Rabin-Miller René Schoof, Spring 2010
Let n > 0 be an odd integer. We determine the size of the set B of elements in (Z/nZ)*
that pass a Miller-Rabin primality test. Writing n — 1 = 2¥m with m odd, we have

B = {z€(Z/nZ)" :z™ =1 or 2™ = —1 for some 0 < i < k}.
Theorem. The number of elements in B is given by

21 — ]
4B = (1+ 2d_1>chd(m,p—1).
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Here d is the number of different primes dividing n and p is the largest integer for which
2# divides p — 1 for every prime divisor p of n.

Proof. The set B is the disjoint union of the following subsets
{r € (Z/nZ)" : 2™ =1} and {x € (Z/nZ)*: M2 = —1} for0<i<k-1.

First we consider the set {x € (Z/nZ)* : ™ = 1}. We have 2™ = 1 in (Z/nZ)* if and
only if 2 = 1 (mod ¢) for any prime power ¢ dividing n. Since no prime divisor p of n
divides m, we have #{z € (Z/qZ)* : 2™ = 1} = #{x € (Z/pZ)* : ™ = 1} when ¢ = p*
for some a > 1. By the Chinese remainder Theorem we have therefore

#{r e (Z/nZ)" : 2™ =1} = chd(m,p —1).
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Next we consider the subsets of the form {z € (Z/nZ)* : ™2 = —1} for i =0,1,...,k—1.
An element z € (Z/nZ)* satisfies 2™2" = —1 in (Z/nZ)* if and only if 22" = —1 (mod q)
for all prime powers ¢ dividing n. Since ¢ is odd, we have 22" = —1 (mod ¢) if and only

m2tt (mod ¢) while 2 # 1 (mod q). Since the prime divisors of n do not divide

m2? —

if ©
m, there are for a given ¢ > 0, zero elements in (Z/nZ)* for which z —1 unless for
every prime divisor p of n, the number p—1 is divisible by 2¢*1. There are in the latter case
precisely ged(m2+!, p—1)—ged(m2?, p—1) = 2°ged(m, p—1) such elements. By the Chinese
Remainder Theorem there are therefore I 2iged(m,p — 1) = 2 I1,, ged(m,p — 1)
elements in x € (Z/nZ)* for which 22" = —1 in (Z/nZ)*.

Taking the sum of the cardinalities of the k subsets, we obtain

p—1
#B = [[ecd(m,p—1)+ [Jecd(m,p—1)) 2",
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2nd 1
— (1+ T ) [T ecd(m,p—1),
p|n

as required.

Note that when n is prime, we have d = 1 and we find #B = ged(m,n — 1)2# =
m2F = n — 1 which confirms the fact that B = (Z/nZ)* in this case.
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Corollary. For odd composite n # 9 we have

1

#B < Zﬂ)

Proof. Let n # 9 be an odd positive integer. By the theorem we must show that

pL | 1
1 —1) < Ze(n).
( + 52 )ll_[gcdmp ) < o)

When d = 1 we have n = p® for some prime p and a > 2. We must show that ged(m,p —
1)2# < }lgp(p“). Since . = k in this case, the left hand side is precisely equal to p — 1.
Therefore we must show that p®~! > 4, which is true since n # 9. For d > 3 we observe

that
[Tecdtmp—1) < 50z [10~ 1) < oozl
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Therefore it suffices to show that 14 2“ _1 < 1 2”d which follows from the fact that pu > 1
and d > 3.

The remaining case is d = 2. If the 2-adic valuations of p—1 for the two prime divisors
p of n are distinct, then

1
Hng(m’p - 22#""1 H = 22'u+1 @( )
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Therefore it suffices to show that 1+ 222_1 < ;1122““. This follows from the fact that © > 1.
Finally, if d = 2 and the 2-adic valuations of p — 1 for the two prime divisors p of n are
equal, then the odd parts of [], , gcd(m,p — 1) and ][, (p — 1) cannot be the same.
Indeed, it would follow that the odd part of p — 1 divides n — 1 for each prime divisor p
of n. This easily implies that the two prime divisors of n must be equal, contradicting the
assumption d = 2. It follows that the odd part of Hp|n ged(m,p — 1) is at most % of the
odd part of [T, ,(p — 1). Therefore we have

[Tecdtm.p—1) < o [T~ 1) < 5ot
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Therefore it suffices to show that 1 + QQTM < %22“, which follows from the fact that pu > 1.
This proves the corollary.

It follows from the proof that the inequality can only be sharp when =1 and d = 2
or 3. In the first case n = pq with p and ¢ primes of the form p = 1+2m and ¢ = 1+4m for
some odd m. This is probably an infinite set of examples. E.g. n = 15, 91, 703, ... In the
second case n is a Carmichael number of the form n = pgr with p, ¢ and r primes that are
congruent to 3 (mod 4). This is probably also an infinite set of examples. E.g. 8911, ...



