth. In addition, our approach is quite easy
and does not require degenerating C. We construct our bundles as extensions of line bundles, and we prove
that their Petri map (see §1.2) is in general injective, which is the same as proving that the corresponding
Brill–Noether loci are generically smooth and of the expected dimension.

The paper is organized as follows. In §1 we recall the basics about moduli spaces of semistable rank–two
vector bundles on a curve (see §1.1), Brill–Noether loci (see §1.2) and Teixidor’s theorem (see §1.3). The full
§2 is devoted to the construction of our examples. In §3 we make some applications to Hilbert schemes of
scrolls in projective spaces. We show that our examples give rise to linearly normal, smooth scrolls belonging
to irreducible components of the Hilbert scheme, which are generically smooth of the expected dimension
(see §§3.1, 3.2). In §3.3 we show that, by contrast, their projections in Pd−2g+1 do not fill up irreducible
components of the Hilbert scheme: they are in fact contained in the unique component Hd,g of the Hilbert
scheme containing all linearly normal scrolls of degree d and genus g in Pn (cf. [3, Theorem 1.2] and [4,
Theorem 1]).

Aknowledgements: It is a pleasure to dedicate this paper to our friend and colleague Gerard van der
Geer on the occasion of his 60th birthday.

We thank A. Verra for useful discussions on the subject of this paper.

2000 Mathematics Subject Classification. Primary 14J26, 14C05, 14H60; Secondary 14D06, 14D20.

Key words and phrases. Brill-Noether teory of vector bundles, Hilbert schemes of scrolls, Moduli.

1

http://arxiv.org/abs/1109.6466v1


2 C. CILIBERTO AND F. FLAMINI

1. Preliminaries

1.1. Moduli spaces of semistable rank–two vector bundles. For any integer d, we denote by UC(d)
the moduli space of rank 2, semistable vector bundles of degree d on C. Recall that a rank 2 vector bundle
F of degree d is semistable [resp. stable] if for all quotient line bundles F →→ L of degree d1 one has d ≤ 2d1
[resp. d < 2d1]. UC(d) is a projective variety and we let Us

C(d) be its open subset whose points correspond to
stable vector bundles. If F is a semistable rank–two vector bundle on C, we denote by [F] its class in UC(d).

The cases 0 ≤ g ≤ 1 are quite classical and well known (see, e.g., [10, Chapt. V, §2], [9, 11]). In general
we have (cf. [11, Sect. 5]):

Proposition 1.1. If g ≥ 2, then:

(i) UC(d) is irreducible, normal, of dimension 4g − 3 and Us
C(d) is the set of smooth points of UC(d);

(ii) if d is odd, then UC(d) = Us
C(d) whereas if d is even, the inclusion Us

C(d) ⊂ UC(d) is strict.

1.2. Speciality and Brill–Noether loci. If [F] ∈ UC(d), we denote by i(F), or simply by i if there is no
danger of confusion, the integer h1(C,F), which is called the speciality of F. Similarly we set ℓ(F) = h0(C,F),
and r(F) = ℓ(F)−1, and we may often write ℓ, r rather than ℓ(F), r(F). By Riemann–Roch theorem, we have

ℓ(F) = d− 2g + 2 + i(F).

Fix positive integers d and i. Set ℓ = d − 2g + 2 + i. One can consider the subset Bℓ
C(d) of all classes

[F] ∈ UC(d) such that i(F) ≥ i and accordingly ℓ(F) ≥ ℓ. This is called the ℓth–Brill-Noether locus and it
has a natural determinantal scheme structure (see, e.g. [9]). A lower bound for the dimension of Bℓ

C(d) as a
determinantal locus is its expected dimension, given by the Brill-Noether number

ρℓd := 4g − 3− iℓ. (1.2)

The infinitesimal deformations of F along which all sections in H0(C,F) deform, fill up the vector subspace
of H1(C,F × F∗) ∼= H0(C, ωC ⊗ F × F∗)∗ which is the annihilator of the image of the cup–product map

PF : H0(C,F) ⊗H0(C, ωC ⊗ F
∗) −→ H0(C, ωC ⊗ F ⊗ F

∗),

called the Petri map of F (see, e.g. [12]). In other words Ann(Im(PF)) is the Zariski tangent space of Bℓ
C(d)

at [F], where deg(F) = d and ℓ = h0(C,F). In this case, by Riemann-Roch theorem, one has

ρℓd = h1(C,F ⊗ F∗)− h0(C,F)h1(C,F).

Hence:

Lemma 1.3. In the above setting, Bℓ
C(d) is non–singular, of dimension ρℓd at [F] if and only if PF is injective.

We finish this section by recalling two results. For the first, see [4, Proposition 3]:

Proposition 1.4. Let C be a smooth, irreducible, projective curve of genus g ≥ 2. If d ≥ 2g then i(F) = 0
for [F] ∈ UC(d) general.

Indeed, we will be interested in the case d ≥ 2g in the rest of this paper. As for the next result, which will
somehow justify our construction in §2, see [8, Corollary 7.3]:

Proposition 1.5. Let C be a smooth, irreducible, projective curve of genus g ≥ 1 and let F be a special rank

2 vector bundle on C. Then there is a quotient F →→ L with L a special line bundle.

1.3. A result by M. Texidor. If d ≥ 2g, any rank–two vector bundle F on C has ℓ(F) ≥ 2 by Riemann–
Roch theorem. Hence B2

C(d) = UC(d) in this case (cf. [13, Note, p. 123]). Then, if d ≥ 2g, it is no restriction
to consider Brill–Noether loci Bℓ

C(d), with ℓ ≥ 2. We record here the main result of [14]:

Theorem 1.6. If ℓ ≥ 2, i ≥ 2, C has general moduli, and either ρℓd ≥ 1 and d is odd, or ρℓd ≥ 5 and d is

even, then Bℓ
C(d) is not empty and of the expected dimension.

Remark 1.7. It is useful to express the numerical conditions in Theorem 1.6 in terms of the speciality. Since
ℓ = d− 2g + 2 + i ≥ 2, then d ≥ 2g − i. In addition, when d is odd, one has ρℓd ≥ 1, which reads

d ≤ i+ 2

i
(2g − 2)− i; (1.8)

when d is even one has ρℓd ≥ 5, i.e.

d ≤ i+ 2

i
(2g − 2)− i− 4

i
. (1.9)
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2. Examples of Brill–Noether loci

In this section we give examples of generically smooth components of the expected dimension of Brill–
Noether loci of speciality i ≥ 1 in UC(d), with C a curve of genus g with general moduli.

Theorem 2.1. Let g, i be a integers such that

i <
√

g + 4− 2. (2.2)

Let then d and d1 be integers such that

g + 4 ≤ d1 ≤ (g − i)
(i + 1)

i
(2.3)

and

d1 + g + 3 ≤ d < 2d1 (2.4)

Set ℓ = d− 2g + 2 + i.

If C is a curve of genus g with general moduli, there is an irreducible component of Bℓ
C(d) which is

generically smooth, of the expected dimension, containing points corresponding to stable, very-ample vector

bundles F, with i(F) = i, whose minimal degree line bundle quotients have degree d1 and speciality i.

The proof of Theorem 2.1 will follow from a series of remarks and lemmas presented below.

Remark 2.5. (i) Note that (2.2) implies g ≥ 6 if i = 1 and g ≥ 13 if i ≥ 2. Moreover i < g
4 since√

g + 4− 2 ≤ g
4 for any g.

(ii) The interval for the integer d1 in (2.3) is in general not empty, since

(g + 3)i < (g − i)(i + 1) for any i ≥ 1. (2.6)

If i = 1, this follows from g ≥ 6. If i ≥ 2, then (2.6) is equivalent to i2+4i− g < 0, which follows from (2.2).

(iii) The inequalities in (2.4) are necessary for the stability of F and for the very-ampleness of the line bundle
N appearing in (2.8) below (cf. Lemmas 2.7 (i), 2.12 and 2.9).

(iv) The bound

d < 2(g − i)
(i + 1)

i
following from (2.3) and (2.4), is in general slightly worse than (1.8) and (1.9), but the difference, for i close
to the upper bound in (2.2), is of the order of

√
g.

(v) The upper-bound in (2.3) implies the following inequality for the Brill–Noether number

ρ(g, d1, d1 − g + i) ≥ 0. (2.7)

Now we are going to produce the components of Bℓ
C(d) announced in the statement of Theorem 2.1. From

(2.7) we have dim(W d1−g+i
d1

(C)) = ρ(g, d1, d1−g+ i) ≥ 0, because C has general moduli. Consider extensions

0 → N → F → L → 0, (2.8)

with N ∈ Picd−d1(C) general and L ∈ W
d1−g+i
d1

(C) general (or any L if ρ(g, d1, d1 − g + i) = 0), so that

h1(C,L) = i. By (2.4), one has d − d1 ≥ g + 3; since N ∈ Picd−d1(C) is general, one has h1(C,N) = 0.
Therefore F is a rank–two vector bundle of degree d and speciality i = i(F), i.e. [F] ∈ Bℓ

C(d), with ℓ =

d− 2g + 2 + i, and we can look at it as an element of Ext1(L,N).

Lemma 2.9. In the above setting, any F ∈ Ext1(L,N) is very ample on C.

Proof. A sufficient condition for F to be very-ample is that both L and N are. By [2, (1.8) Theorem, p. 216],
a sufficient condition for both L and N to be very ample on C with general moduli is

h0(C,N) = d− d1 − g + 1 ≥ 4, h0(C,L) = d1 − g + 1 + i ≥ 4.

The first inequality holds by (2.4), the second by (2.3). �

Remark 2.10. Note that (2.7) and the proof of Lemma 2.9 yield g−4i = ρ(g, d1, 3) ≥ ρ(g, d1, d1−g+ i) ≥ 0,
so i ≤ g

4 is a necessary condition for the ampleness of L (see Remark 2.5, (i)).
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A general bundle F ∈ Ext1(L,N) as above gives rise to the projective bundle P(F)
f→ C, which is embedded,

via |OP(F)(1)|, as a smooth scroll S of degree d and sectional genus g in Pr, with r = r(F) = d − 2g + 1 + i.

The quotient F →→ L corresponds to a section C
s→ P(F) of P(F)

f→ C, whose image is a unisecant, irreducible
curve Γ ∼= C (cf. [10, § V, Prop. 2.6 and 2.9]). Since h1(C,N) = 0, then Γ ⊂ S ⊂ Pr is linearly normally
embedded in a linear subspace of dimension d1 − g + i, as a curve of degree d1 and speciality i.

Given L ∈ W
d1−g+i
d1

(C), N ∈ Picd−d1(C) and F in P(Ext1(L,N)), the embedding P(F) → P
r varies by

projective automorphisms of Pr. Thus the surface S varies, describing an irreducible locally closed subset
HC(d, i) of the Hilbert scheme.

Remark 2.11. It is useful to describe HC(d, i) in a different way.

Let L ∈ W
d1−g+i
d1

(C) be general as above. Let M ∈ Picδ(C) be any line bundle of degree δ >> 0. Consider
the projective bundle P(L ⊕M), which embeds as a smooth scroll Σ = ΣL,M of degree d1 + δ and sectional

genus g in Pr′ , r′ = r(L⊕M) = d1 + δ− 2g+ 1+ i = r+ δ, via |OP(L⊕M)(1)|. By [5, Thm. 3.11], Σ contains
a unique special section E of degree d1 and speciality i, corresponding to the quotient L⊕M →→ L. One has
E2 = d1 − δ << 0 (cf. [10, § 5]).

One can choose M in such a way that there are δ + d1 − d linearly independent points on Σ such that,
projecting Σ from their span, the image of this projection is the surface S ⊂ Pr as above. In this projection
E is isomorphically mapped to Γ.

Thus, HC(d, i) can be thought of as the family of all projections of scrolls of the form ΣL,M , with L,M as
above, from the span of δ + d1 − d general points on ΣL,M .

Lemma 2.12. In the above setting, Γ is the unique section of minimal degree of the scroll S. Hence the

bundle F is stable.

Proof. Assume, by contradiction, there is a section Γ′ ⊂ S of degree d1 − ν, with ν ≥ 0.
Let Σ = ΣL,M be a scroll as in Remark 2.11 and let ϕ : Σ 99K S be the projection of Σ to S from suitable

δ + d1 − d general points on it. Let X be the set of these points. Then Γ′ is the image via ϕ of a section
∆ 6= E of degree d1 − ν + h passing through a subset Y ⊆ X of h points, for some h ≥ 0. If we denote by F

the ruling of Σ, then ∆ ≡ E + (h− ν)F . Then:

(i) ∆ ·E ≥ 0 implies E2 + h− ν ≥ 0, therefore ∆2 = E2 + 2(h− ν) ≥ −E2 >> 0;
(ii) hence h1(∆,N∆|Σ) = 0 so h0(∆,N∆|Σ) = d1 − δ + 2(h − ν) − g + 1. Since Y consists of h general

points, we must have d1 − δ + 2(h− ν)− g + 1 ≥ h, i.e. h− 2ν ≥ δ − d1 + g − 1.

Putting the above inequalities together, we have

δ + d1 − d ≥ h ≥ h− 2ν ≥ δ − d1 + g − 1 hence d ≤ 2d1 − g + 1

which, by the first inequality in (2.4), implies d1 ≥ 2g + 2, contrary to the fact that L is special. This proves
the first assertion. Then the stability of F follows from d < 2d1 in (2.4). �

Remark 2.13. Let us compute y := dim(HC(d, i)) − dim(PGL(r + 1,C)). A scroll S corresponding to a
point of HC(d, i) is of the type P(F), with F an extension as in (2.8). By Lemma 2.12, this extension is
essentially unique, i.e. two of them correspond to the same point of P(Ext1(L,N)) (cf. [7, p. 31]). Therefore
y is the sum of the following quantities:

• ρ(g, d1, d1 − g + i), i.e. the number of parameters for the line bundle L;
• g, i.e. the number of parameters for the line bundle N ;
• dim(P(Ext1(L,N))) = 2d1 − d + g − 2: indeed, deg(N − L) = d − 2d1 < 0, thus h1(C,N ⊗ L∗) =
2d1 − d+ g − 1.

Consider themodular map µ : HC(d, i) 99K Bℓ
d(C) sending the point corresponding to S ∼= P(F) to [F]. This

is well defined since S ∼= P(F) ∼= P(F′) implies F ∼= F′. The fibres of µ are orbits by the PGL(r+1,C)–action
on HC(d, i). Therefore y is the dimension of the image of µ, hence dim(Bℓ

d(C)) ≥ y.

The next lemma shows that the image of µ lies in a component of Bℓ
d(C) which is generically smooth and

of the expected dimension, thus concluding the proof of Theorem 2.1.

Lemma 2.14. Let F be a bundle appearing in (2.8) with L ∈ W
d1−g+i
d1

(C) and N ∈ Picd−d1(C) general.

Then the Petri map PF is injective.
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Proof. For all F ∈ Ext1(L,N), one has h1(C,F) = i, hence the domain of PF has constant dimension
i(d− 2g + 2+ i). Therefore, by semicontinuity, it suffices to prove the assertion for a particular such F, even
if the dimension of the target of PF jumps up. We will specialize to F0 = L⊕N . We have

H0(C,F0) = H0(C,L)⊕H0(C,N) and H0(C, ωC ⊗ F
∗
0) = H0(C, ωC ⊗ L∗).

So the domain of PF0
is

H0(C,F0)⊗H0(C, ωC ⊗ F∗
0) =

(

H0(C,L)⊗H0(C, ωC ⊗ L∗)
)

⊕
(

H0(C,N)⊗H0(C, ωC ⊗ L∗)
)

,

whereas the target is

H0(C, ωC ⊗ F0 ⊗ F
∗
0) = H0(C, ωC)⊕H0(C, ωC ⊗ L⊗N∗)⊕H0(C, ωC ⊗N ⊗ L∗)⊕H0(C, ωC).

The map PF0
can be written on decomposable tensors as

(a⊗ b, α⊗ β)
PF0−→ (ab, 0, αβ, 0),

for a⊗ b ∈ H0(C,L)⊗H0(C, ωC ⊗ L∗) and for α⊗ β ∈ H0(C,N) ⊗H0(C, ωC ⊗ L∗). In other words,

PF0
= µL ⊕ µL,N

where µL : H0(C,L)⊗H0(C, ωC⊗L∗) → H0(C, ωC) is the Petri map for L and µL,N : H0(C,N)⊗H0(C, ωC⊗
L∗) → H0(C, ωC ⊗N ⊗ L∗) is the multiplication map.

Since C has general moduli, the map µL is injective. We need to prove that µL,N is also injective. To do
this, it suffices to show that µL,N is injective for some particular line bundle N0 of degree d− d1, even if N0

becomes special and therefore h0(C,N0) > h0(C,N) = d−d1−g+1. Indeed, when a general N flatly tends to
N0, the vector spaces H0(C,N) and H0(C, ωC ⊗N ⊗L∗) will respectively tend to subspaces V ⊆ H0(C,N0)
and W ⊆ H0(C, ωC ⊗N0 ⊗L∗) of the same dimensions, and the limit of µL,N will be the multiplication map
µL,V : V ⊗H0(C, ωC ⊗ L∗) → W . Hence µL,V (hence, by semicontinuity, µL,N) is injective if µL,N0

is.

Let ∆ ∈ Div2d1−d(C) be an effective divisor. Let N0 = L(−∆) ∈ Picd−d1(C) and set µ0 = µL,N0
. If we

tensor the exact sequence
0 → L(−∆) ∼= N0 → L → L|∆ → 0

by H0(C, ωC ⊗ L∗), we get the commutative diagram with exact rows

0 → H0(C,N0)⊗H0(C, ωC ⊗ L∗) −→ H0(C,L)⊗H0(C, ωC ⊗ L∗)
↓µ0 ↓µL

0 → H0(C, ωC(−∆)) −→ H0(C, ωC)

Since µL is injective, µ0 is also injective, which ends our proof. �

Remark 2.15. Except in the case i = 1 and d1 = 2g − 2, the general point of a component of Bℓ
d(C) we

constructed does not lie in the image of µ. Indeed, by recalling (1.2), one has

y − ρℓd = d(i− 1)− d1(i− 2)− (g − 1)(i+ 1).

(i) When i = 1, one has y− ρ
d−2g+3
d = d1 − 2(g− 1), which is zero if and only if d1 = 2g− 2. If i = 1 consider

a general vector bundle F in our component. By Proposition 1.5, there is an exact sequence of the form (2.8)
with h1(C,L) > 0, hence h1(C,L) = 1. Then the above argument shows that L ∼= ωC .

(iii) When i ≥ 2, by d < 2d1 and (2.3) one has

y − ρℓd < i(d1 − g + 1) + 1− g ≤ 1− i2 < 0.

The problem of describing the general element of a component of Bℓ
d(C) we constructed when i > 1 (the

case i = 1 is treated in (i)) looks interesting and we plan to come back to it in a future research.

Corollary 2.16. Let C a general curve of genus g ≥ 6. For any 3g + 1 ≤ d ≤ 4g − 5, there is a component

of B
d−2g+3
d (C), which is generically smooth and of the expected dimension, whose general point corresponds

to a very ample, stable vector bundle F of speciality 1, fitting in an exact sequence

0 → N → F → ωC → 0

where ωC is the minimal degree quotient line bundle of F and N ∈ Picd−2g+2(C) is general.
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3. Applications to Hilbert schemes of scrolls

In this section we use Theorem 2.1 to study some components of Hilbert schemes of special scrolls.

3.1. Normal bundle cohomology. Here we prove the following:

Proposition 3.1. Assumptions as in Theorem 2.1. Let r = d− 2g + 1+ i and S ⊂ Pr be a smooth, linearly

normal, special scroll of degree d, genus g, speciality i, with general moduli, which corresponds to a general

point of HC(d, i) as in Remark 2.11. If NS|Pr is the normal bundle of S in Pr, then:

(i) h0(S,NS|Pr) = 7(g − 1) + (r + 1)(r + 1− i);

(ii) h1(S,NS|Pr) = 0;

(iii) h2(S,NS|Pr) = 0.

Proof of Proposition 3.1. First, we prove (iii). Since S is linearly normal, from Euler’s sequence we get:

· · · → H0(S,OS(H))∗ ⊗H2(S,OS(H)) → H2(S, TPr |S) → 0

where H is a hyperplane section of S. Since S is a scroll, then h2(S,OS(H)) = 0, which implies h2(S,TPr |S) =
0. Thus (iii) follows by the normal bundle sequence

0 → TS → TPr |S → NS|Pr → 0. (3.2)

Since S is a scroll of genus g, we have

χ(OS) = 1− g, χ(TS) = 6− 6g. (3.3)

Since S is linearly normal, from Euler’s sequence we then get

χ(TPr |S) = (r + 1)(r + 1− i) + g − 1. (3.4)

Thus, from (iii) and (3.3), (3.4) we get

χ(NS|Pr) = h0(S,NS|PR)− h1(S,NS|Pr) = 7(g − 1) + (r + 1)(r + 1− i). (3.5)

The rest of the proof is concentrated on computing h1(S,NS|Pr).
Since S = P(F) is a scroll corresponding to a general point [F] ∈ HC(d, i), let Γ be the unisecant of S of

degree d1 corresponding to the special quotient line bundle F →→ L.

Claim 3.6. One has h1(S,NS|Pr(−Γ)) = h2(S,NS|Pr (−Γ)) = 0, hence

h1(S,NS|Pr) = h1(Γ,NS|Pr |Γ). (3.7)

Proof of Claim 3.6. Look at the exact sequence

0 → NS|Pr(−Γ) → NS|Pr → NS|Pr |Γ → 0.

From (3.2) tensored by OS(−Γ) we see that h2(S,NS|Pr(−Γ)) = 0 follows from h2(S,TPr |S(−Γ)) = 0 which,

by Euler’s sequence, follows from h2(S,OS(H−Γ)) = h0(S,OS(KS−H+Γ)) = 0, since KS−H+Γ intersects
the ruling of S negatively.

As for h1(S,NS|Pr(−Γ)) = 0, this follows from h1(S,TPr |S(−Γ)) = h2(S,TS(−Γ)) = 0. By Euler’s sequence,

the first vanishing follows from h2(S,OS(−Γ)) = h1(S,OS(H − Γ)) = 0. Since KS + Γ meets the ruling
negatively, one has h0(S,OS(KS + Γ)) = h2(S,OS(−Γ)) = 0. Moreover h1(S,OS(H − Γ)) = h1(C,N) = 0.

In order to prove h2(S,TS(−Γ)) = 0, consider the exact sequence

0 → Trel → TS → ρ∗(TC) → 0

arising from the structure morphism S = P(F)
ρ→ C. The vanishing we need follows from h2(S,Trel ⊗

OS(−Γ)) = h2(S,OS(−Γ)⊗ ρ∗(TC)) = 0. The first vanishing holds since Trel
∼= OS(2H − dF ), where F is a

ruling of S, and therefore, OS(KS + Γ) ⊗ T∗
rel restricts negatively to the ruling. Similar considerations yield

the second vanishing. �

Consider the exact sequence
0 → NΓ|S → NΓ|Pr → NS|Pr |Γ → 0. (3.8)

Claim 3.9. The map H1(Γ,NΓ|S)
α−→ H1(Γ,NΓ|Pr ) arising from (3.8) is surjective, hence h1(Γ,NS|Pr |Γ) = 0.
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Proof of Claim 3.9. Equivalently, we show the injectivity of the dual map

H0(Γ, ωΓ ⊗N∗
Γ,Γ|PR)

α∗

−→ H0(Γ, ωΓ ⊗N∗
Γ|S)

∼= H0(C, ωC ⊗N ⊗ L∗). (3.10)

Consider Γ ⊂ Ph, where h = d1 − g + i, and the Euler sequence of Ph restricted to Γ. By taking cohomology
and dualizing, we get

0 → H1(Γ,TPh |Γ)∗ → H0(Γ,OΓ(H))⊗H0(Γ, ωΓ(−H))
µ0→ H0(Γ, ωΓ),

where µ0 is the Brill-Noether map of OΓ(H). Since Γ ∼= C has general moduli, then µ0 is injective by
Gieseker-Petri’s theorem (cf. [2]) so h1(Γ,TPh |Γ) = 0. From the exact sequence

0 → TΓ → TPh |Γ → NΓ|Ph → 0

we get h1(Γ,NΓ|Ph) = 0. From the inclusions Γ ⊂ Ph ⊂ PR we have the sequence

0 → NΓ|Ph → NΓ|PR → NPh|PR |Γ → 0,

which shows that H1(Γ,NΓ|PR) ∼= H1(Γ,NPh|PR |Γ), i.e.
H0(Γ, ωΓ ⊗N∗

Γ|PR) ∼= H0(Γ, ωΓ ⊗NPh|PR |∗Γ). (3.11)

On the other hand, from (2.8) and the non-speciality of N , we get

0 → H0(C,L)∗ → H0(C,F)∗ → H0(C,N)∗ → 0.

Since H0(S,OS(H)) ∼= H0(C,F) and OΓ(H) ∼= L, the Euler sequences restricted to Γ give the following
commutative diagram

0 0
↓ ↓

0 → OΓ → H0(C,L)∗ ⊗ L → TPh |Γ → 0
|| ↓ ↓

0 → OΓ → H0(C,F)∗ ⊗ L → TPr |Γ → 0
↓ ↓

H0(C,N)∗ ⊗ L ∼= NPh|Pr |Γ
↓ ↓
0 0

This gives
H0(Γ, ωΓ ⊗NPh|PR |∗Γ) ∼= H0(C,N) ⊗H0(C, ω ⊗ L∗). (3.12)

By (3.10), (3.11) and (3.12), we see that α∗ = µL,N , whose injectivity has been shown in Lemma 2.14. �

From Claim 3.9, (3.5) and (3.7), both (i) and (ii) follow. �

3.2. Components of the Hilbert scheme of linearly normal, special scrolls. We denote by Hilb(d, g, i)
the open subset of the Hilbert scheme parametrizing smooth scrolls in Pr of genus g, degree d and speciality
i, with r = d− 2g + 1 + i.

Theorem 3.13. Numerical assumptions as in Theorem 2.1. Then Hilb(d, g, i) has an irreducible component

H which contains all HC(d, i) with C a general curve of genus g. The general point [S] ∈ H is a smooth

scroll of degree d, genus g and speciality i, which is linearly normal in Pr. Moreover:

(i) H is generically smooth of dimension dim(H) = 7g − 7 + (r + 1)(r + 1− i);
(ii) [S] ∈ H general corresponds to a pair (F, C), where C has general moduli and F is stable of speciality

i on C.

When i = 1 and 3g + 1 ≤ d ≤ 4g− 5, the union of all HC(d, i) with C a general curve of genus g is dense in

H and the general scroll [S] ∈ H has a canonical curve as the unique special section of minimal degree.

Proof. The construction ofH is clear. Its generic smoothness and the dimension count follow from Proposition
3.1. The last part of the statement follows from Corollary 2.16. �

Remark 3.14. As we saw in Remark 2.15, the union of HC(d, i) with C a general curve of genus g is never
dense in H unless i = 1 and d1 = 2g − 2.
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Remark 3.15. In [5] we constructed components of Hilbert schemes parametrizing smooth, linearly normal,
special scrolls S ⊂ P

r, of degree d, genus g having the base curve with general moduli. Such components were
constructed for any g ≥ 3, i ≥ 1 and for any d ≥ 7g−ǫ

2 − 2i+ 2, 0 ≤ ǫ ≤ 1, ǫ ≡ g (mod 2), unless i = 2 where
d ≥ 4g − 3 (cf. [5, Thm. 6.1]). The general point of any such component corresponds to an unstable vector
bundle on C (cf. [5, Rem. 6.3]).

3.3. Non-linearly normal, special scrolls. Let n = d− 2g + 1. Recall that there is a unique component
Hd,g of the Hilbert scheme containing all linearly normal, non–special scrolls of degree d and genus g in Pn

(cf. [3, Theorem 1.2] and [4, Theorem 1]).
Consider now the family Yi whose general element is a general projection to Pn of the scroll S ⊂ Pr,

r = n + i, with [S] ∈ H general as in Theorem 3.13. The following proposition shows that the families Yi

never fill up components of the Hilbert scheme of Pn.

Proposition 3.16. In the above setting, for d, d1, g and i as in Theorem 2.1, Yi is a generically smooth

subset of Hd,g of codimension i2 whose general point is smooth for Hd,g.

Proof. Let [S] ∈ H be general with S ∼= P(F) and let S′ ⊂ Pn be a general projection of S. Let GS′ ⊂
PGL(n+1,C) be the subgroup of projective transformations fixing S′. Since GS ⊂ Aut(S) ∼= Aut(P(F)), one
has dim(GS′) = 0, because F is stable.

Then dim(Yi) is:

• 3g − 3, for the parameters on which C depends, plus
• 4g − 3− i(r + 1), for the parameters on which F depends, plus
• dim(G(n, r)) = (n+ 1)(r − n) = (n+ 1)i, which are the parameters for the projections, plus
• (n+ 1)2 − 1 = dim(PGL(n+ 1,C)), minus
• dim(GS′) = 0.

Adding up, we get dim(Yi) = dim(Hd,g)− i2.
Consider the Rohn exact sequence

0 → C
i ⊗ OS(H) → NS|Pr → NS′|Pn → 0

(see, e.g. [6], p. 358, formula (2.2)). From Proposition 3.1, (ii), we have h1(S,NS|Pr ) = 0, therefore also

h1(S′,NS′|Pr) = 0. Hence Yi is contained in a component Z of the Hilbert scheme of dimension χ(NS′|Pr) =

7(g − 1) + (r + 1)2 and the general point of Yi is a smooth point of Z.
The general point of Yi is a smooth scroll on C arising from a stable, rank-two vector bundle. The

component Hd,g is the only component of the Hilbert scheme whose general point corresponds to a stable
scroll (cf. the proof of [4, Theorem 2]). Therefore, Z = Hd,g. The map H0(S,NS|Pr+1) → H0(S′,NS′|Pr) is

not surjective: its cokernel is Ci⊗H1(OS(H))⊕i, which has dimension i2. This means that Yi is a generically
smooth subset of Hd,g of codimension i2. �
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