QUANTUM SYMMETRY GROUPS OF HILBERT C*-MODULES EQUIPPED WITH ORTHOGONAL FILTRATIONS

Manon Thibault de Chanvalon

Université Blaise Pascal de Clermont-Ferrand

Conference "Noncommutative Geometry and Applications" 20th June 2014, Frascati

 D. Goswami - Quantum group of isometries in classical and noncommutative geometry.
Comm. Math. Phys., 285(1):141–160 (2009)

- D. Goswami Quantum group of isometries in classical and noncommutative geometry.
 Comm. Math. Phys., 285(1):141–160 (2009)
- T. Banica & A. Skalski Quantum symmetry groups of C*-algebras equipped with orthogonal filtrations.
 Proc. Amer. Math. Soc., 106(5):980–1004 (2013)

The symmetry group of a given space is the final object in the category of groups acting on this space.

The symmetry group of a given space is the final object in the category of groups acting on this space.

In other words: The symmetry group $\operatorname{Sym}(X)$ of a given space X is the group satisfying the universal property: for each group G acting on X, there exists a unique morphism $G \to \operatorname{Sym}(X)$. It is given by:

$$\begin{array}{ccc} G & \to & \operatorname{Sym}(X) \\ g & \mapsto & (x \mapsto x.g) \end{array}$$

Analogously, the quantum symmetry group of a given space is defined as the final object in the category of quantum groups acting on this space.

Analogously, the quantum symmetry group of a given space is defined as the final object in the category of quantum groups acting on this space.

Steps for defining the quantum symmetry group of a given object:

• Define the category of its quantum transformation groups.

Analogously, the quantum symmetry group of a given space is defined as the final object in the category of quantum groups acting on this space.

Steps for defining the quantum symmetry group of a given object:

- Define the category of its quantum transformation groups.
- Check that this category admits a final object.

Let A be a C^* -algebra and let E be a Hilbert A-module. An orthogonal filtration $(\tau, (V_i)_{i \in \mathcal{I}}, J, W)$ of E consists of:

- a faithful state τ on A,
- a family $(V_i)_{i\in\mathcal{I}}$ of finite-dimensional subspaces of E such that:
 - $\textbf{0} \ \, \text{for all} \,\, i,j\in\mathcal{I} \,\, \text{with} \,\, i\neq j, \, \forall \xi\in \, V_i \,\, \text{and} \,\, \forall \eta\in \, V_j, \\ \tau(\langle \xi|\eta\rangle_A)=0,$
 - 2 the space $\mathcal{E}_0 = \sum_{i \in \mathcal{T}} V_i$ is dense in $(E, \|\cdot\|_A)$,
- a one-to-one antilinear operator $J: \mathcal{E}_0 \to \mathcal{E}_0$,
- ullet a finite-dimensional subspace W of E.

Example

Let M be a compact Riemannian manifold. The space of continuous sections of the bundle of exterior forms on M, $\Gamma(\Lambda^*M)$, is a Hilbert C(M)-module. A natural orthogonal filtration of $\Gamma(\Lambda^*M)$ is given by:

- $(V_i)_{i \in \mathbb{N}}$ is the family of eigenspaces of the de Rham operator $D = \overline{d + d^*}$.
- $\tau = \int \cdot \mathrm{d}vol$,
- $W = \mathbb{C}.(m \mapsto 1_{\Lambda_m^*M}),$
- $J: \Gamma(\Lambda^*M) \to \Gamma(\Lambda^*M)$ is the canonical involution.

• A spectral triple (A, \mathcal{H}, D) is said to be *finitely summable* if there exists $p \in \mathbb{N}$ such that $|D|^{-p}$ admits a Dixmier trace, which is nonzero.

- A spectral triple (A, \mathcal{H}, D) is said to be *finitely summable* if there exists $p \in \mathbb{N}$ such that $|D|^{-p}$ admits a Dixmier trace, which is nonzero.
- $(\mathcal{A}, \mathcal{H}, D)$ is said to be *regular* if for all $a \in \mathcal{A}$ and all $n \in \mathbb{N}$, a and [D, a] are in the domain of the unbounded operator δ^n on $\mathcal{L}(\mathcal{H})$, where $\delta = [|D|, \cdot]$.

 $(\mathcal{A},\mathcal{H},D)$ satisfies the finiteness and absolute continuity condition if furthermore, the space $\mathcal{H}^\infty = \bigcap_{k \in \mathbb{N}} \mathrm{dom}(D^k)$ is a finitely

generated projective left A-module, and if there exists $q \in \mathcal{M}_n(A)$ with $q = q^2 = q^*$ such that:

- $\bullet \mathcal{H}^{\infty} \cong \mathcal{A}^n q,$
- 2 the left \mathcal{A} -scalar product $_{\mathcal{A}}\langle\cdot|\cdot\rangle$ induced on \mathcal{H}^{∞} by the previous isomorphism satisfies:

$$\frac{Tr_{\omega}(\mathcal{A}\langle\xi|\eta\rangle|D|^{-p})}{Tr_{\omega}(|D|^{-p})} = (\eta|\xi)_{\mathcal{H}}.$$

Example

Setting:

- $A = closure of A in \mathcal{L}(\mathcal{H})$,
- $E = completion of \mathcal{H}^{\infty}$ (for the A-norm),
- $(V_i)_{i\in\mathbb{N}} = eigenspaces of D$,

•
$$\tau = a \mapsto \frac{Tr_{\omega}(a|D|^{-p})}{Tr_{\omega}(|D|^{-p})}$$

If we assume furthermore that τ is faithful and $\mathcal{E}_0 = \sum_{i \in \mathcal{I}} V_i$ is dense in E, we get an orthogonal filtration of E (with $J: \mathcal{E}_0 \to \mathcal{E}_0$ any one-to-one antilinear map and e.g. W = (0)).

A Woronowicz C^* -algebra is a couple $(C(\mathbb{G}), \Delta)$, where $C(\mathbb{G})$ is a C^* -algebra and $\Delta: C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ is a *-morphism such that:

- $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$,
- the spaces $\mathrm{span}\{\Delta(C(\mathbb{G})).(C(\mathbb{G})\otimes 1)\}$ and $\mathrm{span}\{\Delta(C(\mathbb{G})).(1\otimes C(\mathbb{G}))\}$ are both dense in $C(\mathbb{G})\otimes C(\mathbb{G})$.

Let $(C(\mathbb{G}), \Delta)$ be a Woronowicz C^* -algebra, and A be a C^* -algebra. A coaction of $C(\mathbb{G})$ on A is a *-morphism $\alpha: A \to A \otimes C(\mathbb{G})$ satisfying:

- $(\alpha \otimes id_{C(\mathbb{G})}) \circ \alpha = (id_A \otimes \Delta) \circ \alpha$
- $\alpha(A).(1 \otimes C(\mathbb{G}))$ is dense in $A \otimes C(\mathbb{G})$.

Let $(C(\mathbb{G}), \Delta, \alpha)$ be a Woronowicz C^* -algebra coacting on a C^* -algebra A, and let E be a Hilbert A-module. A coaction of $C(\mathbb{G})$ on E is a linear map $\beta: E \to E \otimes C(\mathbb{G})$ satisfying:

- $(\beta \otimes id) \circ \beta = (id \otimes \Delta) \circ \beta$
- $\beta(E).(A \otimes C(\mathbb{G}))$ is dense in $E \otimes C(\mathbb{G})$
- $\forall \xi, \eta \in E, \langle \beta(\xi) | \beta(\eta) \rangle_{A \otimes C(\mathbb{G})} = \alpha(\langle \xi | \eta \rangle_A)$
- $\forall \xi \in E, \forall a \in A, \beta(\xi.a) = \beta(\xi).\alpha(a)$

Let $(C(\mathbb{G}), \Delta, \alpha)$ be a Woronowicz C^* -algebra coacting on a C^* -algebra A, and let E be a Hilbert A-module. A coaction of $C(\mathbb{G})$ on E is a linear map $\beta: E \to E \otimes C(\mathbb{G})$ satisfying:

- $(\beta \otimes id) \circ \beta = (id \otimes \Delta) \circ \beta$
- $\beta(E).(A \otimes C(\mathbb{G}))$ is dense in $E \otimes C(\mathbb{G})$
- $\forall \xi, \eta \in E, \langle \beta(\xi) | \beta(\eta) \rangle_{A \otimes C(\mathbb{G})} = \alpha(\langle \xi | \eta \rangle_A)$
- $\forall \xi \in E, \forall a \in A, \beta(\xi.a) = \beta(\xi).\alpha(a)$

We say that the coaction (α, β) of $C(\mathbb{G})$ on E is faithful if there exists no nontrivial Woronowicz C^* -subalgebra $C(\mathbb{H})$ of $C(\mathbb{G})$ such that $\beta(E) \subset E \otimes C(\mathbb{H})$.

Let E be a Hilbert A-module endowed with an orthogonal filtration $(\tau,(V_i)_{i\in\mathcal{I}},J,W)$. A filtration-preserving coaction of a Woronowicz C^* -algebra $C(\mathbb{G})$ on E is a coaction (α,β) of $C(\mathbb{G})$ on E satisfying:

- $(\tau \otimes id) \circ \alpha = \tau(\cdot)1_{C(\mathbb{G})}$,
- $\forall i \in \mathcal{I}, \beta(V_i) \subset V_i \odot C(\mathbb{G}),$
- \bullet $(J \otimes *) \circ \beta = \beta \circ J$ on \mathcal{E}_0 ,
- $\forall \xi \in W, \beta(\xi) = \xi \otimes 1_{C(\mathbb{G})}.$

- We say that a Hilbert A-module E is full if the space $\langle E|E\rangle_A = \operatorname{span}\{\langle \xi|\eta\rangle_A \; ; \; \xi,\eta\in E\}$ is dense in A.
- If $(\alpha_{\mathbb{G}}, \beta_{\mathbb{G}})$ and $(\alpha_{\mathbb{H}}, \beta_{\mathbb{H}})$ are filtration preserving coactions of Woronowicz C^* -algebras $C(\mathbb{G})$ and $C(\mathbb{H})$ on E, then a morphism from $C(\mathbb{G})$ to $C(\mathbb{H})$ is a morphism of Woronowicz C^* -algebras $\mu: C(\mathbb{G}) \to C(\mathbb{H})$ satisfying:

$$\alpha_{\mathbb{H}} = (id_A \otimes \mu) \circ \alpha_{\mathbb{G}} \quad \text{and} \quad \beta_{\mathbb{H}} = (id_E \otimes \mu) \circ \beta_{\mathbb{G}}.$$

Theorem

Let A be a C^* -algebra and let E be a full Hilbert A-module endowed with an orthogonal filtration $(\tau,(V_i)_{i\in\mathcal{I}},J,W)$. There exists a universal Woronowicz C^* -algebra coacting on E in a filtration-preserving way. The quantum group corresponding to that universal object is called the **quantum symmetry group** of $(E,\tau,(V_i)_{i\in\mathcal{I}},J,W)$.

Theorem

Let A be a C^* -algebra and let E be a full Hilbert A-module endowed with an orthogonal filtration $(\tau,(V_i)_{i\in\mathcal{I}},J,W)$. There exists a universal Woronowicz C^* -algebra coacting on E in a filtration-preserving way. The quantum group corresponding to that universal object is called the **quantum symmetry group** of $(E,\tau,(V_i)_{i\in\mathcal{I}},J,W)$.

This generalizes and unifies the universal objects constructed by Banica-Skalski and Goswami.

Objective: Find a Woronowicz C^* -algebra $(C(\mathbb{G}_u), \Delta_u, \alpha_u, \beta_u)$ coacting on E in a filtration preserving way, and such that for each $(C(\mathbb{G}), \Delta, \alpha, \beta)$ coacting on E in a filtration preserving way, there exists a unique morphism $C(\mathbb{G}_u) \to C(\mathbb{G})$.

We define on \mathcal{E}_0 a right and a left scalar product by:

$$(\xi|\eta)_{\tau} = \tau(\langle \xi|\eta \rangle_A)$$

$$_{\tau}(\xi|\eta) = \tau(\langle J(\xi)|J(\eta)\rangle_A).$$

For each $i \in \mathcal{I}$ we fix:

- an orthonormal basis $(e_{ij})_{1 \leqslant j \leqslant d_i}$ of V_i for the right scalar product $(\cdot|\cdot)_{\tau}$,
- an orthonormal basis $(f_{ij})_{1 \leqslant j \leqslant d_i}$ of V_i for the left scalar product $\tau(\cdot|\cdot)$.

We denote by $p^{(i)} \in GL_{d_i}(\mathbb{C})$ the change of basis matrix from (f_{ij}) to the basis (e_{ij}) of V_i and we set $s^{(i)} = p^{(i)t}\overline{p^{(i)}}$.

Lemma

Let (α, β) be a filtration preserving coaction of a Woronowicz C^* -algebra $C(\mathbb{G})$ on E. For all $i \in \mathcal{I}$, since $\beta(V_i) \subset V_i \odot C(\mathbb{G})$, there exists a multiplicative matrix $v^{(i)} = (v^{(i)}_{kj})_{1 \leqslant k,j \leqslant d_i}$ such that:

$$\forall j, \beta(e_{ij}) = \sum_{k=1}^{d_i} e_{ik} \otimes v_{kj}^{(i)}.$$

Then the matrix $v^{(i)}$ is unitary and

$$v^{(i)t}s^{(i)}\overline{v^{(i)}}(s^{(i)})^{-1} = s^{(i)}\overline{v^{(i)}}(s^{(i)})^{-1}v^{(i)t} = I_{d_i}$$

For all $i\in\mathcal{I}$, we consider $\mathcal{A}_u(s^{(i)})$ the universal Woronowicz C^* -algebra generated by a multiplicative and unitary matrix $u^{(i)}=(u^{(i)}_{kj})_{1\leqslant k,j\leqslant d_i}$, satisfying the following relations:

$$u^{(i)t}s^{(i)}\overline{u^{(i)}}(s^{(i)})^{-1} = s^{(i)}\overline{u^{(i)}}(s^{(i)})^{-1}u^{(i)t} = I_{di}.$$

We set $\mathcal{U} = \underset{i \in \mathcal{I}}{*} \mathcal{A}_u(s^{(i)})$ and $\beta_u : \mathcal{E}_0 \to \mathcal{E}_0 \odot \mathcal{U}$ the linear map given by:

$$\beta_u(e_{ij}) = \sum_{k=1}^{d_i} e_{ik} \otimes u_{kj}^{(i)}.$$

Lemma

Let (α, β) be a faithful filtration preserving coaction of a Woronowicz C^* -algebra $C(\mathbb{G})$ on E. There exists a Woronowicz C^* -ideal $I \subset \mathcal{U}$ and a faithful filtration preserving coaction (α_I, β_I) of \mathcal{U}/I on E such that:

- $\mathcal{U}/I \cong C(\mathbb{G})$,
- β_I extends $(id \otimes \pi_I) \circ \beta_u$.

If $C(\mathbb{G}) \cong \mathcal{U}/I$ and $C(\mathbb{H}) \cong \mathcal{U}/J$ with $I \subset J$, then there exists a unique morphism $C(\mathbb{G}) \to C(\mathbb{H})$.

If $C(\mathbb{G}) \cong \mathcal{U}/I$ and $C(\mathbb{H}) \cong \mathcal{U}/J$ with $I \subset J$, then there exists a unique morphism $C(\mathbb{G}) \to C(\mathbb{H})$.

We have to set $C(\mathbb{G}_u) = \mathcal{U}/I$ where I is the smallest C^* -ideal such that there exists a filtration preserving coaction (α_I, β_I) of \mathcal{U}/I on E.

Example (\mathbb{C}^n)

The quantum symmetry group of the Hilbert \mathbb{C} -module \mathbb{C}^n equipped with the orthogonal filtration $(id_{\mathbb{C}}, (\mathbb{C}^n), J, (0))$ where $J: \mathbb{C}^n \to \mathbb{C}^n$ is any invertible antilinear map, is $\mathcal{A}_o(J) = \langle (u_{ii})_{1 \leq i, i \leq n}$ unitary ; $u = J\overline{u}J^{-1} >$.

Example

We set I = [0,1] and we denote by $\delta_+ : L^2(I) \to L^2(I)$ the operator $\frac{d}{dx}$ with domain:

$$dom(\delta_+) = \{ f \in H^1(I) ; f(0) = f(1) = 0 \}.$$

Its adjoint operator is $\delta_- = -\frac{d}{dx}$ with domain $H^1(I)$. We define $D_0: L^2(\Lambda^*(I)) \to L^2(\Lambda^*(I)) \cong L^2(I) \oplus L^2(I)$ by:

$$D_0 = \begin{pmatrix} 0 & \delta_- \\ \delta_+ & 0 \end{pmatrix}.$$

The quantum symmetry group of the Hilbert module associated with (A, H, D) where $A = C(I)^n \cong C([0, 1] \times \{1, \dots, n\})$, $H = L^2(\Lambda^*(I))^n$ and $D = diag(D_0, \dots, D_0)$, is the hyperoctahedral quantum group $\mathcal{A}_h(n) = C(H_n^+)$.