n

image001

Dipartimento di Matematica

Universitą degli Studi di Roma

Tor Vergata

 

 

 

PUBBLICAZIONI

 

 

 

 

 

Home

 

Curriculum

 

Didattica

 

Ricerca

 

Pubblicazioni

 

Conferenze

 

 

Pubblicazioni su riviste internazionali

  1. T. Kanduĉ, C. Giannelli, F. Pelosi, H. Speleers.  Adaptive isogeometric analysis with hierarchical box splines.  Computer Methods in   Applied Mechanics and Engineering, 316 (2017), 817-838.

2.     F. Pelosi, C. Giannelli, C. Manni, M.L. Sampoli, H. Speleers. Splines over regular triangulations in numerical simulation. Computer Aided  Design, 82 (2017), 100-111.

3.     Farouki R.T.,  F. Pelosi, M.L. Sampoli, A. Sestini, Tensor-product surface patches with Pythagorean-hodograph isoparametric curves, IMA Journal of Numerical Analysis 36 (2016), 1389-1409.

4.     C. Manni, F. Pelosi, and H. Speleers. Local hierarchical h-refinements in IgA based on generalized B-splines. In: M.S. Floater et al. (eds.), Mathematical Methods for Curves and Surfaces, Lecture Notes in Computer Science 8177, pp. 341-363, 2014.

5.     Lettieri D., C. Manni,  F. Pelosi,  H. Speleers;  Shape preserving $HC^2$  interpolatory subdivision,  BIT Numerical Mathematics 55 (3) (2015), 751-779.

6.      Garoni C., C. Manni,  F. Pelosi, S. Serra-Capizzano, H. Speleers; On the spectrum of stiffness matrices arising from isogeometric analysis, Numerische Mathematik, 127, 751-799 (2014)

7.     Speleers H., C. Manni, F. Pelosi, From NURBS to NURPS geometries; Computer Methods in Applied Mechanics and Engineering 255, (2013), 238-254.

8.     Speleers H., C. Manni, F. Pelosi, M.L. Sampoli, Powell-Sabin approximations in advection-diffusion-reaction problems, Computer Methods in Applied Mechanics and Engineering  221-222  (2012), 132-148.

  1. Manni C., F. Pelosi, M.L. Sampoli, Isogeometric analysis in advection-diffusion problems: Tension splines approximation, on J. Comput. Appl. Math., (2011), 511- 528.
  2. Manni C., F. Pelosi, M.L. Sampoli, Generalized B-splines as a tool in  Isogeometric Analysis, on Computer Methods in Applied Mechanics and Engineering (2010), 867-881.
  3. Costantini P., C. Manni, F. Pelosi, M.L. Sampoli, Quasi-interpolation in Isogeometric Analysis Based on Generalized B-splines, 27 (2010), 656-668.
  4. Lyche T., K. Mųrken, F. Pelosi, Stable linear wavelets on non uniform knots with vanishing moments, CAGD (2008),  26(2), 203-216
  5.  Costantini P., F. Pelosi, M.L. Sampoli, New spline  spaces with generalized tension properties, BIT 48, no. 4 (2008), 665-688
  6. Costantini P., F. Pelosi, M.L Sampoli,  Boolean Surfaces with Shape Constraints, CAD 40 (Special issue CDCS) (2008), 62-75.
  7. Pelosi F., P. Sablonničre, Shape-Preserving C1  Hermite Interpolants Generated by a Gori-Pitolli Subdivision  Scheme, J. Comput. Appl. Math. 220 (2008), 686-711Costantini P., F. Pelosi, Data approximation using  shape-preserving parametric surfaces,  SIAM J. Numer. Anal.,  47, n.1,(2008), 20-47.
  8. Costantini P., F. Pelosi,  Shape-preserving Histogram Approximation, Advances in Computational Mathematics, 26 (2007), 205-230.
  9. Pelosi F., M.L. Sampoli, R. T. Farouki, C. Manni, A control polygon scheme for design of planar C2 PH quintic spline curves, Comp. Aided Geom. Design, 24 (2006), 28-52.
  10. Pelosi F., R.T. Farouki, C. Manni, A. Sestini, Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics,  Advances in Computational Mathematics, 22 (2005)
  11. Manni C., F. Pelosi,  Quasi-interpolants with tension properties from and in CAGD,  Geometric Modeling -Dagstuhl 2002 - Computing 72  (2004), 143-160.
  12. Costantini P., F. Pelosi, Shape-preserving approximation of  spatial data, Advances in Computational Mathematics, 20(1)   (2004), 25-51
  13. Costantini P., F. Pelosi, Shape-preserving approximation  by space curves, Numerical Algorithms, Kluwer Accademic Publishers, 27 (2001),  237-264.

Pubblicazioni su libri

1.      R. T. Farouki, C. Manni, F. Pelosi, M.L.Sampoli: Design of $C^2$ Spatial Pythagorean-Hodograph Quintic Splines Curves by Control Polygons,  Lecture Notes in Computer Science, J.-D. Boissonnat et al.,  6920 (2012), 253-269

2.     Costantini P., F. Pelosi and M. L. Sampoli, Compactly Supported Splines with Tension Properties on a Three-Direction Mesh, Lecture Notes in Computer Science, Mathematical Methods for Curves and Surfaces (2010), 93-110,

3.     Costantini P., F. Pelosi, M.L Sampoli, Triangular Surface  Patches with Shape Constraints, Curve and Surface Design: Avignon 2006, P. Chenin, T.Lyche, L.L.Schumaker, Nashboro Press, TN, (2007) 123-132.

4.     Costantini P., F. Pelosi, Shape-preserving data approximation using new spline spaces, Mathematical Methods for Curves and Surfaces:Tromsų 2004, M. Dahlen, K. Mųrken and L. L. Schumaker, Nashboro Press, TN, (2005), 81-92.

5.     Costantini P., F. Pelosi, Constrained bivariate histosplines, St. Malo 2002 Curves and surface fitting, C.Rabut, M.Mazure and L.L.Schumaker eds. Vanderbilt University Nashboro Press, TN, (2004) 83-92.

 

Rapporti tecnici

  1. Costantini P., C. Manni, F. Pelosi, M.L. Sampoli,  Quadratic generalized B-splines: a geometric approach. Tech. Report no. 498, Dept. of Math. and Comput. Science, University of Siena, (2010).
  2. Speleers H., C. Manni, F. Pelosi, M.L. Sampoli; Isogeometric analysis with Powell-Sabin splines, Technical Report 606, Dept. Computer Science, K.U.Leuven, 2012.
  3. Pelosi F., Shape detection for bivariate data, Dipartimento di Matematica, Universitą di Torino, Quaderno n.12, (2006).
  4. Manni C., F. Pelosi, Constrained quasi-interpolating curves, Dipartimento di Matematica Pura ed Applicata, Universitą di Padova, Rapporto n. 3 (2003).
  5. Pelosi F., "SPA3D": Software documentation,  Dipartimento di Scienze  Matematiche ed Informatiche, Universitą di  Siena, Rapporto n. 407, (2000).