Bollettino settimanale
Settimana 25/04/2022 - 29/04/2022
Seminari
Università degli Studi Roma Tre
Dipartimento di Matematica e Fisica
MATHEMATICAL ANALISYS SEMINAR
Date: Wednesday April 27nd, 2022
Schedule: 14:30 Rome Time
Where: Pal.C - Room 311 - Largo San Leonardo Murialdo, 1 - Roma
Speaker: Laurent Stolovitch (Universitè de Nice)
Title: "On neighborhoods of embedded complex tori"
Abstract: In this talk, we show that an $n$-dimensional complex torus embedded in a complex manifold of dimensional $n+d$, with a split tangent bundle, has neighborhood biholomorphic a neighborhood of the zero section in its normal bundle, provided the latter has (locally constant) Hermitian transition functions and satisfies a {it non-resonnant Diophantine} condition.
Organizing Committee: PROCESI Michela (mail to)
Further Info: Click here
Streaming Link (MS Teams): Click here
Università degli Studi Roma Tor Vergata
Dipartimento di Matematica
PROBABILITY SEMINAR
Date: Friday April 29, 2022
Schedule: 14:00 Rome Time
Where: Room 1103 De Blasi
Speaker: Antonio Lerario (Sissa)
Title: "The zonoid algebra "
Abstract: In this seminar I will discuss the so called "zonoid algebra", a construction introduced in a recent work (joint with Breiding, Bürgisser and Mathis) which allows to put a ring structure on the set of zonoids (i.e. Hausdorff limits of Minkowski sums of segments). This framework gives a new perspective on classical objects in convex geometry, and it allows to introduce new functionals on zonoids, in particular generalizing the notion of mixed volume. Moreover this algebra plays the role of a probabilistic intersection ring for compact homogeneous spaces. Joint work with P. Breiding, P. Bürgisser and L. Mathis.
Organizing Committee: Michele Salvi (mail to) Domenico Marinucci (mail to)
Further Info: Click here
Streaming Link (MS Teams): Click here
Eventi
 
 
Università degli Studi di Roma "Tor Vergata"
Dipartimento di Matematica
Corso di Dottorato
Cluster expansion in statistical mechanics and its connection with the Lovász Local Lemma in combinatorics
Period: 2022.11.04 - 2022.06.06
Schedule:
Day | Period | Time |
---|---|---|
Monday | 11.04.2022 | 14:00 - 16:00 |
Wednesday | 13.04.2022 | 14:00 - 16:00 |
Monday | 20.04.2022 | 14:00 - 16:00 |
Wednesday | 27.04.2022 | 14:00 - 16:00 |
Monday | 02.05.2022 | 14:00 - 16:00 |
Wednesday | 04.05.2022 | 14:00 - 16:00 |
Monday | 09.05.2022 | 14:00 - 16:00 |
Wednesday | 11.05.2022 | 14:00 - 16:00 |
Monday | 16.05.2022 | 14:00 - 16:00 |
Wednesday | 18.05.2022 | 14:00 - 16:00 |
Monday | 23.05.2022 | 14:00 - 16:00 |
Wednesday | 25.05.2022 | 14:00 - 16:00 |
Monday | 03.05.2022 | 14:00 - 16:00 |
Wednesday | 01.06.2022 | 14:00 - 16:00 |
Monday | 06.06.2022 | 14:00 - 16:00 |
Where: Common Room
Organizing Committee: Benedetto Scoppola(Contatto E-Mail).
Speaker: (Aldo Procacci University Federal of the Minas Gerais, Belo Horizonte, Brasile)
Title: Cluster expansion in statistical mechanics and its connection with the Lovász Local Lemma in combinatorics
Speaker: (Aldo Procacci University Federal of the Minas Gerais, Belo Horizonte, Brasile)
Title: Cluster expansion in statistical mechanics and its connection with the Lovász Local Lemma in combinatorics
Abstract:
Course program:
Part 1. Continuous particles in the Grand Canonical Ensemble interacting via a pair potential
1. Conditions on the pair potential: stability and regularity
2. The infinite volume limit. Existence (the case of the finite range pair potential)
3. Properties of the pressure. Continuity.
4. The Mayer series
5. The combinatorial problem
6. The Penrose tree graph identity: partition schemes.
7. Analyticity at low density/high temperature
- a) The hard sphere gas (via the original Penrose partition scheme)
b) gas of particles interacting via a stable and regular pair potential (via the Kruskal algorithm partition scheme)
Part 2. Discrete systems
1. The abstract polymer gas
2. Convergence of the cluster expansion
3. Convergence criteria: Kotecký-Preiss; Dobrushin; Fernández-Procacci.
4. Elementary examples.
5. Gas of non-overlapping subsets
6. Applications: spin systems at high temperature
7. Ising model at low temperature.
8. Antiferromagnetic Potts model at zero temperature on a graph G (complex zeros of the chromatic polynomial of G).
Part 3. The Connection with the probabilistic method in combinatorics
1. A powerful tool in combinatorics: The Lovász Local Lemma
2. Shearer criterion.
3. Scott-Sokal formulation of the Shearer Criterion via the abstract polymer gas.
4. The cluster expansion Local lemma
5. Example: colorings of a graph.
6. The Moser-Tardos algorithmic version of the Lovász Local Lemma
7. Entropy-compression method.