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Introduction

I The DFR model: spacetime and fields

I Friedmann expanding backgrounds

I Friedmann expanding n.c. spacetimes

I Quantum fields and Friedmann equations



The DFR proposal

DFR (1995): “Grav. stability under localization experiments”: Determining the
localization of a quantum field theoretic observable needs concentration of energy
in a region of the size of the uncertainty; extreme precision should cause the
formation of a black hole.
The following program was outlined:

I Derive physically meaningful uncertainty relations between coordinates of
spacetime events from gravitational stability under localization experiments.

I Promote these coordinates to the status of operators and find commutation
relations among them from which the uncertainty relations follow.

I Construct quantum fields over the resulting noncommutative spacetime.

Starting point: fixed classical background, to be recovered by some LP → 0
procedure.



Noncommutative Minkowski space (DFR)

Spacetime uncertainty relations (STUR) derived by the linear approximation:

c∆t
(
∆x1 + ∆x2 + ∆x3

)
≥ L2

P

∆x1∆x2 + ∆x1∆x3 + ∆x2∆x3 ≥ L2
P

From here, commutation relations (in principle, highly non unique!):

[xµ, xν ] = iL2
PQµν , xµ = x∗µ

One can show that the STUR are satisfied using the “Quantum conditions”

[xµ,Qνρ] = 0, QµνQµν = 0, (Qµν(∗Q)µν)2 = 16I .

The xµ generate a C∗-algebra E , (some of) its states are our n.c. Minkowski.
Covariance is granted by the following action of the (full) Poincaré group P:

α(Λ,a)(xµ) = Λνµxν + aµI , α(Λ,a)(Qµν) = Λµ
′

µ Λν
′

ν Qµ′ν′ .



Quantum fields on n.c. Minkowski space

A quantum field Φ on the quantum spacetime is defined by

Φ(x) =

∫
R4

dk e ikx ⊗ Φ̂(k).

It is a map from states on E to smeared field operators,

ω → Φ(ω) = 〈ω ⊗ I ,Φ(x)〉 =

∫
R4

dx Φ(x)ψω(x).

The r.h.s. is a quantum field on the ordinary spacetime, smeared with ψω defined
by ψ̂ω(k) = 〈ω, e ikx〉 . If products of fields are evaluated in a state, the r.h.s. will
in general involve non-local expressions. One has

[Φ(ω),Φ(ω′)] = i

∫
d4xd4y ∆(x − y)ψω(x)ψω′(y).

Thus (smeared) non commutative quantum fields are functions from a quantum
spacetime to a C∗-algebra F (analogue to the one generated by ordinary fields)
and are described by elements affiliated to E ⊗ F . Knowledge of the classical
commutator entails knowledge of its n.c. spacetime counterpart one.



Curved spacetimes and n.c. Einstein’s equations

Problem: generalise the above construction to curved spacetimes. Big problem:
make sense of “n.c. Einstein equations”

Rµν −
1

2
Rgµν = 8πGTµν(Φ) F (Φ) = 0,

[xµ, xν ] = iQµν(g).

Friedmann flat expanding spacetimes with metric (comoving coordinates)

ds2 = dt2 − a(t)2(dx2
1 + dx2

2 + dx2
3 ).

Combination of mathematical simplicity (due to symmetry) and physical
relevance (cosmological models).



Uncertainty relations for FFE spacetimes (comoving coordinates)

I Black holes do not form if the (positive) excess of proper mass-energy δE
inside a two-surface S of proper area ∆A contained in a slice of constant
universal time t0 satisfies the inequality:

√
∆A

(
1

4
√
π

+
H
√

∆A

4πc

)
≥ G

c4
δE .

where H(t) = a′(t)/a(t) is the Hubble parameter (a, a′ > 0).

For a box-like localisation region with comoving edges ∆xc1 ,∆xc2 ,∆xc3 ,

∆A = a2(t)(∆xc1 ∆xc2 + ∆xc1 ∆xc3 + ∆xc2 ∆x3) = a2(t)∆Ac .

Estimate δE making use of Heisenberg’s uncertainty relations and get

a2(t)∆Ac

(
1

4
√

3
+

a′(t)
√

∆Ac

12c

)
≥ λ2

P

2
,

c∆t ·
√

∆Ac min
t∈∆t

{
a(t)

(
1

4
√

3
+

a′(t)
√

∆Ac

12c

)}
≥ λ2

P

2
.



Solve the first inequality with respect to the comoving area ∆Ac gives

∆Ac ≥ f (a(t), a′(t)) ,

with f1 = (x0 − c
√

3a/a′)2 and x0 is the greatest solution of a certain cubic
equation from which one has

c∆t ·
√

∆Ac ≥
λ2
P

2
max
t∈∆t
{a(t)∆Ac} ≥

λ2
P

2
max
t∈∆t
{a(t)f (a(t), a′(t))} .

The corresponding quantum uncertainty relations are:

∆ωAc ≥
λ2
P

2
|ω(f )|,

c∆ωt (∆ωx1 + ∆ωx2 + ∆ωx3) ≥ λ2
P

2
|ω(af )|.



Uncertainty relations for FFE spacetimes (conformal coordinates)

If we work in conformal coordinates, an analogous procedure and the
approximation

∆t =
∆t

∆τ
∆τ ' a(t(τ))∆τ

gives

∆ωAc ≥
λ2
P

2
|ω(f )|, (1)

c∆ωτ (∆ωx1 + ∆ωx2 + ∆ωx3) ≥ λ2
P

2
|ω(f )|. (2)

where the function f is the same as before.



Building n.c. FFE spacetimes

Definition. A C∗-algebra E of operators with (self adjoint?) generators xµ,
µ = 0, . . . , 3 affiliated to it, is said to be a concrete covariant realisation of the
n.c. spacetime M corresponding to the (classical) spacetime M with global
isometry group G if:

1) the relevant STUR are satisfied;
2) there is a (strongly continuous) unitary representation of the global isometry

group G under which the operators η transform as their classical
counterparts (covariance);

3) there is some reasonable classical limit procedure for LP → 0 such that the
ηµ become in an appropriate sense commutative coordinates on some space
containing the manifold M as a factor.

For FFE (De Sitter exluded) G = SO(3) n R3. By isotropy and homogeneity, we
restrict attention to c.r. of the form (x0 = t,or x0 = τ , and ι = 1, . . . , n)

[xµ, xν ] = Q(t,X ι)µν , [xµ,X
ι] = 0, [X ι,X ι] = 0.

4) The generators of the Friedmann spacetime algebra have commutation
relations of the form above.

5) We should in some suitable sense recover the DFR model in the limit a→ 1.

Items 3) and 5) will not be addressed.



The assumption that the Q’s only depend on t (or τ), combined with covariance,
has far reaching consequences.
Proposition. Let the generators t, x,X ι satisfy 1) and 3) and the components
of the two-tensor Q(t,X ι) be regular functions of the comm. variables (t,X ι).
Then the corresponding commutation relations are of the form

[t, x] = g1(t)e(X ι), [x, x] = m(X ι) + m⊥(t,X ι), (3)

with m⊥(t,X ι) · e(X ι) = 0 and some regular function g . Moreover, the operators
e(X ι),m(X ι),m⊥(t,X ι) transform as vectors under the action of the
automorphism αR , R ∈ SO(3).
We set m⊥(t,X ι) = g2(t)m⊥ and are left with two arbitrary (regular) functions
g1, g2 and nine central generators assembled in a triple e,m,m⊥ of three-vectors,
plus one orthogonality condition.



Proposition. Let xµ, e,m,m⊥ be as above. Suppose the Quantum Conditions

m = 0, e2 = I , m2
⊥ = I ,

are satisfied and let f the function on the right hand side of the conformal STUR
above. Then, for any state ω ∈ E∗ in the domain of τ, x, e,m⊥, requirement 2) is
met if g1(τ) = g2(τ) = f (τ).
Sketch of Proof. The operators e,m⊥ being central with joint spectrum Σ, we
perform the corresponding central decomposition of E∗. The proof relies on the
inequalities

∆ω(xµ)∆ω(xν) ≥
∫

Σ

∆ωσ(xµ)∆ωσ(xν)dµω(σ) ≥ 1

2

∫
Σ

|ωσ (Qµν)|dµω(σ). (4)

which entail, for example,

∫
Σ

3∑
k=1

∆ωσ
(t)∆ωσ

(xi )dµω(σ) ≥
∫

Σ

√√√√ 3∑
k=1

∆ωσ
(t)2∆ωσ

(xi )2dµω(σ) ≥

≥ 1

2

∫
Σ

||ωσ(g1(t)e)||dµω(σ) =
1

2

∫
Σ

||e(σ)|| · |ωσ(g1(t))|dµω(σ) ≥

≥ 1

2
|
∫

Σ

ωσ(g1(t))dµω(σ)| =
1

2
|ω(g1(τ))|.



Existence of covariant representations

To construct irrep. for the conf. coord., set σ0 = (e,m⊥) with
e = (1, 0, 0),m⊥ = (0, 0, 1). Thus

Q(τ, σ0) = f σ0, Q(τ, σstd) = f σstd = f


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


with Q(τ, σstd) = AQ(τ, σ0)AT for some invertible matrix A. Setting x = (τ, x),

we have
[
(Axσ0 )µ , (Ax

σ0 )ν

]
= iλ2f (xσ0

0 )σstd
µν . An irrep. is thus a suitable

combination of two Schrödinger operators p, q on L2(R) and two
central operators. Fixing a diffeomorphism γ : R → sp(τ), we must have

xσ
std

=
[
[γ′(q)−1f (γ(q)), p]+, γ(q), aI , bI

]
.



To obtain a covariant rep., set (as operators on C∞c (R3))

xσ0
0 = γ1(q1), xσ0

2 = γ1(q1) + p2, xσ0
3 = p3,

xσ0
1 =

1

2

[
γ′1(q1)−1f (γ1(q1)), p1

]
+
.

and

P̃σ0
1 =

(∫
γ′1(s) ds

f (γ1(s))

)
(q1), P̃σ0

2 = q2, P̃σ0
3 = q3.

Consider the complex conjugate Hilbert space K , elements φ∈ K and linear
operators A such that Aφ = Aφ. On the Hilbert space K ⊗ K , set

τσ = τσ0 , xσ = Rσxσ0 ⊗ I , P
σ

= R−1
σ P̃⊗ I + I ⊗ R−1

σ P̃, (5)

with Rσ ∈ G = SO(3) such that Rσσ0 = σ. We can now define the Hilbert space

H =
∫ ⊕
G

K ⊗ Kdµ(R), with dµ(R) the Haar measure on G , and the operators

xµ =

∫ ⊕
G

xσµdµ(R), P =

∫ ⊕
G

P
σ
dµ(R). (6)

Combined with the unitaries (U(0,R)φ)σ = φR
−1σ (τ is invariant):

U(a,R)xU(a,R)−1 = Rx + a, U(a,R) = U(a, 0)U(0,R).



The C∗-algebra of the model

I According to noncommutative geometry, C∗-algebras describe topological
noncommutative spaces.

I The topological space underlying the class of spacetimes under consideration
is always R4.

It is thus natural to assume that our C∗-algebra be the one of flat spacetime.
Consider the Banach ∗-algebra E0 = C0(Σ, L1(R4, d4α)) with involution
f ∗(σ, α) = f (σ, α′), norm supσ∈Σ ||f (σ, ·)|| and product

(f × g)(σ, α)
.

=

∫
f (σ, α′)g(σ, α− α′)e iσ(α,α′)d4α′.

Definition. The C∗-algebra E of the noncommutative Friedmann spacetimes is
the C∗-closure of the Banach ∗-algebra E0 with respect to its max. C∗-seminorm.
Proposition (Perini). The C∗-algebra E is isomorphic to C0(Σ× R2,K), where
K is the C∗-algebra of the compact operators on a separable Hilbert space.
Remark.: any symmetric densely defined operator is affiliated to K, thus our
coordinates too. Some “moyalology” gives their expression for Weyl quantisation:

xµ(q) =

∫
h(k)µe

ikq.

for suitable h(k)µ, where the q’s indicate the Heisenberg generators of E .



Quantum fields and n.c. Friedmann equations

We do not really know how to make sense of “n.c. Einstein equations”, but for
homogeneous isotropic spacetimes these reduce (with respect to the universal
time t and Tµµ = (ρ,P,P,P)) to

H = 8πρ, 3(H ′ + H2) = −4π(ρ+ 3P)

Conservation of energy implies we can solve −R = 8πT and consider the first
equation as an initial condition. We thus rewrite the second equation as

R = 8πI ⊗ Ω(T00)

where Ω is a suitable state. But now the energy-momentum tensor explicitly
depends on a(t) through the commutation relations. Adding the equation

[xµ, xν ] = iL2
PQµν(a(t)),

we obtain a closed system of equations to solve for a. But how to define a
quantum field?



Problem: we cannot use the naive definition for Minkowski case.
Reason: lack of time-translation invariance → no natural time Fourier transform.
The preceding discussion leads us to the following prescription: consider the
commutative version of the x(q) as a coordinate transformation and define Φ̂ as
the (ordinary, commutative) Fourier transform of the ordinary field Φ with
respect to the q’s and take

Φ(τ, x) =

∫
R4

d4k e ikq ⊗ Φ̂(k).

where the x are the DFR operators. This gives of course no creation/destruction
operators but a bona fide object affiliated to E ⊗ F .
Example: the two-point function of the free, scalar, conformally coupled field in
suitable pure, homogeneous, quasi-free states is (S̄k ,Sk are known functions)

Ω((τ, x); (τ ′, x′)) =
1

8π3

∫
R3

S̄|k|(τ)

a(τ)

S|k|(τ
′)

a(τ ′)
e ik·(x−x′)dk

We thus define (the q’s are operators on the left hand side of the tensor product)

Φ(τ, x̄)=
1

4π2

∫
R4

d4ke ikq⊗
[∫

R4

d4q′e−ikq
′
(∫

R3

d3k ′a(k ′)
S|k′|(τ(q′))

a(τ(q′))
e−ik

′x̄(q′) +h.c.

)]
Remark. Outrageously preliminary calculations in a suitably chosen KMS state
(we switch back to universal time) give a(t) ' ect for small times!!
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