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Let n > 0 be an odd integer. We determine the size of the set B of elements in (Z/nZ)∗

that pass a Miller-Rabin primality test. Writing n− 1 = 2km with m odd, we have

B = {x ∈ (Z/nZ)∗ : xm ≡ 1 or xm2i ≡ −1 for some 0 ≤ i < k}.

Theorem. The number of elements in B is given by

#B =
(

1 +
2µd − 1
2d − 1

) ∏
p|n

gcd(m, p− 1).

Here d is the number of different primes dividing n and µ is the largest integer for which
2µ divides p− 1 for every prime divisor p of n.

Proof. The set B is the disjoint union of the following subsets

{x ∈ (Z/nZ)∗ : xm ≡ 1} and {x ∈ (Z/nZ)∗ : xm2i

≡ −1} for 0 ≤ i ≤ k − 1.

First we consider the set {x ∈ (Z/nZ)∗ : xm ≡ 1}. We have xm ≡ 1 in (Z/nZ)∗ if and
only if xm ≡ 1 (mod q) for any prime power q dividing n. Since no prime divisor p of n
divides m, we have #{x ∈ (Z/qZ)∗ : xm ≡ 1} = #{x ∈ (Z/pZ)∗ : xm ≡ 1} when q = pa

for some a ≥ 1. By the Chinese remainder Theorem we have therefore

#{x ∈ (Z/nZ)∗ : xm ≡ 1} =
∏
p|n

gcd(m, p− 1).

Next we consider the subsets of the form {x ∈ (Z/nZ)∗ : xm2i ≡ −1} for i = 0, 1, . . . , k−1.
An element x ∈ (Z/nZ)∗ satisfies xm2i ≡ −1 in (Z/nZ)∗ if and only if xm2i ≡ −1 (mod q)
for all prime powers q dividing n. Since q is odd, we have xm2i ≡ −1 (mod q) if and only
if xm2i+1 ≡ 1 (mod q) while xm2i 6≡ 1 (mod q). Since the prime divisors of n do not divide
m, there are for a given i ≥ 0, zero elements in (Z/nZ)∗ for which xm2i ≡ −1 unless for
every prime divisor p of n, the number p−1 is divisible by 2i+1. There are in the latter case
precisely gcd(m2i+1, p−1)−gcd(m2i, p−1) = 2igcd(m, p−1) such elements. By the Chinese
Remainder Theorem there are therefore

∏
p|n 2igcd(m, p − 1) = 2id

∏
p|n gcd(m, p − 1)

elements in x ∈ (Z/nZ)∗ for which xm2i ≡ −1 in (Z/nZ)∗.
Taking the sum of the cardinalities of the k subsets, we obtain

#B =
∏
p|n

gcd(m, p− 1) +
∏
p|n

gcd(m, p− 1)
µ−1∑
i=0

2id,

=
(

1 +
2µd − 1
2d − 1

) ∏
p|n

gcd(m, p− 1),

as required.

Note that when n is prime, we have d = 1 and we find #B = gcd(m,n − 1)2µ =
m2k = n− 1 which confirms the fact that B = (Z/nZ)∗ in this case.
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Corollary. For odd composite n 6= 9 we have

#B ≤ 1
4
ϕ(n).

Proof. Let n 6= 9 be an odd positive integer. By the theorem we must show that(
1 +

2µd − 1
2d − 1

) ∏
p|n

gcd(m, p− 1) ≤ 1
4
ϕ(n).

When d = 1 we have n = pa for some prime p and a ≥ 2. We must show that gcd(m, p−
1)2µ ≤ 1

4ϕ(pa). Since µ = k in this case, the left hand side is precisely equal to p − 1.
Therefore we must show that pa−1 ≥ 4, which is true since n 6= 9. For d ≥ 3 we observe
that ∏

p|n

gcd(m, p− 1) ≤ 1
2µd

∏
p|n

(p− 1) ≤ 1
2µd

ϕ(n).

Therefore it suffices to show that 1+ 2µd−1
2d−1

≤ 1
42µd, which follows from the fact that µ ≥ 1

and d ≥ 3.
The remaining case is d = 2. If the 2-adic valuations of p−1 for the two prime divisors

p of n are distinct, then∏
p|n

gcd(m, p− 1) ≤ 1
22µ+1

∏
p|n

(p− 1) ≤ 1
22µ+1

ϕ(n).

Therefore it suffices to show that 1+ 22µ−1
3 ≤ 1

422µ+1. This follows from the fact that µ ≥ 1.
Finally, if d = 2 and the 2-adic valuations of p − 1 for the two prime divisors p of n are
equal, then the odd parts of

∏
p|n gcd(m, p − 1) and

∏
p|n(p − 1) cannot be the same.

Indeed, it would follow that the odd part of p − 1 divides n − 1 for each prime divisor p
of n. This easily implies that the two prime divisors of n must be equal, contradicting the
assumption d = 2. It follows that the odd part of

∏
p|n gcd(m, p − 1) is at most 1

3 of the
odd part of

∏
p|n(p− 1). Therefore we have

∏
p|n

gcd(m, p− 1) ≤ 1
3 · 22µ

∏
p|n

(p− 1) ≤ 1
3 · 22µ

ϕ(n).

Therefore it suffices to show that 1 + 22µ

3 ≤ 3
422µ, which follows from the fact that µ ≥ 1.

This proves the corollary.

It follows from the proof that the inequality can only be sharp when µ = 1 and d = 2
or 3. In the first case n = pq with p and q primes of the form p = 1+2m and q = 1+4m for
some odd m. This is probably an infinite set of examples. E.g. n = 15, 91, 703, . . . In the
second case n is a Carmichael number of the form n = pqr with p, q and r primes that are
congruent to 3 (mod 4). This is probably also an infinite set of examples. E.g. 8911, . . .
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