Interests
 Random processes in random media;
 Random graphs;
 Mathematics of Neural Networks;
 Stochastic homogenization;
 Mixing times for Markov chains;
 Statistical mechanics.
Publications and preprints

[17] F. Angileri, G. Lombardi, A. Fois, R. Faraone, C. Metta, M. Salvi, L.A. Bianchi, M. Fantozzi, S.g. Galfrè, D. Pavesi, M. Parton, F. Morandin
A Systematization of the Wagner Framework: Graph Theory Conjectures and Reinforcement Learning
arXiv preprint (2024). 
[16] S. Di Lillo, D. Marinucci, M. Salvi, S. Vigogna
Spectral complexity of deep neural networks
arXiv preprint (2024). 
[15] L. Makowiec, M. Salvi, R. Sun
Diameter of uniform spanning trees on random weighted graphs
arXiv preprint (2023). 
[14] V. Cammarota, D. Marinucci, M. Salvi, S. Vigogna
A quantitative functional central limit theorem for shallow neural networks
Modern Stochastics: Theory and Applications, 11, 85108 (2024). 
[13] V. Bansaye, M. Salvi,
Branching process and homogeneization for epidemics on spatial random graphs
arXiv preprint (2023). 
[12] A. Cipriani, M. Salvi,
Scalefree percolation mixing time
Stochastic Processes and their Applications, 167 (2024). 
[11] Q. Berger, M. Salvi,
Scaling limit of subballistic 1D random walk among biased conductances: a story of wells and walls
Electronic Journal of Probability, 25: 143 (2020). 
[10] J. Dalmau, M. Salvi,
Scalefree percolation in continuum space: quenched degree and clustering coefficient
Journal of Applied Probability, Volume 58, Issue 1, 106  127 (2021), arXiv preprint. 
[9] A. Faggionato, M. Salvi,
Regularity of biased 1D random walks in random environment
ALEA Lat. Am. J. Probab. Math. Stat. , 16, 12131248 (2019). 
[8] Q. Berger, M. Salvi,
Scaling of subballistic 1d random walks among biased random conductances
Markov processes and Related Fields, Volume 25, Issue 1, 171187 (2019), arXiv preprint. 
[7] A. Faggionato, N. Gantert , M. Salvi,
Einstein relation and linear response in onedimensional Mott variablerange hopping
Annales de l’Institut Henri Poincaré, 55(3): 14771508 (2019). 
[6] F. Simenhaus , M. Salvi,
Random walk on a perturbation of the infinitelyfast mixing interchange process
Journal of Statistical Physics, 171(4), 656678 (2018). 
[5] A. Faggionato, N. Gantert , M. Salvi,
The velocity of 1D Mott variable range hopping with external field
Annales de l’Institut Henri Poincaré, Volume 54, Number 3, 11651203 (2018). 
[4] M. Salvi,
The Random Conductance Model: Local times large deviations, law of large numbers and effective conductance
Ph.D. Thesis. 
[3] M. Biskup, M. Salvi, T. Wolff,
A central limit theorem for the effective conductance: I. Linear boundary data and small ellipticity contrasts
Commununications in Mathematical Physics, 328, no. 2, 701731 (2014), arXiv preprint. 
[2] N. Berger, M. Salvi,
On the speed of random walks among random conductances
ALEA Lat. Am. J. Probab. Math. Stat., Vol. X, 10631083 (2013). 
[1] W. König, M. Salvi, T. Wolff,
Large deviations for the local times of a random walk among random conductances
Electronic Communications in Probability, 17 (2011).
Talks and slides
More
 A Central Limit Theorem for the Effective Conductance (2012), poster for the conference Interacting Particle Systems and Related Topics, Firenze.
 On the speed of Random Walks among Random Conductances (2012), long abstract, in Oberwolfach Reports.
 The Cutoff phenomenon for Monte Carlo Markov chains (2009), master thesis.