Università di Roma Tor Vergata
Dipartimento di Matematica
Crittografia
20 ottobre 2008 23 gennaio 2009
Docente: Prof. René Schoof
Assistente: Filippo Nuccio
Corso chiuso
Esami
Programma
- Presentiamo algoritmi per risolvere problemi computazionali che sono rilevanti per la crittografia odierna.
- Discuteremo: test di primalità,
algoritmi di fattorizzazione, metodi per calcolare logaritmi discreti, curve ellittiche su campi finiti
- Prerequisiti: i corsi di geometria e algebra del primo anno.
Esercizi
Materiale
- Software
- Testi
- Crittografia
- Ronald van Luijk: Number theory in cryptography.
Presentazione, Universidad de los Andes, Bogota, settembre 2006.
- Joe Malkevitch: Mathematics and internet security, Feature column of Am. Math. Soc., April 2006 (link)
- René Schoof, Fattorizzazione e criptosistemi a chiave pubblica,
Didattica delle Scienze 137 (1988), 4854.
(pdf)
-
Victor Miller: Elliptic curve cryptography. Presentazione,
24 maggio 2007.
-
I servizi segreti USA scelgono curve ellittiche:
nsa,
gcn.
- Certicom tutorial.
-
Note
- Rabin Miller estimate (pdf,
2 pagine).
- Nota sulla funzione φ di Eulero
(3 pagine).
- Espansioni decimali di 1/n
(1 pagina).
- Shanks-Tonelli (pdf,
1 pagina).
- Cornachia's algorithm (pdf, 2 pagine).
- Nota
sulle radici primitive modulo p (2 pagine)
- Nota sulla sommatoria Σ 1/p
(2 pagine).
Materiale per argomenti
- Primalità
- Pollard ρ
- John Pollard's
home page.
-
Pollard ρ web pages.
- Pollard ρ in
Wikipedia.
- J. Pollard and R. Brent:
Factorization of the eighth Fermat number, Math. Comp. 36
(1980). (pdf, 4 p.)
- Metodi p 1
- Metodo delle curve ellittiche
- Test di primalità di Atkin
- Logaritmo discreto
- Il crivello quadratico
-
Il crivello dei campi di numeri