Overview
Course led by Oliver Butterley, in collaboration with Alessio Ranallo.
The material of the course is divided into six parts as listed below. Each part takes two weeks and is accompanied with a set of exercises. Mathematically the parts all build on each other and are intimately linked. The final weeks of the course are devoted to reviewing the material already presented.
Course content
Lecture notes are available to download. They are a collaborative work in progress, constantly updated during the course. Slides from 2020/21 are still available from the archive and the material covered is identical to this year.
A list of core skills is available. This is not the entire content of the course, this is a list of the core skills and is provided as a convenience. To obtain top grades a full understanding of all the material of the course is required. Nonetheless, a good ability with the majority of skills listed here is sufficient to pass.
Part | Topics | Teaching period | Exercises | Due date |
---|---|---|---|---|
Introduction | ||||
Sequences and series of functions |
|
20/09/21 - 01/10/21 | Exercises 1 | 03/10/21 |
Differential calculus of scalar and vector fields |
|
04/10/21 - 15/10/21 | Exercises 2 | 17/10/21 |
Extrema and other applications |
|
18/10/21 - 29/10/21 | Exercises 3 | 31/10/21 |
Curves and line integrals |
|
01/11/21 - 12/11/21 | Exercises 4 | 14/11/21 |
Multiple integrals |
|
15/11/21 - 26/11/21 | Exercises 5 | 28/11/21 |
Surfaces and surface integrals |
|
29/11/21 - 10/12/21 | Exercises 6 | 12/12/21 |
Exercises
- Completing the exercises in a timely way (due dates listed above) gives a 10% bonus towards the exam.
- In order to qualify for this bonus you must score at least 50% in the exercise sets for each part of the course prior to the due dates for the exercise set for that part of the course (dates listed above). The bonus gained during a given year only applies to the exams taken during the same academic year.
- Unlimited attempts are permitted for the exercises. Anyone may ask for hints and you are encouraged to discuss the exercises and help each other understand the material. Each set of exercises is composed of 10 questions of varying difficulty (but equal points).
Practical details
- Join the MS Team for the course using the team code: 1q0s4s2.
- The course is taught in Semester 1 with the following schedule:
- Mon 14:00-14:45, 15:00-15:45 in Aula 8
- Wed 9:30-10:15, 10:30-11:15 in Aula A3
- Fri 14:00-14:45, 15:00-15:45 in Aula C2
- Suggested references:
- Tom M. Apostol, "Calculus", Volumes 1 and 2 (2nd edition)
- Terence Tao, "Analysis 1" and "Analysis 2" (3rd edition)
- Paul Dawkins (online notes and exercises)
- Walter Rudin, "Real and Complex Analysis"
- MA2 @ didattica.uniroma2.it
- Office hours with Oliver Butterley by appointment (butterley@mat.uniroma2.it).
- Course material from previous years and other instructors is available
Exam rules
- The exam consists of a written test (3hr, in person, using Moodle). There is no oral exam, the grade from the written exam (possibly with bonus from the problem sets) is your final grade.
- The exam is passed if the final mark is at least 18/30.
- Results of the exam are available, automatically on the system, immediately the exam finishes.
- During the year there are three exams sessions and two calls in each session. The sessions are according to the university schedule.
-
Students are permitted to bring only the following items to their desk in the exam room:
- A single A4 sheet of paper (writing permitted on both sides) with whatever course notes are wanted.
- Pens and pencils.
- A single device (tablet / laptop) for accessing the electronic test.
- An identity document.
- Green pass QR code (paper or electronic).
- Paper for rough calculations will be provided in the exam room. After the exam the paper used during the exam remains in the exam room.
- Students can choose to not use the electronic test and submit the answers on paper (in this case the grade will be available soon after the exam finishes but not immediately).
- During the exam it is forbidden to communicate, using any means, with anyone except the exam invigilators. All messaging apps must be deactivated on the devices used for the test.
- Students are required to arrive at the exam room before the scheduled start of the exam.
- Under penalty of exclusion, during written tests the use of electronic devices and applications, except those required to access to the Moodle quiz and a basic calculator, is not allowed. It is not permitted to use books and notes during the exam. Note that only basic calculators are permitted, not the programmable type, particularly not ones which can perform integration.
- A selection of mock exam questions are available for practice. The exam is divided into five questions on different topics covering the course material, similar to the exams of previous years.
- Students are permitted to attempt both calls available in a given exam session and take the highest grade of the two attempts.
Exam schedule
- {{comment}}
Winter session | Call I | Monday 17/01/2022 14:00-17:00. Aula A3 | Questions and solutions |
---|---|---|---|
Call II | Friday 31/01/2022 14:00-17:00. Aula 4 | Questions and solutions | |
Straordinario | Call X | Friday 29/04/2022 14:00-17:00. (info) | |
Summer session | Call III | Tuesday 14/06/2022 14:00-17:00. Room: Aula B2. | Questions and solutions |
Call IV | Friday 01/07/2022 14:00-17:00. Room: Aula 1. | Questions and solutions | |
Autumn session | Call V | Thursday 01/09/2022 14:00-17:00. Room: Aula C1. | Questions and solutions |
Call VI | Thursday 15/09/2022 14:00-17:00. Room: Aula B5. | Questions and solutions |
Lecture diary
Date | Topics | Reference |
---|---|---|
{{lecture.date | longDate}} | {{lecture.topics}} | {{lecture.reference}} |