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Abstract. The main purpose of this paper is to introduce a new approach to

study families of nodal curves on projective threefolds. Precisely, given X a
smooth projective threefold, E a rank-two vector bundle on X and k ≥ 0, δ > 0

integers and denoted by Vδ(E(k)) the subscheme of P(H0(E(k))) parametrizing
global sections of E(k) whose zero-loci are irreducible and δ-nodal curves on X,

we present a new cohomological description of the tangent space T[s](Vδ(E(k)))

at a point [s] ∈ Vδ(E(k)). This description enable us to determine effective and

uniform upper-bounds for δ, which are linear polynomials in k, such that the
family Vδ(E(k)) is smooth and of the expected dimension (regular, for short).
The almost-sharpness of our bounds is shown by some interesting examples.

Furthermore, when X is assumed to be a Fano or a Calaby-Yau threefold, we
study in detail the regularity property of a point [s] ∈ Vδ(E(k)) related to the

postulation of the nodes of its zero-locus C = V (s) ⊂ X. Roughly speaking,

when the nodes of C are assumed to be in general position either on X or
on an irreducible divisor of X having at worst log-terminal singularities or to

lie on a l.c.i. and subcanonical curve in X, we find upper-bounds on δ which

are, respectively, cubic, quadratic and linear polynomials in k ensuring the
regularity of Vδ(E(k)) at [s]. Finally, when X = P3, we also discuss some

interesting geometric properties of the curves given by sections parametrized

by Vδ(E ⊗ OX(k)).

Introduction

The theory of families of singular curves with fixed invariants (e.g. geometric
genus, singularity type, number of irreducible components, etc.) and which are
contained in a projective variety X has been extensively studied from the beginning
of Algebraic Geometry and it actually receives a lot of attention, partially due to its
connections with other fields of geometry and physics. Indeed, the interest about
this arguments has grown essentially for two reasons: on the one hand, the theory
of strings of nuclear physicists deals with enumerative geometry for rational curves
contained in some projective threefolds; on the other hand, the study of singular
curves is naturally related with the hyperbolic geometry of complex projective
varieties.

Nodal curves play a central role in the subject of singular curves. Families of
irreducible and δ-nodal curves on a given projective variety X are usually called
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Severi varieties of irreducible, δ-nodal curves in X. The terminology ”Severi vari-
ety” is due to the classical case of families of nodal curves on X = P2, which was
first studied by Severi (see [33]).

The case in which X is a smooth projective surface has recently given rise to
a huge amount of literature (see, for example, [4], [6], [7], [9], [14], [17], [18], [29],
[32], [36] just to mention a few. For a detailed chronological overview, the reader is
referred for example to Section 2.3 in [13] and to its bibliography). This depends
not only on the great interest in the subject, but also because for a Severi variety
V on an arbitrary projective variety X there are several problems concerning V
like non-emptyness, smoothness, irreducibility, dimensional computation as well as
enumerative and moduli properties of the family of curves it parametrizes.

On the contrary, in higher dimension only few results are known. Precisely, on
the one hand we have non-emptyness and enumerative results for some classes of
varieties, which are relevant for applications; on the other hand, some other results
of non-emptyness and smoothness are given only for families of nodal curves in
projective spaces (see e.g. [1] and [32]).

Therefore, we feel some lack of systematic studies for what should be the next
relevant case, from the point of view of Algebraic Geometry: families of nodal
curves on projective threefolds.

The purpose of this paper is twofold: first, we introduce a new method to de-
termine when a given (non-empty) Severi variety on a smooth projective threefold
X is smooth and of the expected dimension - regular, for short - at a given point
(for details, see Definition 2.6); then, we apply this method to find geometric and
numerical sufficient conditions for the regularity property of Severi varieties.

In general, a natural approach to the regularity problem is to use deforma-
tion theory of nodal curves in a smooth ambient variety. In the surface case,
if V|OS(D)|,δ denotes the Severi variety of irreducible and δ-nodal curves in the
linear system |OS(D)| on a smooth projective surface S, it is well known that,
when V|OS(D)|,δ 6= ∅, its expected codimension in |OS(D)| is δ; moreover, if [C] ∈
V|OS(D)|, δ parametrizes a curve C whose set of nodes is denoted by Σ, the Zariski
tangent space at [C] is

T[C](V|OS(D)|, δ) ∼= H0(S, IΣ/S ⊗OS(D))/ < C >,

where IΣ/S denotes the ideal sheaf of Σ in S (see, for example, [9]). Thus, since
the relative obstruction space is contained in H1(S, IΣ/S ⊗OS(D)), the regularity
of V|OS(D)|, δ at [C] holds iff Σ imposes independent conditions to |OS(D)|; in
particular, a sufficient condition for the regularity at [C] is h1(S, IΣ/S⊗OS(D)) = 0.

In the threefold case, one obtains a partially similar organization for curves which
are zero-loci of sections of a rank-two vector bundle F on X, so that P(H0(X,F))
(which plays the same role of |OS(D)|) somehow gives a projective space dominating
a subvariety in which the curves move. As in the surface case, if Vδ(F) denotes
the subscheme of P(H0(X,F)) parametrizing global sections whose zero-loci are
irreducible and δ-nodal curves in X, with a little abuse of terminology we shall
always use the term Severi variety to refer to Vδ(F). In several cases - e.g. when
F is a stable and aCM rank-two vector bundle on X (for definitions, see [8]) - this
is not an abuse, since Vδ(F) actually parametrizes irreducible nodal curves on X
(see Lemma 4.3 in [8]).
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Notation 0.1. In the sequel, we write [s] ∈ Vδ(F) to intend that the global section
s ∈ H0(X,F) determines the corresponding point [s] of the scheme Vδ(F). We also
denote by Cs (or simply C, when this does not create ambiguity) the zero-locus of
the given section s, i.e. C = V (s) ⊂ X.

As in the surface case, when Vδ(F) is not empty then its expected codimension
is δ (see Proposition 2.5); however, if [s] ∈ Vδ(F) and if Σ denotes the set of nodes
of the corresponding curve Cs ⊂ X, now we have

T[s](Vδ(F)) ⊃ H0(X, IΣ/X ⊗F)/ < s >,

so the latter is the tangent space at [s] to a subscheme of P(H0(X,F)) of a higher
expected codimension.

We thus present a systematic study of equisingular deformation theory for the
elements parametrized by Vδ(F) on X. Precisely in the following result, which is
the core of the paper, we introduce a new cohomological description of the tangent
space T[s](Vδ(F)).

Theorem (see Theorem 3.1) Let X be a smooth projective threefold. Let F be a
globally generated rank-two vector bundle on X and let δ be a positive integer. Let

Vδ(F) :={[s] ∈ P(H0(F)) | Cs := V (s) ⊂ X is irreducible

with only δ nodes as singularities}.

Consider [s] ∈ Vδ(F) and denote by Σ the set of nodes of the corresponding curve
Cs ⊂ X. Let

P := PX(F) π−→ X

be the projective space bundle together with its natural projection π on X and denote
by OP(1) its tautological line bundle. Let T 1

Cs
be the first cotangent sheaf of Cs (see

(3.1)) and let
Σ1 := PX(T 1

Cs
) ⊂ P

be the zero-dimensional subscheme of P of length δ, determined by the surjection
F → T 1

Cs
→ 0. Denote by IΣ1/P the ideal sheaf of Σ1 in P. Then

(i) Σ1 is a set of δ rational double points for the divisor Ds ∈ |OP(1)|, corre-
sponding to the given section s ∈ H0(X,F), and

(ii) the subsheaf of F , defined by

FΣ := π∗(IΣ1/P ⊗OP(1)),

is such that its global sections (modulo the one dimensional subspace < s >)
parametrizes first-order deformations of s ∈ H0(X,F) which are equisin-
gular.
In particular, we have

H0(X,FΣ)
< s >

∼= T[s](Vδ(F)) ⊂ T[s](P(H0(F))) ∼=
H0(X,F)

< s >
.

We want to briefly remark that the above result can be the starting point for the
characterization of tangent spaces to such families on a smooth projective n-fold
Y , with n ≥ 4. The main difference from the threefold case is that one should work
inside a suitable incidence variety I ⊂ PY (F)× PY (F∨), where rank(F) = n− 1.
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By using the above characterization of T[s](Vδ(F)), we are able to determine
geometric and numerical sufficient conditions for the regularity of Vδ(F) at the
point [s].

Indeed, we first prove the following:

Theorem (see Theorem 4.4) Let X ⊂ Pr be a smooth threefold, whose hyperplane
bundle is denoted by OX(1). Let E be a globally generated rank-two vector bundle
and k ≥ 0 and δ > 0 be integers. If

(∗) δ ≤ k + 1,

then Vδ(E(k)) is smooth and of the expected dimension (i.e. regular) at each point.

Therefore, the above result determine sufficient conditions in order that Vδ(E(k))
is regular everywhere. Observe also that the bound (∗) is uniform, i.e. it does
not depend on the postulation of the nodes of the curves related to the elements
parametrized by Vδ(E(k)); furthermore, the bound is almost-sharp, as one can
deduce from Example 3.2 in [1] and from our Remarks 5.10 and 5.24. We also
stress that the above result generalizes what proved in [1], mainly because our
approach more generally holds for families of nodal curves on smooth projective
threefolds but also because, even in the case of X = P3, main subject of [1], our
bounds are effective and not asymptotic as Proposition 3.1 in [1].

After this, in §5 we focus on the case of X either a Fano or a Calaby-Yau
threefold and we ”stratify” the regularity property in terms of the postulation of
nodes. Precisely, by using the notion of local positivity of line bundles on X, the
machinery of Seshadri constants as in [11], [12] and [24] and the fundamental tool
of the Kawamata-Viehweg vanishing theorem, we determine some upper-bounds
for the number δ, which are cubic polynomials in the integer k, such that if the
δ nodes of a curve C = V (s) are in very general position on X (see Definition
5.3), then the point [s] is regular for Vδ(E(k)) (see Theorem 5.4 and Corollary
5.5). Furthermore, when the nodes of C are assumed to be points in very general
position on an irreducible divisor of X having at worst log-terminal singularities
or to lie on a l.c.i and subcanonical curve in X, we determine upper-bounds on δ
which are, respectively, quadratic and linear polynomials in the integer k implying
the regularity of the point [s] (see Theorems 5.12, 5.14, 5.22 and Corollaries 5.13,
5.23).

We conclude the paper by focusing on the case X = P3 and by studying inter-
esting geometric properties of space curves determined by elements in Vδ(E(k)).

The paper consists of six sections. In Section 1, we recall some terminology and
notation. Section 2 contains fundamental definitions and technical details which are
useful for our proofs. Section 3 contains our main result (see Theorem 3.1), which
gives a cohomological description of the tangent space T[s](Vδ(F)). In Section 4, we
prove our uniform and effective result for the regularity of Vδ(F) at each point (see
Theorem 4.4). Section 5 is devoted to the study of the regularity property of Vδ(F)
in terms of the postulation of nodes of the zero-loci of the elements it parametrizes.
We conclude with Section 6, where we consider some geometric properties and
biliaison relation of space curves determined by elements in Vδ(F).
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1. Notation and Preliminaries

We work in the category of algebraic C-schemes. Y is a m-fold if it is a reduced,
irreducible and non-singular scheme of finite type and of dimension m. If m = 1,
then Y is a (smooth) curve; m = 2 and 3 are the cases of a (non-singular) surface and
threefold, respectively. If Z is a closed subscheme of a scheme Y , IZ/Y denotes the
ideal sheaf of Z in Y , NZ/Y the normal sheaf of Z in Y whereasN∨

Z/Y
∼= IZ/Y /I2

Z/Y

is the conormal sheaf of Z in Y . As usual, hi(Y, −) := dim Hi(Y, −).
Given Y a projective scheme, ωY denotes its dualizing sheaf. When Y is a

smooth variety, then ωY coincides with its canonical bundle and KY denotes a
canonical divisor s.t. ωY

∼= OY (KY ). Furthermore, TY denotes its tangent bundle
whereas Ω1

Y denotes its cotangent bundle.
If D is a reduced curve, pa(D) = h1(OD) denotes its arithmetic genus, whereas

g(D) = pg(D) denotes its geometric genus, the arithmetic genus of its normaliza-
tion.

Consider Y a projective m-fold. Div(Y ) denotes the set of (Cartier) divisors and
∼ the linear equivalence on Div(Y ), whereas Pic(Y ) denotes the Picard scheme of
line bundles on Y . On the other hand, as in [19], F1(Y ) denotes the free abelian
group generated by the set of all integral curves in Y . Denoted by · the intersection
pairing on Y and by ≡ the numerical equivalence on Y , we have

A1(Y ) = (Div(Y )/ ≡)⊗Z R, and A1(Y ) = (F1(Y )/ ≡)⊗Z R.

Recall that an element B ∈ Div(Y ) is said to be nef, if B ·D ≥ 0 for each irreducible
curve D on Y . A nef divisor B is said to be big if Bm > 0. By Kleiman’s criterion
(see, for example, [19]), a nef divisor B is in the closure of the ample divisor cone
P 0(Y ), which is the cone in A1(Y ) generated by the ample divisors on Y . When
Y is a surface, in some literature, the ample divisor cone is also denoted by N+(Y )
(see, for example, [2] and [15]).

Let Y be a projective m-fold and E be a rank-r vector bundle on Y ; ci(E)
denotes the ith-Chern class of E , 1 ≤ i ≤ r. As in [20] - Sect. II.7 - PY (E) denotes
the projective space bundle on Y , defined as Proj(Sym(E)). There is a surjection
π∗(E) → OPY (E)(1), where OPY (E)(1) is the tautological line bundle on PY (E) and
where π : PY (E) → Y is the natural projection morphism. Recall that E is said to
be an ample (resp. nef) vector bundle on Y if OPY (E)(1) is an ample (resp. nef)
line bundle on PY (E).

When Y is a projective, normal variety of dimension m, the word divisor is used
for Weil divisor, i.e. a formal linear combination of codimension-one subvarieties. A
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Q-divisor (R-divisor, resp.) on Y is a finite formal linear combination D =
∑

i aiDi

with rational (real, resp.) coefficients; when the coefficients are in Z, D is an integral
divisor. D is a Q-Cartier divisor if some multiple of D is an (integral) Cartier divisor
(recall that, when X is smooth, any Q-divisor is Q-Cartier). The round-up of D
and the integral part of D are, respectively, the integral divisors dDe =

∑
idaieDi

and [D] =
∑

i[ai]Di where, as usual, for x ∈ Q one denotes by dxe the least integer
greater than or equal to x and by [x] the greatest integer smaller than or equal to
x. The fractional part of D is {D} = D− [D]. Since there is a Q-valued intersection
theory for Q-Cartier Q-divisors, one can extend the notion of ampleness and nefness
to Q-divisors. Similarly, D is big if nD is integral and big, for some positive n.
D =

∑
i aiDi has simple normal crossing if each Di is smooth and if D is defined

in a neighborhood of any point by an equation in local analytic coordinates of the
type z1 · · · zk = 0, with k ≤ m. A boundary divisor ∆ is an effective divisor whose
support has simple normal crossings and such that [∆] = 0.

If Y is a projective normal variety and if D is a Q-divisor on Y , a log-resolution
of the pair (Y,D) is a proper birational mapping µ : Y ′ → Y, where Y ′ is smooth
and such that the divisor µ∗(D)+Exc(µ) has simple normal crossing support (here
Exc(µ) denotes the sum of the µ-exceptional divisors). If (Y, D) is such that KY +D
is Q-Cartier and if µ is a log-resolution of the pair, then,

KY ′/Y − µ∗(D) := KY ′ − µ∗(KY + D) ≡
∑

i

aiEi,

where the Ei’s are distinct irreducible divisors (not necessarily all µ-exceptionals)
and where the coefficients ai’s are called the discrepancies. The pair (Y, D) is called
log-terminal (resp. Kawamata log-terminal) if ai > −1 for each Ei µ-exceptional
(resp. for each Ei). Since KY ′/Y is always µ-exceptional, Y is said to have at worst
log-terminal singularities if the pair (Y, 0) is log-terminal.

To conclude, we also recall one of the most important vanishing theorem for
Q-divisors - the Kawamata-Viehweg theorem - which will be frequently used in the
sequel.
Theorem (Kawamata-Viehweg, see, for example, [28], page 146) Let Y be a smooth,
projective variety of dimensione m, let D be a big and nef Q-divisor, whose frac-
tional part has simple normal crossing support. Then

Hi(Y,OY (KY + dDe) = (0), for i > 0.

When Y is a surface, the same conclusion holds even without the hypothesis on the
fractional part of D.

2. Basic definitions and fundamental properties

In this section we introduce some fundamental definitions and remarks concern-
ing the study of families of curves on smooth projective threefolds. For generalities,
the reader is referred to [35], Chapter IV.

Definition 2.1. Let X be a smooth projective threefold and let F be a rank-two
vector bundle on X. Let s be a global section of F . The zero-locus of s, denoted
by V (s), is the closed subscheme of X defined by the exact sequence

F∨ s∨−→ OX → OV (s) → 0,

where s∨ is the dual map of the section s.
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If codimX(V (s)) = 2, then Ker(s∨) = L∨ is a line bundle on X such that c1(F) =∧2(F) ∼= L. This yields the Koszul sequence of (F , s):

(2.1) 0 → OX → F → IV (s) ⊗ L → 0.

Remark 2.2. When Pic(X) ∼= Z (e.g X = P3 or X either a prime Fano or a complete
intersection Calabi Yau threefold) one can use this isomorphism to identify line
bundles on X with integers. In particular, if A denotes the ample generator class
of Pic(X) over Z and if F is a rank-two vector bundle on X such that c1(F) = nA,
we can also write c1(F) = n with no ambiguity.

We recall well-known results concerning the correspondence between curves and
global sections of vector bundles on a smooth projective threefold.

Theorem 2.3. (Serre) Let X be a smooth projective threefold. A curve D ⊂ X
occurs as the zero-locus of a global section of a rank-two vector bundle F on X if and
only if D is locally complete intersection and its dualizing sheaf ωD is isomorphic
to the restriction to D of some line bundle M on X such that

(2.2) h1(X, M∨) = h2(X, M∨) = 0.

Furthermore, such a curve D is a complete intersection in X iff F splits.

Proposition 2.4. Let X be a smooth projective threefold and let F be a rank-two
vector bundle on X. If F is globally generated, then the zero-locus of a general
section is non-singular.

Proof. The proof of Theorem 5.1 in [22] extends to this case. �

From what recalled above, if X is a smooth projective threefold and if F is a
globally generated rank-two vector bundle on X, it is not restrictive to assume that
the zero-locus of the general section of F is a smooth, irreducible curve D in X. By
the Koszul sequence (2.1), we find the geometric genus of D in terms of the Chern
classes of F and of the invariants of X. Precisely

(2.3) 2g(D)− 2 = 2pa(D)− 2 = deg(c1(F)⊗ ωX ⊗OD).

This integer is easily computable when, for example, X is a general complete
intersection threefold. In particular, when X = P3, by Remark 2.2, if we put
ci = ci(F) ∈ Z, we have

(2.4) deg(D) = c2 and g(D) = pg(D) =
1
2
(c2(c1 − 4)) + 1,

i.e. D is subcanonical of level (c1 − 4).
Take now P(H0(F)); from our assumption on F , the general point of this pro-

jective space parametrizes a global section whose zero-locus is a smooth, irreducible
curve in X. Given a positive integer δ, one can consider the subset

(2.5)
Vδ(F) :={[s] ∈ P(H0(F)) | Cs := V (s) ⊂ X is irreducible

with only δ nodes as singularities};
therefore, any element of Vδ(F) determines a curve in X whose arithmetic genus
pa(Cs) is given by (2.3) and whose geometric genus is g = pa(Cs)− δ.
Vδ(F) is a locally closed subscheme of the projective space P(H0(F)) and it is

usually called the Severi variety of global sections of F whose zero-loci are irre-
ducible, δ-nodal curves in X (see [1]); this is because such schemes are the natural
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generalization of the (classical) Severi varieties of irreducible and δ-nodal curves in
linear systems on smooth, projective surfaces (see [6], [4], [9], [14], [17], [18], [29],
[32] and [33], just to mention a few).

Proposition 2.5. Let X be a smooth projective threefold, F be a globally generated
rank-two vector bundle on X and δ be a positive integer. Then

expdim(Vδ(F)) =

{
h0(X,F)− 1− δ, if δ ≤ h0(X,F)− 1 = dim(P(H0(F))),
−1, if δ ≥ h0(X,F).

Proof. If Vδ(F) = ∅, then dim(Vδ(F)) = −1. On the other hand, when Vδ(F) 6= ∅,
consider the set

Uδ ⊂ P(H0(F))× (Xδ \
⋃

1≤i 6=j≤δ

∆i,j),

where Xδ is the δ-Cartesian product of X, ∆i,j are the diagonals in Xδ and where

Uδ := {([s]; p1, . . . , pδ) | C = V (s) ⊂ X is an irreducible curve with only nodes at the p′is}.

Since X is smooth, for an arbitrary p ∈ X we consider U = Up an affine open
subscheme of X containing p, with (x(p)

1 , x
(p)
2 , x

(p)
3 ) local coordinates in Up, such

that s|Up
= (f (p)

1 , f
(p)
2 ), where f

(p)
i ∈ OX(Up). Define the closed scheme

Kδ := {([s]; p1, . . . , pδ) ∈ P(H0(F))× (Xδ \
⋃

1≤i 6=j≤δ ∆i,j) | s(pi) = 0 and
rank(J(s)(pi)) ≤ 1, 1 ≤ i ≤ δ},

where, for an arbitrary p ∈ X, J(s)(p) is the Jacobian matrix of s at the point p.
By definition,

Kδ := {([s]; p1, . . . , pδ) | s(pi) = (( ∂

∂x
(pi)
1

∧ ∂

∂x
(pi)
2

)(s))(pi) =

(( ∂

∂x
(pi)
1

∧ ∂

∂x
(pi)
3

)(s))(pi) = (( ∂

∂x
(pi)
2

∧ ∂

∂x
(pi)
3

)(s))(pi) = 0, 1 ≤ i ≤ δ}.

Since Uδ is contained in Kδ as an open dense subscheme and since Kδ is cut out by
at most 4δ independent equations, then

dim(Uδ) = dim(Kδ) ≥ dim(P(H0(F))× (Xδ \
⋃

1≤i 6=j≤δ ∆i,j))− 4δ =
= h0(X,F)− 1 + 3δ − 4δ = h0(X,F)− 1− δ.

Denoting by π1 the restriction to Uδ of the projection to the first factor of the
product P(H0(F))×Xδ, we have π1(Uδ) = Vδ(F). We conclude by observing that
π1 is finite onto its image. �

Assumption: From now on, we shall use Notation 0.1. Moreover, given X and F
as in Proposition 2.5, we shall always assume Vδ(F) 6= ∅ and δ ≤ min{h0(X,F)−
1, pa(C)} (the latter is because we want C = V (s) to be irreducible).

By Proposition 2.5, we can state the following fundamental definition.

Definition 2.6. Let [s] ∈ Vδ(F), with δ ≤ min{h0(X,F)− 1, pa(C)}. Then [s] is
said to be a regular point of Vδ(F) if:

(i) [s] ∈ Vδ(F) is a smooth point, and
(ii) dim[s](Vδ(F)) = expdim(Vδ(F)) = h0(X,F)− 1− δ, i.e.

dim[s](Vδ(F)) = dim(P(H0(F)))− δ.
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The goal of the next section is to present a cohomological description of the
tangent space T[s](Vδ(F)) which will translate the regularity property of the point
[s] ∈ Vδ(F) into the surjectivity of some maps among vector spaces of sections of
suitable sheaves on the threefold X.

3. Description of the tangent space T[s](Vδ(F)) and regularity

As before, let X be a smooth projective threefold and let F be a globally gen-
erated rank-two vector bundle on X. Let δ be a positive integer and consider
[s] ∈ Vδ(F). From now on in this section, let C be the curve in X which is the
zero-locus of the given s and let Σ denote its set of δ nodes.

Since C is local complete intersection in X, its normal sheaf NC/X is a rank-two
vector-bundle (see [20]). Precisely, NC/X

∼= F|C . Let T 1
C be the first cotangent

sheaf of C, i.e. T 1
C
∼= Ext1(Ω1

C ,OC), where Ω1
C is the sheaf of Kähler differentials

of the nodal curve C (for details, see [27]). We have the exact sequence

(3.1) 0 → N ′
C → NC/X

γ→ T 1
C → 0,

where N ′
C is defined as the kernel of the natural surjection γ (see, for example,

[32]). Since nodal points are planar singularities, one has
i) T 1

C,p = 0 and N ′
C,p

∼= NC/X,p
∼= O⊕ 2

C , when p ∈ C is a smooth point,
ii) T 1

C,p
∼= C and N ′

C,p
∼= (mpOC,p)⊕OC , when p is a node of C (mp denotes

the maximal ideal at the point p).

Therefore, T 1
C is a sky-scraper sheaf supported on Σ, such that T 1

C
∼=
⊕δ

i=1 C(i).
By using (3.1), the goal of this section is to construct a subsheaf FΣ ⊂ F fitting

in the following exact diagram:

(3.2)

0 0
↓ ↓

0 → IC/X ⊗F
∼=→ IC/X ⊗F → 0

↓ ↓ ↓
0 → FΣ → F → T 1

C → 0
↓ ↓ ↓∼=

0 → N ′
C → F|C → T 1

C → 0
↓ ↓ ↓
0 0 0 .

Observe that, from the commutativity of diagram (3.2), H0(X,FΣ)/ < s > parametrizes
the first-order deformations of the section s in H0(X,F) which are equisingular;
indeed, these are exactly the global sections of F which go to zero at Σ in the
composition

(3.3) F → F|C → T 1
C
∼= OΣ → 0.

In the following result, which is the core of the entire paper, we construct the
sheaf FΣ by using some projective space-bundle arguments.

Theorem 3.1. Let X be a smooth projective threefold. Let F be a globally generated
rank-two vector bundle on X and let δ be a positive integer. As in (2.5), let

Vδ(F) ={[s] ∈ P(H0(F)) | Cs := V (s) ⊂ X is irreducible

with only δ nodes as singularities}.
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Fix [s] ∈ Vδ(F) and let C = V (s) ⊂ X. Denote by Σ the set of nodes of C. Let

P := PX(F) π−→ X

be the projective space bundle together with its natural projection π on X and denote
by OP(1) its tautological line bundle. Let

Σ1 := PX(T 1
C) ⊂ P

denote the zero-dimensional subscheme of P of length δ, determined by the surjec-
tion (3.3). Denote by IΣ1/P the ideal sheaf of Σ1 in P. Then

(i) Σ1 is a set of δ rational double points for the divisor Ds ∈ |OP(1)|, corre-
sponding to the given section s ∈ H0(X,F), and

(ii) the subsheaf of F , defined by

(3.4) FΣ := π∗(IΣ1/P ⊗OP(1)),

is such that its global sections (modulo the one dimensional subspace < s >)
parametrizes first-order deformations of s ∈ H0(X,F) which are equisin-
gular.
In particular, we have

(3.5)
H0(X,FΣ)

< s >
∼= T[s](Vδ(F)) ⊂ T[s](P(H0(F))) ∼=

H0(X,F)
< s >

.

Proof. To naturally define the sheaf FΣ and the diagram (3.2), we consider the
smooth, projective fourfold

P := PX(F) π−→ X,

together with its tautological line bundle OP(1) such that π∗(OP(1)) ∼= F . From

0 → OX
·s→ F ,

we also have
0 → OP

·s→ OP(1).
Therefore, the nodal curve C ⊂ X corresponds to a divisor Ds ∈ |OP(1)| on the
fourfold P. Take also

F := P1
C = Proj(OC [ξ0, ξ1])

π1→ C

which is a ruled surface in P. We want to study some geometric properties of Ds

and of F. Let p ∈ Σ = Sing(C). Take Up ⊂ X an affine open set containing p,
where the vector bundle F trivializes. Choose local coordinates x = (x1, x2, x3) on
Up

∼= C3 such that x(p) = (0, 0, 0) and such that the global section s is

s|Up
= (x1x2, x3).

Then
OC(Up) ∼= C[x1, x2, x3]/(x1x2, x3),

and
OF(π−1

1 (Up)) ∼= C[x1, x2, x3,
ξ1

ξ0
]/(x1x2, x3).

Therefore, the surface F is singular along the lines in L =
⋃δ

i=1 Li = π−1
1 (Σ) =

π−1(Σ). For what concerns Ds ∈ |OP(1)|, since Up trivializes F , then P |Up
∼= Up×

P1. Taking homogeneous coordinates [u, v] ∈ P1,we haveOP(Up) ∼= C[x1, x2, x3, u, v].
Thus,

ODs
(Up) ∼= C[x1, x2, x3, u, v]/(ux3 − vx1x2).
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By standard computations, we see that Ds has a rational double point along the
line π−1(p) = π−1

1 (p) which belongs to the singular locus of F ⊂ P.
Globally speaking, by using (3.3), we can state that the divisor Ds ⊂ P is

singular along the locus

Σ1 := PX(T 1
C) ⊂ P = PX(F),

where Σ1 ∼= Σ is a set of δ rational double points for Ds, each line of L = π−1(Σ)
containing only one of such δ points. Since Σ1 ⊂ P is a closed immersion, we have
the exact sequence

(3.6) 0 → IΣ1/P ⊗OP(1) → OP(1) → OΣ1 → 0,

which is defined by restricting OP(1) to Σ1. By the definition of tautological line
bundle, we have:

π∗(F) → π∗(OΣ) → 0
↓ ↓

0 → IΣ1/P ⊗OP(1) → OP(1) → OΣ1 → 0
↓ ↓ ↓
0 0 0 .

Since

π∗(OP(1)) ∼= F , π∗(OΣ1) = π∗(Oπ−1(Σ1)) = π∗(π∗(OΣ)) ∼= OΣ

and since we have F →→ OΣ, by applying π∗ to the exact sequence (3.6), we get
R1π∗(IΣ1/P ⊗OP(1)) = 0. Thus, we define

FΣ := π∗(IΣ1/P ⊗OP(1)),

which gives (3.4), so that

(3.7) 0 → FΣ → F → OΣ → 0,

as well as diagram (3.2), holds. �

We remark that (3.5) gives a completely general characterization of the tangent
space T[s](Vδ(F)) on X. Furthermore, we have:

Corollary 3.2. With assumptions as in Theorem 3.1, from (3.7) we get
(3.8)
[s] ∈ Vδ(F) is regular ⇔ H0(X,F) αX→→ H0(X,OΣ) ⇔ H0(P,OP(1)) αP→→ H0(P,OΣ1).

Proof. It follows from Proposition 2.5 and from Theorem 3.1. �

Note that, on the one hand, the map αX in (3.8) is not defined by restricting
the global sections of F to Σ because (3.7) - i.e. the second row of diagram (3.2) -
does not coincide with the restriction sequence

0 → IΣ/X ⊗F → F → F|Σ → 0;
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precisely, we have

(3.9)

0 0 0
↓ ↓ ↓

0 → IΣ/X ⊗F → FΣ → OΣ → 0
↓∼= ↓ ↓

0 → IΣ/X ⊗F → F → F|Σ ∼= O⊕2
Σ → 0

↓ ↓ ↓
0 → OΣ → OΣ → 0;

↓ ↓
0 0

On the other hand, the exact sequence (3.6) on the fourfold P is equivalent to
(3.7), by the Leray isomorphisms, but it is more naturally defined by restricting the
line bundle OP(1) to Σ1. Therefore, the map αP in (3.8) is a classical restriction
map.

To better understand the map αX , we also want to give a local description of
(3.7).
Local description Let p ∈ Sing(C) = Σ and take, as before, Up ⊂ X an affine
open set containing p, where the vector bundle F is trivial. Take local coordinates
x = (x1, x2, x3) on Up

∼= C3 such that x(p) = (0, 0, 0) and such that the global
section s, whose zero-locus is C, is s|Up

= (x1x2, x3). Since C = V (x1x2, x3) ⊂
Spec(C[x1, x2, x3]) ∼= Up, around the node x(p) = 0 the map

(∗∗) TC3 |C
J(s)−→ NC/C3 → T 1

C

is given by

J(s) :=

(
∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

)
=
(

x2 x1 0
0 0 1

)
.

From the fact that rank(J(s)|0) = 1, it follows that coker(J(s)|0) ∼= C. Let
s(x1, x2, x3) = s|Up = (x1x2, x3); if σ(x1, x2, x3) is a section of N ′

C over Up then,
by definition,

sε(x1, x2, x3) := s(x1, x2, x3) + ε σ(x1, x2, x3)

is a first-order deformation of s which determines equisingular zero-loci. Then

σ(x1, x2, x3) = J(s)u,

where u = u(x1, x2, x3) = (u1(x1, x2, x3), u2(x1, x2, x3), (x1, x2, x3)). To see this,
consider

(∗ ∗ ∗) s(x + εu) |0 = (s(x) + εJ(s)u) |0 =
(

x1x2

x3

)
+ ε

(
x2u1 + x1u2

u3

)
;

thus
sε(x) ≡ s(x + εu) (mod ε2).

Moreover, since Up is a trivializing open subset for F , we have that (∗∗) becomes

O⊕3
C

J(s)−→ O⊕2
C → T 1

C

(e1, e2, e3) → (e′1, e
′
2) .

Since Im(J(s)) =< x2e
′
1, x1e

′
1, e

′
2 >, then e′2 goes to zero in T 1

C so the deformations
in (∗ ∗ ∗) are actually equisingular.
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Observe that, by (3.8) and by using some results in [10], one can immediately
determine some conditions for the regularity of [s] ∈ Vδ(F). Indeed, if F is a
globally generated rank-two vector bundle on X which generates the 0-jets at Σ =
{p1, . . . , pδ} (equiv. which separates the points of Σ), then by definition we have

H0(X,F) →→
δ⊕

i=1

C2
(i).

This implies the regularity conditions (3.8), as it immediately follows by considering
the last two columns of (3.9). In such a case [s] ∈ Vδ(F), such that C = V (s) and
Σ = Sing(C), is therefore a regular point. From Proposition 3.1 in [10], we deduce:

Proposition 3.3. Let X be a smooth, projective threefold. Let G be a nef rank-two
vector bundle and L be a big and nef line bundle on X. Consider the rank-two
vector bundle

F := G ⊗ ωX ⊗ det(G)⊗OX(L)
whose general section is assumed to be a smooth curve in X. Take δ be a positive
integer and consider [s] ∈ Vδ(F). Let Σ = {p1, . . . , pδ} be the set of nodes of
C = V (s). Let ε(L, p) denote the Seshadri constant of the line bundle L at the
point p (for precise definition see Remark 3.4 or Definition 5.2). Assume either

ε(L, pj) > 3δ, ∀ pj ∈ Σ

or
L3 > (ε(L, pj))3 and ε(L, pj) ≥ 3δ, ∀ pj ∈ Σ.

Then, the global sections of F separate Σ. In particular, Vδ(F) is regular at [s].

Proof. One applies the effective non-vanishing Theorem 2.2 in [10] taking Lj =
1
δ L. �

Remark 3.4. Take e.g. X ⊂ Pr a smooth threefold, whose hyperplane section is
denoted by H. Consider the line bundle OX(kH), where k is a positive integer,
and take Σ = {p1, . . . , pδ} ⊂ X. Denote by µj the blowing-up of X at the point pj .
Then, by definition,

ε(OX(kH), pj) := Sup{ε ∈ R≥0| µ∗j (kH)− εEj is a nef R− divisor on Blpj
(X)},

where Ej denotes the µj-exceptional divisor. Equivalently,

ε(OX(kH), pj) := Inf Γ⊂X{
kH · Γ

multpj
(Γ)

}

where the infimum is taken over all reduced and irreducible curves Γ ⊂ X passing
through pj . Since H is very ample on X, then the curve Γ - as a curve in Pr - is
such that deg(Γ) ≥ multq(Γ), for each q ∈ Γ. Therefore, the numerical conditions
in Proposition 3.3 give

δ ≤ k

3
,

which is a linear bound on the admissible number of nodes of C = V (s) in order to
have that [s] ∈ Vδ(G ⊗ ωX ⊗ det(G)⊗OX(kH)) is a regular point.

However, the conditions on Seshadri constants are of local nature and the results
that one can deduce are strictly related to the postulation of the chosen points. In
the next section, we shall discuss one of our results, which determines conditions
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on the vector bundle F and a uniform upper-bound on the number of nodes δ such
that each point of the scheme Vδ(F) is regular.

4. Some uniform regularity results for Vδ(E(k))

From now on, let X ⊂ Pr be a smooth projective threefold, whose hyperplane
bundle is denoted by OX(1), let E be a globally generated rank-two vector bundle
on X and k ≥ 0, δ > 0 be integers. With notation as in Section 3, we shall always
take

F = E ⊗ OX(k) = E(k)
and consider the scheme Vδ(E(k)) on X. By using Theorem 3.1 and Corollary
3.2, here we determine conditions on the vector bundle E and on the integer k
and uniform upper-bounds on the number of nodes δ implying that each point of
Vδ(E(k)) is regular. We need before the following result.

Proposition 4.1. Let X ⊂ Pr be a smooth threefold, whose hyperplane bundle is
denoted by OX(1). Let E be a globally generated rank-two vector bundle on X and
take k > 0 such that OX(k) separates δ distinct given points Σ = {p1, . . . , pδ}, i.e.
the restriction map

(4.1) H0(X,OX(k))
ρk→ H0(OΣ),

is surjective. Thus, if [s] ∈ Vδ(E(k)) determines a nodal curve C in X such that
Sing(C) = Σ, then [s] ∈ Vδ(E(k)) is a regular point.

Proof. Since E is globally generated on X, the evaluation morphism

H0(X, E)⊗OX
ev→ E

is surjective. This means that, for each p ∈ X, there exist global sections s
(p)
1 , s

(p)
2 ∈

H0(X, E) such that

s
(p)
1 (p) = (1, 0), s

(p)
2 (p) = (0, 1) ∈ O⊕2

X,p.

Condition (4.1) means there exist global sections σ1, . . . , σδ ∈ H0(X,OX(k)) s. t.

σi(pj) = 0 ∈ Cδ, if i 6= j, and σi(pi) = (0, . . . ,
i−th
1 , . . . , 0), 1 ≤ i ≤ δ.

Therefore, from our hypotheses, it immediately follows that

H0(X, E(k)) →→ H0(O⊕2
Σ ) ∼= C2δ.

If we take P = PX(E(k)) π−→ X and if we consider, as in (3.4), (E(k))Σ :=
π∗(IΣ1/P ⊗OP(1), from diagram (3.9), we get

H0(E(k)) →→ H0(O⊕2
Σ ) ∼= C2δ

↓µ ↓
H0(OΣ)

∼=→ H0(OΣ) ∼= Cδ.
↓
0

thus µ is surjective. By (3.8) one can conclude. �

Remark 4.2. With the previous result, the regularity condition (3.8) translates into
the surjectivity of the restriction map ρk in (4.1), which is a natural restriction map
of line bundles on the threefold X.
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The following more general proposition gives an effective and uniform bound on
the number δ = |Σ|, in terms of the integer k, in order to have the surjectivity of
the map ρk.

Proposition 4.3. Let X be a smooth projective m-fold, L be a very ample line
bundle and k be a positive integer. Then, L⊗k separates any set Σ of δ distinct
point of X with δ ≤ k +1. In particular, the map ρk in (4.1) is surjective, for each
such Σ ⊂ X.

Proof. Since L is very ample on X, for every p1 6= p2 ∈ X, there exists a section
s1,2 ∈ H0(X, L) such that

s1,2(p1) = 1 and s1,2(p2) = 0.

If p3 ∈ X is such that p3 6= p1, p2, there exists s1,3 ∈ H0(X, L) such that

s1,3(p1) = 1 and s1,3(p3) = 0.

Then
σ := s1,2 ⊗ s1,3 ∈ H0(X, L⊗2)

is such that
σ(p1) = 1, σ(p2) = 0, σ(p3) = 0.

With analogous computations, it follows that L⊗2 separates three points of X.
Recursively, L⊗k separates k + 1 distinct points in X. �

Finally, we have the main result of this section.

Theorem 4.4. Let X ⊂ Pr be a smooth threefold, whose hyperplane bundle is
denoted by OX(1). Let E be a globally generated rank-two vector bundle on X,
k ≥ 0 and δ > 0 be integers. If

(4.2) δ ≤ k + 1,

then Vδ(E(k) is regular at each point.

Proof. If k = 0, then δ = 1; therefore, by the hypothesis on E , it follows that

H0(E) → H0(O⊕2
p )

is surjective, for each p ∈ X. This implies that V1(E) is regular at each point.
When k > 0, the statement follows from Theorem 3.1, Propositions 4.1, 4.3 and

from Remark 4.2. �

Remark 4.5. Observe that the bound (4.2) is uniform, i.e. it does not depend on the
postulation of nodes of the curves which are zero-loci of sections parametrized by
Vδ(E ⊗L⊗k). We remark that Theorem 4.4 generalizes what proved by Ballico and
Chiantini in [1] mainly because, by the characterization given in our Theorem 3.1,
our approach more generally holds for families of nodal curves on smooth projective
threefolds but also because, even in the case of X = P3, main subject of [1], our
result is effective and not asymptotic as Proposition 3.1 in [1]. Furthermore, Ballico
and Chiantini showed that in the asymptotical case, i.e. with k >> 0, the bound
δ ≤ k + 1 is almost sharp. Indeed, they constructed an example of a non regular
point [s] ∈ Vk+4(OP3(k +1)⊕OP3(k +4)) whose corresponding curve C has (k +2)
of the total (k + 4) nodes lying on a line L ⊂ P3; they also showed that, when
the points are moved so that they are no longer aligned, then such points impose
independent conditions to the sections in H0(P3,OP3(k +1)⊕OP3(k +4)). Thanks
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to Theorem 4.4, the same example works not only in the asymptotic case but for
each k > 0 proving the almost-sharpness of the bound (4.2).

In the next section, we also discuss some other examples of nodal curves on
smooth projective threefolds which determine non-regular points of some Vδ(E(k))
(see Remarks 5.10 and 5.24).

5. Regularity results via Seshadri constants and postulation of
nodes

As already observed in the previous section, given X ⊂ Pr a smooth threefold,
E a globally generated rank-two vector bundle on X and δ > 0, k ≥ 0 two integers,
Theorem 4.4 determines sufficient conditions in order that each point of the scheme
Vδ(E(k)) is regular, for every non-negative integer k. Using a local analysis, we can
determine some other regularity results which take into account the postulation of
nodes of the curves related to the elements parametrized by Vδ(E(k)). Precisely,
let [s] ∈ Vδ(E(k)), C = V (s) and denote by Σ = Sing(C) its set of nodes. Our aim
is to find some conditions on Σ which determine finer estimates on the admissible
number δ of nodes in order to get the regularity of the point [s] ∈ Vδ(E(k)).

Remark 5.1. By Proposition 4.1 and by Remark 4.2 a sufficient condition for the
regularity of [s] ∈ Vδ(E(k)) is to show

(5.1) h1(X, IΣ/X ⊗OX(k)) = 0.

Observe that, if ω∨X ⊗ OX(k) is a big and nef line bundle on X then, by the
Kawamata-Viehweg vanishing theorem, (5.1) is exactly equivalent to the regularity
of [s] ∈ Vδ(E(k)). In the sequel we will be concerned in finding some sufficient
conditions implying (5.1); we shall focus on the case when X is a Fano or a Calabi-
Yau threefold and, in particular, when X = P3.

First of all, we have to recall the following general definitions from [11], [12] and
[24].

Definition 5.2. Let L be a nef line bundle on an n-dimensional projective variety
Y . Let p ∈ Y and let b1 : Y1 → Y denote the blowing-up of Y at p. The Seshadri
constant of L at p, ε(L, p), is defined as

(5.2) ε(L, p) := Sup{ε ∈ R≥0| b∗1(L)− ε E is a nef R− divisor on Y1},
where E denotes the b1-exceptional divisor. Equivalently,

(5.3) ε(L, p) := Inf Γ⊂Y {
L · Γ

multp(Γ)
},

where the infimum is taken over all reduced and irreducible curves Γ ⊂ Y passing
through p.
More generally, if δ is an integer greater than 1 and if p1, . . . , pδ ∈ Y are δ distinct
points then, denoting by bδ : Yδ → Y the blowing-up of Y along the given points,
the multiple point Seshadri constant at p1, . . . , pδ is defined as
(5.4)

ε(L, p1, . . . , pδ) := Sup{ε ∈ R≥0| b∗δ(L)− ε Σδ
i=1Ei is a nef R− divisor on Yδ},

where Σδ
i=1Ei is the bδ-exceptional divisor. As before, one also has

(5.5) ε(L, p1, . . . , pδ) := Inf Γ⊂Y {
L · Γ

Σδ
i=1multpi(Γ)

},
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where the infimum is taken over all integral curves Γ ⊂ Y s.t. Γ∩{p1, . . . , pδ} 6= ∅.

Definition 5.3. Let Y be a projective variety of dimension n and δ ≥ 2 be a
positive integer. Let Y (δ) denote the δ-Cartesian product of Y minus the diagonals.
If (p1, . . . , pδ) ∈ Y (δ), the points p1, . . . , pδ are called general points of Y if
(p1, . . . , pδ) is outside a Zarisky closed subset of Y (δ) and very general points of Y
if (p1, . . . , pδ) is outside the union of countably many proper subvarieties of Y (δ).

Before stating our next result, we recall that from our assumptions in §2 (see
Definition 2.6 and above) the integer δ is always assumed to be δ ≤ h0(E(k))− 1.

Theorem 5.4. Let X ⊂ Pr be a smooth threefold such that deg(X) = d, ωX
∼=

OX(−m) for some integers d > 0 and m ≥ 0. Let E be a globally generated rank-
two vector bundle on X and let k ≥ 0 and δ > 0 be integers. Let [s] ∈ Vδ(E(k)),
C = V (s) and let Σ denote its set of nodes. Assume either
(i) k + m > 3, when δ = 1, or
(ii) Σ is a set of δ ≥ 2 very general points on X and

a) k + m > 6
3√

d
, when d < 8 and δ ≤ 5;

b) k+m > max{ 36
deg(C) ,

18
3√

25d
}, when d < 8 and 6 ≤ δ < min{h0(E(k)), 1

6 (k+

m)deg(C), δ
(k)
0 }, where δ

(k)
0 is a root of the polynomial Fk,m,d(δ) := 27δ3−

(k+m)3d(δ−1)2 such that Fk,m,d(δ) < 0 on the connected interval [6, δ
(k)
0 );

c) k + m > 3, when d ≥ 8 and δ ≤ d− 2;
d) k+m > max{ 6(d−2)

deg(C) ,
3(d−2)

3
√

d(d−2)2
} when d ≥ 8 and d−2 ≤ δ < min{h0(E(k)), 1

6 (k+

m)deg(C), δ
(k)
0 }, where δ

(k)
0 is a root of the polynomial Fk,m,d(δ) := 27δ3−

(k + m)3d(δ − 1)2 such that Fk,m,d(δ) < 0 on the connected interval [d −
2, δ

(k)
0 ).

Then, in each case, [s] is a regular point of Vδ(E(k)).

Proof. Let bδ : Yδ → X be the blowing-up of X along Σ. From our assumptions on
X and from Leray’s isomorphism, it follows that

H1(X, IΣ/X(k)) = H1(X, IΣ/X(k+m)⊗ωX) ∼= H1(Yδ, ωYδ
⊗OYδ

((k+m)b∗δ(H)−3B)),

where B =
∑δ

i=1 Ei is the bδ-exceptional divisor. Therefore, if (k+m)b∗δ(H)−3B is
a big and nef divisor, by the Kawamata-Viehweg vanishing theorem, H1(X, IΣ/X(k)) =
(0), which implies the regularity of [s] ∈ Vδ(E(k)) (see Remark 5.1).

Let ε = ε(OX(1),Σ) denote the multiple point Seshadri constant of the very
ample line bundle OX(1) at Σ; then

(k + m)b∗δ(H)− 3B =
3
ε
(b∗δ(H)− εB) + (k + m− 3

ε
)b∗δ(H).

Observe that the first summand in the right hand side is nef, by definition of ε,
whereas the second is big and nef as soon as ε > 3

k+m .
We want to show that our hypotheses imply that the Seshadri constant ε is

always greater than 3
k+m ; so the statement will be proved.

(i) If δ = 1, then ε = ε(OX(1), p) ≥ 1, for each p ∈ X, since OX(1) is very ample.
Therefore, since k + m > 3 implies 3

k+m < 1, we have h1(X, I{p}/X(k)) = 0, for
each p ∈ X.
(ii) For δ ≥ 2, we can consider Theorem 1.1 in [24]. For L a big and nef line bundle
on X, the author denotes by ε(L; δ) the Seshadri constant of L at very general δ
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points of X, whereas, by ε(L; 1) the Seshadri constant of L at a very general point
of X. In the threefold case with L = OX(1), Küchle’s result gives

(5.6) ε(OX(1); δ) ≥ M := min{ε(OX(1); 1),
3
√

d

2
,

3
√

d(δ − 1)2

δ
},

where ε(OX(1); 1) ≥ 1, since OX(1) is very ample. By assumption, Σ is a set of very
general points on X, thus ε = ε(OX(1); Σ) coincides with ε(OX(1); δ). Therefore,
to prove that ε > 3

k+m we reduce to showing that our numerical hypotheses imply

(5.7)
3

k + m
< M.

Observe that, when d ≥ 8 and δ ≤ d−3, we have M ≥ 1, since all the real numbers
in the brackets in (5.6) are greater than or equal to 1. Since k + m > 3, then (5.7)
trivially holds.
In the other cases, we find that:

• ε(OX(1); 1) is always greater than or equal to 1, since OX(1) is very ample;
•

3√
d

2 < 1 iff d < 8;

•
3
√

d(δ−1)2

δ < 1 if δ ≥ d− 2, when d ≥ 3, or if δ ≥ 2, when 1 ≤ d ≤ 2;

•
3
√

d(δ−1)2

δ <
3√

d
2 iff δ ≥ 6.

Therefore, considering all the above inequalities, we find that

M =


3√

d
2 if d < 8 and 2 ≤ δ ≤ 5,
3
√

d(δ−1)2

δ if either d ≥ 8 and δ ≥ d− 2
or d < 8 and δ ≥ 6.

In all these cases we have M < 1.
When M =

3√
d

2 , (5.7) holds as soon as k + m > 6
3√

d
. On the other hand, when

M =
3
√

d(δ−1)2

δ , we want

(5.8)
3

k + m
<

3
√

d(δ − 1)2

δ
.

Since this case occurs when d ≥ 8, δ ≥ d− 2 and when d < 8, δ ≥ 6, we impose

(5.9)
3(d− 2)

3
√

d(d− 3)2
< k + m, when d ≥ 8,

and

(5.10)
18

3
√

25d
< k + m, when d < 8.

Observe that (5.8) is equivalent to asking that the polynomials

Fk,m,d(δ) := 27δ3 − d(k + m)3(δ − 1)2

satisfy the inequalities Fk,m,d(δ) < 0. By (5.9) and (5.10), we have that

Fk,m,d(d− 2) < 0, when d ≥ 8,

Fk,m,d(6) < 0, when d < 8.
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Therefore each cubic polynomial Fk,m,d(δ) has (at least) one root which is greater
than d − 2, when d ≥ 8, and greater than 6, when d < 8, respectively. Denote by
δ
(k)
0 the root of Fk,m,d(δ) s.t.

Fk,m,d(δ) < 0, ∀ δ ∈ [d− 2, δ
(k)
0 ), when d ≥ 8,

Fk,m,d(δ) < 0, ∀ δ ∈ [6, δ
(k)
0 ), when d < 8,

respectively. Thus, in such ranges of values for δ, (5.7) automatically holds.
On the other hand, since [s] ∈ Vδ(E), then, C ⊂ X is an irreducible curve having

nodes at Σ; thus, by definition of multiple point Seshadri constant - see (5.5) - we
have deg(C)

multΣ(C) > 3
k+m , i.e. δ < 1

6 (k + m)deg(C). Therefore, when δ ≥ d − 2, we

have (k + m) > 6(d−2)
deg(C) , whereas δ ≥ 6 gives (k + m) > 36

deg(C) . �

When, in particular, X = P3 we can simplify the previous result.

Corollary 5.5. Let E be a globally generated rank-two vector bundle on P3. Denote
by ci the ith-Chern class of E. Let k and δ be integers such that k ≥ 0 and δ > 0. Let
[s] ∈ Vδ(E(k)) and let Σ denote the set of nodes of the curve C ⊂ P3 corresponding
to s. Assume that
(i) k ≥ 0, when δ = 1;
(ii) k ≥ 3, when:

a) δ = 2,
b) 3 ≤ δ ≤ 5 and Σ is a set of very general points in P3,
c) 3c1 + c2 + 4 > 0, Σ is a set of very general points in P3 and 6 ≤ δ <

min{h0(E(k)), 1
6 (k + 4)(k2 + c1k + c2), δ

(k)
0 }, where δ

(k)
0 is a positive root

of the polynomial Fk,(δ) := 27δ3 − (k + 4)3(δ − 1)2 such that Fk(δ) < 0 on
the connected interval [6, δ

(k)
0 ).

Then, in each case, [s] is a regular point of Vδ(E(k)).

Proof. As in the proof of Theorem 5.4, it suffices to show that the multiple point
Seshadri constant ε := ε(OX(1); Σ) > 3

k+4 .
If δ = 1, ε = ε(OX(1); p) = 1 for each p ∈ P3, since there exist lines in P3. Thus,
for each k ≥ 0 we have ε > 3

k+4 ;
If δ = 2, then ε = ε(OX(1); p1, p2) ≥ 1

2 for (p1, p2) ∈ (P3)(2) (as in Definition 5.3),
since for all p1 6= p2 there exists the line Lp1,p2 =< p1, p2 >. Therefore, if k ≥ 3,
ε > 3

k+4 ;
For δ ≥ 3 we can use the same procedure of Theorem 5.4 observing that ε(OX(1); Σ) =

ε(OX(1); δ), by assumption on Σ, and that ε(OX(1), δ) ≥ M := min{1, 1
2 ,

3
√

(δ−1)2

δ }.
�

Remark 5.6. Observe that the polynomials Fk(δ) in Corollary 5.5 asymptotically
give the upper-bounds δ < (k+4)3

27 (equivalently k > 3 3
√

δ − 4 ). Therefore, we have
a cubic polynomial in the indeterminate k which bounds the admissible number
of nodes of C. The same occurs with the inequalities δ < h0(X, E(k)) and δ <
1
6 (k +4)(k2 + c1k + c2). Similar situation for the polynomials Fk,m,d(δ) in Theorem
5.4. Therefore, we have cubic upper-bounds on k for δ to get regularity results
for the point [s] ∈ Vδ(E(k)). This depends on the fact that the computations are
related to Seshadri constants of very ample line bundles at very general points on
a 3-dimensional variety.
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Remark 5.7. At this point, on the one hand we have Theorem 4.4 which gives
uniform bounds on the admissible number δ of nodes in order that each point of
the Severi variety Vδ(E(k)) on a threefold X is regular; morover, these uniform
upper-bounds only depend on the number of nodes and not on their configurations
in X. On the other hand, Theorem 5.4 determines sufficient conditions for the
regularity of a point [s] ∈ Vδ(E(k)), having assumed that the nodes of C = V (s)
are in very general position on X. Therefore, there are intermidiate cases which are
very interesting to study. Precisely, if [s] ∈ Vδ(E(k)), we want to find conditions
for its regularity assuming that a (not necessarily proper) subset of the nodes of C
lies on a proper subscheme of X.

Given X ⊂ Pr a smooth threefold, E a globally generated rank-two vector bundle
on X and k and δ positive integers, consider [s] ∈ Vδ(E(k)). From now on, C will
denote the irreducible curve determined by s, whose set of nodes is Σ = Sing(C),
as well as Σ0 ⊆ Σ will denote a (not necessarily proper) subset of nodes of C.

Proposition 5.8. Let X ⊂ Pr be a smooth threefold and let H denote its hyperplane
section. Let Sa ⊂ X be an irreducible divisor such that Sa ∼ aH on X, for some
positive integer a. Let [s] ∈ Vδ(E(k)), C = V (s) and assume that Σ0 ⊂ Σ =
Sing(C) lies on Sa \ Sing(Sa). Assume also that

h1(X,OX(k − a)) = h1(X,OX(k)) = h2(X,OX(k − a)) = 0

(e.g, when X is arithmetically Cohen-Macaulay). Then, if Σ0 does not impose
independent conditions to the complete linear system in |OSa

(k)| on Sa, [s] cannot
be a regular point for Vδ(E(k)).

Proof. Since Sa ∼ aH on X, we have the ideal sequence

(5.11) 0 → OX(k − a) → IΣ0/X(k) → IΣ0/Sa
(k) → 0.

Therefore, by the hypotheses on X, H1(X, IΣ0/X(k)) ∼= H1(Sa, IΣ0/Sa
(k)) which

implies the statement. �

In particular,

Corollary 5.9. Let Sa ⊂ P3 be an irreducible (not necessarily smooth) surface of
degree a. Let [s] ∈ Vδ(E(k)), C = V (s) and assume that Σ0 ⊆ Σ = Sing(C) is such
that Σ0 ⊂ Sa \ Sing(Sa). Then, if Σ0 does not impose independent conditions to
the complete linear system |OSa

(k)| on Sa, [s] is not a regular point for Vδ(E(k)).

Remark 5.10. Observe that, with Proposition 5.8 and Corollary 5.9, one can easily
construct many examples of non-regular points [s] ∈ Vδ(E(k)), corresponding to
nodal curves on a smooth projective threefold X, by translating the problem to
linear systems on surfaces S ⊂ X not separating a given set of smooth points in S.

On the other hand, one can also find some conditions on δ0 = |Σ0| ensuring that,
if [s] ∈ Vδ(E(k)) is not regular, the failure of the regularity property depends on
the behaviour of the nodes in Σ \ Σ0. Indeed, since Σ0 ⊆ Σ, we have

(5.12) 0 → IΣ/X(k) → IΣ0/X(k) → OΣ\Σ0(k) → 0.

Taking X as in Proposition 5.8 and assuming that h1(Sa,OSa(k)) = 0 (e.g, for
X = P3), then if we have some conditions implying that |OSa(k)| separates Σ0 on
Sa, by (5.12) we have

H0(OΣ\Σ0(k)) →→ H1(IΣ/X(k)).
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Therefore, a possibly non-zero element in H1(X, IΣ/X(k)) is induced by an element
in H0(OΣ\Σ0(k)).

To get some effective results, we can use several approaches. First of all, we
want to consider the case when Sa ⊂ X is a smooth irreducible divisor in X, which
is linearly equivalent to aH on X. As in Theorem 5.4, our aim is to show that if
Σ0 ⊂ Sa is a set of very general points on Sa, then we get a quadratic upper-bound
on k for the admissible number δ0 = |Σ0| in order that the complete linear system
|OSa(k)| separates Σ0 on Sa.

Proposition 5.11. Let X ⊂ Pr be a smooth threefold of degree d and let H denote
its hyperplane section. Assume that ωX

∼= OX(−m), for some integer m ≥ 0. Let
Sa be a smooth irreducible divisor such that Sa ∼ aH on X, for some positive
integer a. Denote by HSa

the hyperplane section of Sa ⊂ Pr. Let Σ0 ⊂ Sa be a set
of δ0 distinct points on Sa. Given k a non-negative integer, assume that:
(i) k + m > a + 2, when either

a) δ0 = 1, or

b) ad ≥ 4 and 2 ≤ δ0 <
ad+

√
ad(ad−4)

2 ,

(ii) k + m > a + 4√
ad

, when either

a) ad < 4 and 2 ≤ δ0 <
(k+m−a)2+

√
(k+m−a)2ad((k+m−a)2ad−16)

8 , or

b) ad ≥ 4 and ad+
√

ad(ad−4)

2 ≤ δ0 <
(k+m−a)2+

√
(k+m−a)2ad((k+m−a)2ad−16)

8 .
Then,

(5.13) h1(Sa, IΣ0/Sa
(k)) = 0.

Proof. Let bδ0 : S̃a → Sa be the blowing-up of Sa along Σ. Then

H1(Sa, IΣ0/Sa
(k)) = H1(Sa, IΣ0/Sa

(k + m− a)⊗ ωSa
) ∼=

H1(S̃a, ωS̃a
⊗OS̃a

((k + m− a)b∗δ0
(HSa)− 2B)) (∗),

where B =
∑δ0

j=1 Ej is the bδ0-exceptional divisor. Let ε̃ = ε(OSa
(1),Σ0) be the

multiple point Seshadri constant of OSa
(1) at Σ0, then

(k + m− a)b∗δ0
(HSa)− 2B =

2
ε̃
(b∗δ0

(HSa)− ε̃B) + (k + m− a− 2
ε̃
)b∗δ0

(HSa).

Therefore, if ε̃ > 2
k+m−a (with a 6= k + m) by the Kawamata-Viehweg vanishing

theorem we get the desired vanishing in (∗).
If δ0 = 1, then ε(OSa

(1); p) ≥ 1 for each p ∈ Sa, since OSa
(1) is very ample.

Therefore, if k + m > a + 2, the vanishing in (∗) holds.
If δ0 ≥ 2, by Theorem 1.1 in [24], if ε(OSa(1); δ0) denotes the multiple point Seshadri
constant of OSa(1) at δ0 very general points of Sa, then

ε(OSa
(1); δ0) ≥ M := min{ε(OSa

(1); 1),

√
ad

2
,

√
ad(δ0 − 1)

δ0
}.

By straightforward computations, if Σ0 ⊂ Sa is a set of δ0 very general points on
Sa and if our numerical hypotheses hold, then the vanishing in (∗) holds. �

As a consequence of Proposition 5.8, Remark 5.10 and Proposition 5.11, we have
the following:
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Theorem 5.12. Let X ⊂ Pr be a smooth threefold of degree d and let OX(1) denote
its hyperplane bundle. Assume that ωX

∼= OX(−m), for some m ≥ 0. Let Sa be a
smooth irreducible divisor on X, such that Sa ∈ |OX(a)| on X, for some a > 0. Let
[s] ∈ Vδ(E(k)), where E is a globally generated rank-two vector bundle on X and δ
and k two positive integers. If C = V (s) and if Σ = Sing(C), assume that Σ0 ⊆ Σ
lies on Sa. Assume further that

H1(X,OX(k − a)) = H1(X,OX(k)) = H2(X,OX(k − a)) = (0)

and that the numerical hypotheses in Proposition 5.11 hold. Then, if [s] ∈ Vδ(E(k))
is not a regular point, the failure of the regularity property depends on the points in
Σ \ Σ0.
In particular, if Σ = Σ0, [s] ∈ Vδ(E(k)) is a regular point.

Proof. From our assumptions, by Proposition 5.8 we get that

H1(X, IΣ0/X(k)) ∼= H1(X, IΣ0/Sa
(k)).

Now, from Proposition 5.11 and from the exact sequence (5.12), it follows that

H0(OΣ\Σ0(k)) →→ H1(X, IΣ/X(k)),

i.e. if there exists a non-zero obstruction, it is induced by an element in H0(OΣ\Σ0(k)).
�

When X = P3, the above result reduces to:

Corollary 5.13. Let E be a globally generated rank-two vector bundle on P3 and let
k and δ be positive integers. Let [s] ∈ Vδ(E(k)) and let C = V (s) with Σ = Sing(C).
Assume that Σ0 ⊆ Σ lies on a smooth surface Sa of degree a and let δ0 be the
cardinality of Σ0. Assume that the points in Σ0 are in very general position on Sa

and that the following conditions hold:
(i) k > a− 2, when either

a) a ≥ 1 and δ0 = 1, or

b) a ≥ 4 and 2 ≤ δ0 <
a+
√

a(a−4)

2 ,

(ii) k > a− 4 + 4√
a
, when either

a) a < 4 and 2 ≤ δ0 <
(k+4−a)2a+

√
(k+4−a)2a((k+4−a)2a−16)

8 , or

b) a ≥ 4 and a+
√

a(a−4)

2 ≤ δ0 <
(k+4−a)2a+

√
(k+4−a)2a((k+4−a)2a−16)

8 .
Then, H1(P3, IΣ0/P3(k)) = (0). In particular, if [s] ∈ Vδ(E(k)) fails to be a regular
point, the failure of the regularity property depends on the nodes in Σ \ Σ0. In
particular, if Σ = Σ0, [s] ∈ Vδ(E(k)) is a regular point.

Since we are interested in very general points, we can generalize the previous
approach by assuming that Sa = S is not necessarily smooth. Indeed in general, if
µ : S̃ → S denotes a resolution of singularities for S, given L a Weil divisor on S,
we have

(5.14) ε(L;µ(p1), · · · , µ(pδ)) = ε(µ∗(L); p1, . . . , pδ),

since around the pi’s µ is an isomorphism. Therefore, we can more generally con-
sider S to be a normal surface with sufficiently mild singularities.

For simplicity, we shall discuss the case of S ⊂ P3 of degree a; the case S ⊂ X ⊂
Pr, where X a smooth threefold, is a straightforward generalization.
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Theorem 5.14. Let S ⊂ P3 be an irreducible surface of degree a having at worst
log-terminal singularities and denote by H the hyperplane section of S. Suppose
that KS is a Q-Cartier divisor of index r, such that rKS ≡ αH, for some α ∈ N.
Let E be a globally generated rank-two vector bundle on P3, k a positive integer and
let [s] ∈ Vδ(E(k)). Let C = V (s) and let Σ = Sing(C). Assume that Σ0 ⊆ Σ is a
set of very general points in S. Assume further that
(i) k > 2 + α

r , when either
a) a ≥ 1 and δ0 = 1, or

b) a > 4 and 2 ≤ δ0 <
a+
√

a(a−4)

2 ,

(ii) k > 4√
a

+ α
r , when a ≤ 4 and δ0 = 2,

(iii) k > 4r√
a

+ α
r , when either

a) a ≤ 4 and 3 ≤ δ0 <
a(rk−α)2+

√
a(rk−α)2((a(rk−α)2−16r2)

8r2 , or

b) a > 4 and a+
√

a(a−4)

2 ≤ δ0 <
a(rk−α)2+

√
a(rk−α)2((a(rk−α)2−16r2)

8r2 .
Then, if [s] ∈ Vδ(E(k)) is not a regular point, the failure of the regularity property
depends on the nodes in Σ\Σ0. In particular, if Σ = Σ0, [s] ∈ Vδ(E(k)) is a regular
point.

Proof. Let µ : Y → S be a log-resolution of the pair (S, 0) (see § 1). Then

KY + ∆ ≡ µ∗(KS) + P,

where ∆ is a boundary divisor and P is an integral, effective and µ-exceptional
divisor on Y . Since Σ0 ⊂ S is a set of very general point on S, then µ∗(Σ0) =
Σ′

0
∼= Σ0 is a set of very general points on Y . Let bδ0 : Ỹ → Y be the blowing-up

of Y along Σ′
0 and denote by Fδ0 : Ỹ → S the composition Fδ0 = bδ0 ◦ µ. Since, by

hypothesis, rKS ≡ αH then

h1(S, IΣ0/S(k)) = h1(S, IΣ0/S((k − α
r )H + KS))

= h1(Y, IΣ′
0/Y ⊗OY (((k − α

r )µ∗(H) + KY + ∆)))
= h1(Ỹ ,OỸ (KỸ + b∗δ0

(∆) + (k − α
r )F ∗

δ0
(H)− 2B)),

where B =
∑δ0

i=1 Ei is the bδ0-exceptional divisor. Since, by (5.14), ε = ε(µ∗(OS(1)),Σ′
0) =

ε(OS(1),Σ0), then

(k − α

r
)F ∗

δ0
(H)− 2B = (k − α

r
− 2

ε
)F ∗

δ0
(H) +

2
ε
(F ∗

δ0
(H)− εB)

is big and nef if k − α
r > 2

ε , i.e. if ε > 2r
rk−α . At this point, we can apply the same

computations as in Proposition 5.11 and in Theorem 5.12. �

Remark 5.15. As observed in Remark 5.6 for sets of points in very general position
on a threefold, from Corollary 5.13 and Theorem 5.14 we see that, when Σ0 = Σ
is assumed to be a set of very general points lying on a smooth surface in P3 or
on a normal surface with at worst log-terminal singularities, there are some upper-
bounds on the number of admissible points in Σ such that an element [s] ∈ Vδ(E(k)),
whose zero-locus C has nodes at Σ, is a regular point. Such upper-bounds are
quadratic polynomials in k; this reflects the fact that Σ is assumed to be a set of very
general points lying on a 2-dimensional subscheme. Indeed, all the computations
are related to multiple point Seshadri constants of very ample line bundles on such
schemes.
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Looking back at Proposition 5.11, at Theorem 5.14 and at Corollary 5.13, we
want to study how the upper-bounds on δ0 = |Σ0| vary when we drop the hypothesis
that Σ0 is a set of very general points on S. To get some effective results, we can
apply the techniques in [3], for smooth surfaces, and their generalizations in [23],
for normal surfaces. These techniques are both generalizations of Reider’s theorem
(see [31]).
We first recall some standard and useful definitions (see (0.1) in [3]).

Definition 5.16. Let S be a smooth projective surface. A line bundle L on S is
said to be k-very ample, k ≥ 0, if the restriction map

H0(S, L) → H0(Z,OZ(L))

is surjective for any Z ∈ Hilbk+1(S).

As an immediate consequence of the definition, we have the following general-
ization of Proposition 4.3 to the surface case.

Lemma 5.17. If L1, · · · , Lk are very ample line bundles on S, L1 ⊗ · · · ⊗ Lk is
k-very ample.

Proof. See Lemma 0.1.1 in [3]. �

Corollary 5.18. Let X ⊂ Pr be a smooth threefold and let OX(1) denote its
hyperplane bundle. Let E be a globally generated rank-two vector bundle on X and
let [s] ∈ Vδ(E(k)), where k and δ are positive integers. Let C = V (s), Σ = Sing(C)
and assume that Σ0 ⊆ Σ lies on a smooth divisor S ⊂ X, whose hyperplane section
is denoted by HS. Assume further that

h1(X,OX(k)) = h1(X, IS/X(k)) = h2(X, IS/X(k)) = 0.

Then, if δ0 ≤ k+1, we have h1(X, IΣ0/X(k)) = 0. Therefore, if [s] ∈ Vδ(E(k)) fails
to be a regular point, the failure of the regularity property depends on the nodes in
Σ \ Σ0. In particular, if Σ = Σ0, then [s] ∈ Vδ(E(k)) is regular.

Proof. Since OS(kHS) = OS(HS)⊗k and since OS(HS) is very ample on S, then
OS(kHS) is (δ0 − 1)-very ample if k ≥ δ0 − 1. One concludes by using Proposition
5.8 and Remark 5.10. �

Remark 5.19. Observe that, since there is no assumption on the postulation of
points in Σ0, we refind a uniform and linear upper-bound on δ0 as we determined
in Proposition 4.3 and in Theorem 4.4 for Σ ⊂ X, where X a smooth, projective
threefold.

Proposition 5.20. Let X ⊂ Pr be a smooth threefold of degree d and let OX(1)
denote its hyperplane bundle. Assume that ωX

∼= OX(−m) for some non-negative
integer m. Let E be a globally generated rank-two vector bundle on X, k and δ be
positive integers and [s] ∈ Vδ(E(k)). Let C = V (s), Σ = Sing(C) and assume that
Σ0 ⊆ Σ lies on a smooth irreducible divisor S ∼ aH on X. Denote by HS the
hyperplane section of S. Assume further that

(∗) h1(X,OX(k − a)) = h1(X,OX(k)) = h2(X,OX(k − a)) = 0.

If k+m > a and if δ0 ≤ k+m−a
2 deg(D), for each curve D on S, then h1(X, IΣ0/X(k)) =

0.
If, in particular, NS(S) ∼= Z[HS ], then h1(X, IΣ0/X(k)) = 0 when δ0 ≤ ad(k+m−a)

2 .
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Therefore, if [s] ∈ Vδ(E(k)) fails to be a regular point, the failure of the regularity
property depends on the behaviour of the nodes in Σ \Σ0. In particular, if Σ = Σ0,
then [s] ∈ Vδ(E(k)) is a regular point.

Proof. Consider L = OS(kHS −KS) = OS(k + m− a). Since k + m > a, L is very
ample on S and LD = (k +m− a)deg(D), for each curve D on S. By Theorem 2.1
and Corollary 2.3 in [3], if δ0 ≤ k+m−a

2 deg(D), then

H0(S,OS(k)) = H0(S,OS(KS + L)) →→ H0(OΣ0),

for Σ0 ∈ Hilbδ0(S). Since L is very ample on S, by the Kodaira vanishing and by
the surjectivity above, we have that h1(S, IΣ0/S(k)) = 0. From our assumption (∗),
it follows that h1(X, IΣ0/X(k)) = 0. �

Remark 5.21. Observe that Proposition 5.20 applies, in particular, to general sur-
faces in P3 of degree a ≥ 4.

By adapting the procedure of Theorem 3 in [23] to our situation, one can easily
extends to the case of S a normal surface and prove analogous results. For brevity
sake, the interested reader is referred to [23].

We conclude this section by studying the case when, given [s] ∈ Vδ(E(k)) and
C = V (s), some nodes of C are assumed to be on a given curve Γ ⊂ X. As
expected, we find some linear bounds in k for the number of admissible nodes of C
lying on Γ in order that OX(k) separates such points on Γ. Precisely, we have:

Theorem 5.22. Let X ⊂ Pr be a smooth threefold of degree d and let OX(1)
denote its hyperplane bundle. Let E be a globally generated rank-two vector bundle
on X, k and δ be positive integers. Consider [s] ∈ Vδ(E(k)) and let C = V (s).
Take Σ0 ⊆ Σ = Sing(C), |Σ0| = δ0, a (not necessarily proper) subset of its nodes.
Assume that Σ0 lies on a local complete intersection curve Γ ⊂ X such that its
dualizing sheaf is ωΓ

∼= OΓ(e), for some e ∈ Z. Assume that:
(i) k > e,
(ii) h1(X, IΓ/X(k)) = 0, and
(iii) δ0 < deg(OΓ(k − e)).
Then h1(X, IΣ0/X(k)) = 0. Therefore, if [s] ∈ Vδ(E(k)) fails to be a regular point,
the failure depends on the behaviour of the nodes in Σ\Σ0. In particular, if Σ = Σ0,
then [s] ∈ Vδ(E(k)) is a regular point.

Proof. Consider the ideal sequence

0 → IΓ/X(k) → IΣ0/X(k) → IΣ0/Γ(k) → 0.

Since h1(X, IΓ/X(k)) = 0, then

h1(IΣ0/X(k)) ↪→ h1(IΣ0/Γ(k)).

A sufficient condition will be therefore the vanishing h1(IΣ0/Γ(k)) = 0. As in [16],
consider that H1(IΣ0/Γ(k))∨ ∼= Hom(IΣ0/Γ(k)), ωΓ).

Assume, by contradiction, that h1(X, IΣ0/X(k)) 6= 0; then a non zero-element
corresponds to a non-zero sheaf morphism

IΣ0/Γ(k)
ϕ→ ωΓ.

Since IΣ0/Γ(k) ⊂ OΓ(k) is a torsion-free (but not locally free) sheaf on Γ of rank
one, ϕ is an injective sheaf morphism. Thus,

0 → IΣ0/Γ(k) → ωΓ → t → 0,
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where t is a torsion sheaf on Γ. Therefore, if χ(−) denotes the Euler characteristic,

0 ≤ χ(t) = χ(ωΓ)− χ(IΣ0/Γ(k)) = pa(Γ)− 1− χ(OΓ(k)) + δ0,

i.e. δ0 ≥ h0(OΓ(k))− pa(Γ) + 1 = deg(OΓ(k − e)) > 0, since k > e by assumption.
Therefore, if h1(IΣ0/Γ(k)) 6= 0, δ0 must be greater than or equal to deg(OΓ(k− e)),
which contradicts our hypotheses. �

Corollary 5.23. Let E be a globally generated rank-two vector bundle on P3, k
and δ be positive integers. Consider [s] ∈ Vδ(E(k)) and let C = V (s). Take Σ0 ⊆
Σ = Sing(C) a subset of the nodes of C s.t |Σ0| = δ0. Assume that Σ0 lies on a
complete intersection curve Γb ⊂ P3 of degree b such that ωΓb

∼= OΓb
(e), for some

e ∈ Z. Assume that k > e and that δ0 < b(k − e). Then h1(X, IΣ0/P3(k)) = 0.
Therefore, if [s] ∈ Vδ(E(k)) fails to be a regular point, the failure depends on the
behaviour of the nodes in Σ \Σ0. In particular, if Σ = Σ0, then [s] ∈ Vδ(E(k)) is a
regular point.

Proof. Since Γb is a complete intersection, then h1(IΓ/P3(k)) = 0, for each k. More-
over, deg(OΓb

(k − e)) = b(k − e). �

Remark 5.24. Observe that, with Theorem 5.22 and Corollary 5.23, one can very
easily construct several examples of curves on a threefold X or, more specifically,
in P3 which correspond to non-regular points of Vδ(E(k)), proving the almost-
sharpness of our bounds. For example, Corollary 5.23 gives a complete general-
ization of Example 3.2 in [1]. The authors considered E = OP3(1) ⊕ OP3(4) and
δ = k +4, with k >> 0; they constructed a curve C ⊂ P3, corresponding to a point
[s] ∈ Vk+4(E(k)), with a subset Σ0 ⊂ Σ = Sing(C) of k + 2 of its nodes lying on a
line L and they showed that [s] is not a regular point of Vδ(E(k)). Such an example
is a particular case of our result since, in order to have the regularity of [s], we
showed that a necessary condition is to impose that the number of nodes lying on
L must be δ0 < 1(k − (−2)) = k + 2. Observe also that our Corollary 5.23 holds
not only for k >> 0 but for each k > 0 and, furthermore, that we can substitute
the line L with any other complete intesection curve in P3.

6. Some geometric properties of space curves parametrized by
Vδ(E(k))

From now on, we shall consider only curves in P3. Let [s0] ∈ Vδ(E(k)), where E
is a globally generated rank-two vector bundle on P3 and where k and δ are positive
integers. Let C = V (s0) ⊂ P3 and let Σ denote the set of nodes of C.

The aim of this section is to study some interesting geometric properties of the
curves determined by elements in Vδ(E(k)). Precisely, given an integer h > 0, we
can consider smooth curves Γh ⊂ P3, which are defined as zero-loci of suitable
global sections sh ∈ H0(P3, E(k + h)); then, we want to study geometric properties
of the pairs (C,Γh), h ∈ N, expecially from the liaison relation point of view. From
Rao’s paper ([30]), we know that C and Γh lie in the same liaison class, for each
h > 0. Indeed, since such curves correspond to global sections of twists of the
same vector bundle E , by the Koszul exact sequences in P3, their Rao’s modules
are isomorphic up to the shift of h, i.e.

(6.1) M(C) =
⊕

t

H1(C, IC/P3(t)) ∼=
⊕

t

H1(Γh, IC/P3(h + t)) = M(Γh).

One can be more precise by recalling the following terminology.
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Definition 6.1. (see Def. 1.1 in [30]) Let V1, V2 ⊂ P3 be two subschemes which
are locally Cohen-Macaulay and equidimensional of codimensione two. Denote by
∼l the relation of (algebraic) linkage in P3. Then V1 and V2 are in the same even
liaison class if

V1 ∼l Z1 ∼l · · · ∼l Z2k+1 ∼l V2,

for some schemes Zi ⊂ P3. In such a case, V1 and V2 are said to be evenly linked.
The resulting equivalence relation is called biliaison.

By (6.1) and by Lemma 1.6 in [30], we immediately observe that the curves C
and Γh lie in the same biliaison class, apart from some particular cases. Indeed,
since C and Γh are both subcanonical curves in P3, it may happen that C and
Γh are directly (so oddly) linked in P3 (see [5]). However, when this last situation
occurs, there are strong restrictions not only on the vector bundle E but also on
the numerical characters of Γh (degree, genus and postulation); precisely, one has
at most three possible cases for Γh (for details, the reader is referred to the original
paper [5]).

Here we are interested in analyzing the geometric properties that C and Γh share,
for each h > 0, particularly towards the biliaison relation between C and Γh (i.e.
with general choices of E and Γh).
By recalling Remark 2.2, a first result is the following.

Theorem 6.2. Let E be a globally generated rank-two vector bundle on P3 and
denote by ci the ith-Chern class of E, 1 ≤ i ≤ 2. Let k and δ be positive integers
and let [s0] ∈ Vδ(E(k)) be a regular point corresponding to an irreducible, nodal
curve C ⊂ P3, whose set of nodes is denoted by Σ. Take h ≥ 1 an integer such that

(6.2) k + h ≥ c1 ∈ Z.

Then, there always exist:
(i) a smooth, irreducible curve Γh ⊂ P3 simply passing through Σ and such that

Γh = V (sh), where [sh] ∈ P(H0(E(k + h)),
(ii) a normal surface Sk,h ⊂ P3 of degree dk,h = c1 + 2k + h containing both C

and Γh.

Proof. As in Theorem 3.1, we consider the smooth projective fourfold P = PP3(E(k)),
together with the surjective morphism π : P → P3 and with the tautological line
bundle OP(1). Thus the curve C, which is the zero-locus of the global section
s0 ∈ H0(E(k)), corresponds to an effective divisor D0 ∈ |OP(1)|.
(i) Given h > 0, we first want to construct a section sh ∈ H0(E(k + h)), which
corresponds to a divisor Dh ∈ |OP(1) ⊗ π∗(OP3(h))| simply vanishing along the
lines of the scheme L =

⋃δ
i=1 Li := π−1(Σ). Such a divisor will correspond to the

curve Γh we want to determine.
Recall that the divisor D0 corresponding to C is singular having δ rational double

points at Σ1 ⊂ L, where Σ1 ∼= Σ (see the proof of Theorem 3.1). Assume for a
moment that the sheaf

(6.3) IL/P ⊗OP(1)⊗ π∗(OP3(h))

is globally generated on P (we shall show this fact later on in this proof); thus,
the scheme L coincides with the base locus of the linear system |IL/P ⊗ OP(1) ⊗
π∗(OP3(h))|. Since H0(E(k)) ↪→ H0(E(k + h)), for a general σ ∈ H0(OP3(h)) the
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global section s0⊗σ ∈ H0(E(k+h)) behaves as s0 around the points in Σ; moreover,
since π∗(OP(1)⊗ π∗(OP3(h))) ∼= E(k + h), if

B := Base scheme(|IL/P ⊗OP(1)⊗ π∗(OP3(h))|)
then L = B as schemes, which means that each line Li is reduced in B.

We want to show that the general element of |IL/P ⊗ OP(1) ⊗ π∗(OP3(h))| is
smooth along L. Denote by Dh the general divisor of |IL/P ⊗OP(1)⊗π∗(OP3(h))|;
since we assumed that the sheaf in (6.3) is globally generated, then

N∨
L/Dh

⊗OP(Dh) ∼=
IL/P

I2
L/P

⊗OP(1)⊗ π∗(OP3(h))

is globally generated. Since we have L ⊂ Dh ⊂ P, we get

(6.4) 0 → ODh
∼= N∨

Dh/P⊗OP(Dh) → N∨
L/P⊗OP(Dh) → N∨

L/Dh
⊗OP(Dh) → 0.

Fix L = Li0 ⊂ L, for some 1 ≤ i0 ≤ δ, and restrict (6.4) to L; therefore we have

(6.5) OL → N∨
L/P ⊗OL(Dh) → N∨

L/Dh
⊗OL(Dh) → 0.

Since N∨
L/P ⊗OL(Dh) is a globally generated rank-three vector bundle on the line

L, there exists a global section nowhere vanishing on L; this implies that (6.5) is
exact and that N∨

L/P ⊗OL(Dh) is locally free on L. So it is N∨
L/P |L. Since we have

L ⊂ L ⊂ Dh, then also N∨
L/Dh

is locally free. Therefore, since L is smooth in P,
we have

0
↓

N∨
Dh/P |L → Ω1

P|D|L
→ Ω1

Dh
|L → 0

↓ || ↓α

0 → N∨
L/P → Ω1

P|L → Ω1
L
∼= OP1(−2) → 0

↓ ↓ ↓
N∨

L/Dh
0 0

↓
0

By the Snake lemma, ker(α) ∼= N∨
L/Dh

is locally free on L. This implies that
Ω1

Dh
|L is locally free on L, i.e. the general element of |IL/P ⊗OP(1)⊗ π∗(OP3(h))|

is smooth on L.
To complete the proof, we only have to show that the sheaf in (6.3) is actually

globally generated on P. Observe that IL/P ⊗ OP(1) ⊗ π∗(OP3(h)) is globally
generated iff IΣ/P3⊗E(k+h) is globally generated on P3. Since a sufficient condition
for the global generation of IΣ/P3 ⊗ E(k + h) is its 0-regularity as a sheaf on P3,
observe that IΣ/P3 ⊗ E(k + h) is 0-regular iff
(6.6)
h1(IΣ/P3 ⊗E(k +h−1)) = h2(IΣ/P3 ⊗E(k +h−2)) = h3(IΣ/P3 ⊗E(k +h−3)) = 0.

From the Griffiths vanishing result (see [34], page 107), it follows that

(6.7) h1(E(k + h− 1)) = h2(E(k + h− 2)) = h3(E(k + h− 3)) = 0,

since E is globally generated and since k + h ≥ c1 = det(E) by assumption. There-
fore, from the exact sequence

0 → IΣ/P3 ⊗ E(k + h) → E(k + h) → E(k + h)|Σ → 0
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and from (6.7), the last two equalities in (6.6) hold. It only remains to show that
h1(IΣ/P3 ⊗ E(k + h− 1)) = 0. To this aim, take

0 → H0(IΣ/P3 ⊗ E(k + h− 1)) → H0(E(k + h− 1))
αk+h−1−→

H0(E(k + h− 1)|Σ) → H1(IΣ/P3 ⊗ E(k + h− 1)) → 0.

Since [s0] ∈ Vδ(E(k)) is regular by assumption,

H0(E(k)) αk−→ H0(E(k)|Σ)

is surjective; therefore, αk+h−1 is surjective since h ≥ 1, i.e. H1(IΣ/P3 ⊗ E(k + h−
1)) = (0).
(ii) After having constructed the curve Γh, which corresponds to the general element
of |IL/P ⊗OP(1)⊗π∗(OP3(h))|, take sh ∈ H0(E(k +h)) such that Γh = V (sh). We
can consider the rank-two vector bundle morphism

τ = (s0, sh) : OP3 ⊕OP3(−h) → E(k),

where s0 ∈ H0(E(k)) is such that C = V (s0). The degeneration locus of the
morphism τ is a surface Sk,h = V (det(τ)), where det(τ) ∈ H0(P3, det(E)⊗OP3(2k+
h)). Therefore, Sk,h is a surface of degree dk,h = c1 + 2k + h containing both
C = V (s0) and Γh = V (sh). Its singular locus is determined by the condition
rank(τ) < 1; therefore, by the construction of Γh in (i), we immediately observe
that Σ ⊆ Supp(C ∩ Γh) = Sing(Sk,h). �

For each k and h as in (6.2), the surface Sk,h constructed in Theorem 6.2 is the
most ”natural” surface in P3 containing both curves C and Γh. One can very easily
deduce some biliaison properties of C and Γh on Sk,h. We first recall the following
more general definition from [21].

Definition 6.3. Let V1, V2 be schemes of equidimension one without embedded
components which are evenly linked in P3. V2 is said to be obtained from V1 by an
elementary biliaison of height h, for some h ∈ Z, if there exists a surface S ⊂ P3

containing V1 and V2 such that V2 ∼ V1 + hH as generalized divisor on S, where
H is the plane section of S. This is equivalent to saying there exist surfaces T1, of
degree t1 containing V1, and T2, of degree t2 containing V2, such that t2 = t1 + h
and the scheme W1 linked to V1 by T1 ∩ S is equal to the scheme W2 linked to V2

by T2 ∩ S (see Proposition 4.3 (b) in [21] or [26] pg. 276)

Thus, we can state the following:

Proposition 6.4. Let [s0] ∈ Vδ(E(k)) be a regular point, with E a non-splitting,
globally generated rank-two vector bundle on P3 and with k and δ positive integers.
Let C = V (s0) and Σ = Sing(C). Then, for each integer h ≥ 1 as in (6.2), each
curve Γh as in Theorem 6.2 (i) is obtained from C by an elementary biliaison of
height h on the surface Sk,h

Proof. For simplicity of notation, we denote by S the surface Sk,h. Denote by G
the cokernel of the map

τ = (s0, sh) : OP3 ⊕OP3(−h) → E(k),
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where s0 ∈ H0(E(k)) and sh ∈ H0(E(k + h)) are such that C = V (s0) and Γh =
V (sh). By the diagram

(6.8)

0
↓

0 → OP3 → OP3 ⊕OP3(−h) → OP3(−h) → 0
|| ↓τ ↓sh

0 → OP3
s0→ E → IC/P3(c1) → 0

↓ ↓
G IC/S(c1)
↓ ↓
0 0 ,

we see that G ∼= IC/S(c1). Reversing the roles of s0 and sh in diagram (6.8), we
similarly find that G ∼= IΓh/S(c1 + h). Hence, we get IC/S

∼= IΓh/S(h); since E is
non-splitting, neither C nor Γh can be equivalent to multiples of the hyperplane
sections of S. Thus, by Definition 6.3, Γh is obtained by an elementary biliason of
height h on S. �
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26. Lazarsfeld R., Rao P., Linkage of general curves of large degree, in Algebraic Geometry - Open

Problems (Ravello 1982), Lecture Notes in Math., 997, Springer, Berlin 1983, 267-289.
27. Lichtenbaum S. Schlessinger M., The cotangent complex of a morphism, Trans. Amer. Math.

Soc., 128 (1967), 41-70.
28. Miyaoka Y., Peternell T., Geometry of higher dimensional algebraic varieties, DMV-Seminar,
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