Groupoids and Pseudodifferential calculus I.

D. & Skandalis - Adiabatic groupoid, crossed product by \mathbb{R}_+^* and Pseudodifferential calculus - Adv. Math 2014

 $http://math.univ-bpclermont.fr/{\sim}debord/$

NGA - Frascati

2014

Let $G \rightrightarrows G^{(0)}$ be a smooth groupoid and denote by $\mathfrak{A}G$ its Lie algebroid. One gets exact sequences of C^* -algebras:

Let $G \rightrightarrows G^{(0)}$ be a smooth groupoid and denote by $\mathfrak{A}G$ its Lie algebroid. One gets exact sequences of C^* -algebras:

• From Analysis : The pseudodifferential operators exact sequence

$$0 \to C^*(G) \longrightarrow \Psi_0^*(G) \longrightarrow C(S^*\mathfrak{A}G) \to 0 \tag{PDO}$$

Let $G \rightrightarrows G^{(0)}$ be a smooth groupoid and denote by $\mathfrak{A}G$ its Lie algebroid. One gets exact sequences of C^* -algebras:

• From Analysis : The pseudodifferential operators exact sequence

$$0 \to C^*(G) \longrightarrow \Psi_0^*(G) \longrightarrow C(S^*\mathfrak{A}G) \to 0 \tag{PDO}$$

which is a generalization, for a smooth compact manifold M, of

$$0 \to \mathcal{K}(L^2(M)) \longrightarrow \Psi_0^*(M) \stackrel{\sigma_0}{\longrightarrow} C(S^*TM) \to 0$$

Let $G \rightrightarrows G^{(0)}$ be a smooth groupoid and denote by $\mathfrak{A}G$ its Lie algebroid. One gets exact sequences of C^* -algebras:

• From Analysis : The pseudodifferential operators exact sequence

$$0 \to C^*(G) \longrightarrow \Psi_0^*(G) \longrightarrow C(S^*\mathfrak{A}G) \to 0 \tag{PDO}$$

which is a generalization, for a smooth compact manifold M, of

$$0 \to \mathcal{K}(L^2(M)) \longrightarrow \Psi_0^*(M) \stackrel{\sigma_0}{\longrightarrow} C(S^*TM) \to 0$$

 From Geometry: The Gauge adiabatic groupoid short exact sequence:

$$0 \to C^*(G) \otimes \mathcal{K} \longrightarrow J(G) \rtimes \mathbb{R}_+^* \longrightarrow C(S^*\mathfrak{A}G) \otimes \mathcal{K} \to 0 \quad \text{(GAG)}$$

Where $J(G) \subset C^*(G_{ad})$ is an ideal of the C*-algebra of the adiabatic groupoid G_{ad} of G, and the natural action of \mathbb{R}_+^* on G_{ad} is considered.

Theorem (D. & Skandalis)

There is an ideal $\mathcal{J}(G)\subset C_c^\infty(G_{ad})$ such that :

★ The order 0 pseudo differential operators on G are multipliers of $C_c^{\infty}(G)$ of the form $\int_0^{\infty} f_t \frac{dt}{t}$ where $f = (f_t)_{t \in \mathbb{R}_+} \in \mathcal{J}(G)$.

Theorem (D. & Skandalis)

There is an ideal $\mathcal{J}(G)\subset C_c^\infty(G_{ad})$ such that :

- ★ The order 0 pseudo differential operators on G are multipliers of $C_c^{\infty}(G)$ of the form $\int_0^{\infty} f_t \frac{dt}{t}$ where $f = (f_t)_{t \in \mathbb{R}_+} \in \mathcal{J}(G)$.
- One can make a completion of $\mathcal{J}(G)$ into a bimodule \mathcal{E} which leads to a Morita equivalence between $\Psi_0^*(G)$ and $J(G) \rtimes \mathbb{R}_+^*$.

Theorem (D. & Skandalis)

There is an ideal $\mathcal{J}(G)\subset C_c^\infty(G_{ad})$ such that :

- ★ The order 0 pseudo differential operators on G are multipliers of $C_c^{\infty}(G)$ of the form $\int_0^{\infty} f_t \frac{dt}{t}$ where $f = (f_t)_{t \in \mathbb{R}_+} \in \mathcal{J}(G)$.
- One can make a completion of $\mathcal{J}(G)$ into a bimodule \mathcal{E} which leads to a Morita equivalence between $\Psi_0^*(G)$ and $J(G) \rtimes \mathbb{R}_+^*$.

Today, in this talk:

Describe the short exact sequence (PDO).

Theorem (D. & Skandalis)

There is an ideal $\mathcal{J}(G) \subset C_c^\infty(G_{ad})$ such that :

- ★ The order 0 pseudo differential operators on G are multipliers of $C_c^{\infty}(G)$ of the form $\int_0^{\infty} f_t \frac{dt}{t}$ where $f = (f_t)_{t \in \mathbb{R}_+} \in \mathcal{J}(G)$.
- One can make a completion of $\mathcal{J}(G)$ into a bimodule \mathcal{E} which leads to a Morita equivalence between $\Psi_0^*(G)$ and $J(G) \rtimes \mathbb{R}_+^*$.

Today, in this talk:

- Describe the short exact sequence (PDO).
- Describe the short exact sequence (GAG).

Theorem (D. & Skandalis)

There is an ideal $\mathcal{J}(G)\subset C_c^\infty(G_{ad})$ such that :

- ★ The order 0 pseudo differential operators on G are multipliers of $C_c^{\infty}(G)$ of the form $\int_0^{\infty} f_t \frac{dt}{t}$ where $f = (f_t)_{t \in \mathbb{R}_+} \in \mathcal{J}(G)$.
- One can make a completion of $\mathcal{J}(G)$ into a bimodule \mathcal{E} which leads to a Morita equivalence between $\Psi_0^*(G)$ and $J(G) \rtimes \mathbb{R}_+^*$.

Today, in this talk:

- Describe the short exact sequence (PDO).
- Describe the short exact sequence (GAG).
- Describe the ideal $\mathcal{J}(G)$ and give a precise statement of \bigstar .

Lie algebroid and exponential map of $G \stackrel{s}{\Longrightarrow} G^{(0)}$

Lie algebroid and exponential map of $G \stackrel{s}{\underset{r}{\Longrightarrow}} G^{(0)}$

For $x \in G^{(0)}$ denote $G_x = s^{-1}(x)$ and $G^x = r^{-1}(x)$.

Lie algebroid and exponential map of $G \stackrel{s}{\underset{r}{\Longrightarrow}} G^{(0)}$

For $x \in G^{(0)}$ denote $G_x = s^{-1}(x)$ and $G^x = r^{-1}(x)$.

The Lie algebroid $\pi: \mathfrak{A}G \to G^{(0)}$ of G is the normal bundle of the inclusion of units $G^{(0)} \to G$ it can be identified with the restriction to $G^{(0)}$ of Ker(ds):

$$\mathfrak{A}G = TG/TG^{(0)} \simeq Ker(ds)|_{G^{(0)}} = \bigcup_{x \in G^{(0)}} T_x G_x$$

The differential map dr of r leads to the anchor map : $\sharp:\mathfrak{A}G\to TG^{(0)}$.

Lie algebroid and exponential map of $G \stackrel{s}{\underset{r}{\Longrightarrow}} G^{(0)}$

For $x \in G^{(0)}$ denote $G_x = s^{-1}(x)$ and $G^x = r^{-1}(x)$.

The Lie algebroid $\pi: \mathfrak{A}G \to G^{(0)}$ of G is the normal bundle of the inclusion of units $G^{(0)} \to G$ it can be identified with the restriction to $G^{(0)}$ of Ker(ds):

$$\mathfrak{A}G = TG/TG^{(0)} \simeq Ker(ds)|_{G^{(0)}} = \bigcup_{x \in G^{(0)}} T_x G_x$$

The differential map dr of r leads to the anchor map : $\sharp: \mathfrak{A}G \to TG^{(0)}$.

An exponential map $\theta: V' \to V$ for G is a diffeomorphism where $G^{(0)} \subset V' \subset \mathfrak{A}G$, $G^{(0)} \subset V \subset G$, V and V' being open and such that :

- $\bullet \ \theta|_{\mathcal{G}^{(0)}} = \mathit{Id} \ \mathsf{and} \ r \circ \theta = \pi,$
- For $x \in G^{(0)}$, $d\theta(x,0)$ is the "identity" on the normal direction of the inclusion of $G^{(0)}: \mathfrak{A}G_x \simeq T_{(x,0)}\mathfrak{A}G/T_xG^{(0)} \to \mathfrak{A}G_x$.

Given the groupoid G, one can define :

• A convolution *-algebra $C_c^{\infty}(G)$ which leads to a C*-algebra $C^*(G)$ after choosing a norm (J. Renault).

Given the groupoid G, one can define :

• A convolution *-algebra $C_c^{\infty}(G)$ which leads to a C*-algebra $C^*(G)$ after choosing a norm (J. Renault). The multiplier algebra $\mathcal{M}(C_c^{\infty}(G))$ of $C_c^{\infty}(G)$.

Given the groupoid G, one can define :

- A convolution *-algebra $C_c^{\infty}(G)$ which leads to a C*-algebra $C^*(G)$ after choosing a norm (J. Renault). The multiplier algebra $\mathcal{M}(C_c^{\infty}(G))$ of $C_c^{\infty}(G)$.
- Pseudodifferential calculus (A. Connes, B. Monthubert & F. Pierrot,
 V. Nistor , A. Weinstein & P. Xu)

Given the groupoid G, one can define :

- A convolution *-algebra $C_c^{\infty}(G)$ which leads to a C*-algebra $C^*(G)$ after choosing a norm (J. Renault). The multiplier algebra $\mathcal{M}(C_c^{\infty}(G))$ of $C_c^{\infty}(G)$.
- Pseudodifferential calculus (A. Connes, B. Monthubert & F. Pierrot, V. Nistor , A. Weinstein & P. Xu) . For any $m \in \mathbb{Z}$, the set $\mathcal{S}^m(\mathfrak{A}^*G) \subset C^\infty(\mathfrak{A}^*G)$ of order m polyhomogeneous symbols :

Given the groupoid G, one can define :

- A convolution *-algebra $C_c^{\infty}(G)$ which leads to a C*-algebra $C^*(G)$ after choosing a norm (J. Renault). The multiplier algebra $\mathcal{M}(C_c^{\infty}(G))$ of $C_c^{\infty}(G)$.
- Pseudodifferential calculus (A. Connes, B. Monthubert & F. Pierrot, V. Nistor , A. Weinstein & P. Xu) . For any $m \in \mathbb{Z}$, the set $\mathcal{S}^m(\mathfrak{A}^*G) \subset C^\infty(\mathfrak{A}^*G)$ of order m polyhomogeneous symbols :

 $\varphi \in C^{\infty}(\mathfrak{A}^*G)$ belongs to $S^m(\mathfrak{A}^*G)$ if there exists $(a_j)_{j \in \llbracket m, \infty \rrbracket}$, where $a_j \in C^{\infty}(\mathfrak{A}^*G)$ is homogeneous of order $j: a_j(x, \lambda \xi) = \lambda^j a_j(x, \xi)$ and

$$\varphi \sim \sum_{k=0}^{\infty} a_{m-k}$$

Given the groupoid G, one can define :

- A convolution *-algebra $C_c^{\infty}(G)$ which leads to a C*-algebra $C^*(G)$ after choosing a norm (J. Renault). The multiplier algebra $\mathcal{M}(C_c^{\infty}(G))$ of $C_c^{\infty}(G)$.
- Pseudodifferential calculus (A. Connes, B. Monthubert & F. Pierrot, V. Nistor , A. Weinstein & P. Xu) . For any $m \in \mathbb{Z}$, the set $\mathcal{S}^m(\mathfrak{A}^*G) \subset C^\infty(\mathfrak{A}^*G)$ of order m polyhomogeneous symbols :

 $\varphi \in C^{\infty}(\mathfrak{A}^*G)$ belongs to $S^m(\mathfrak{A}^*G)$ if there exists $(a_j)_{j \in \llbracket m, \infty \rrbracket}$, where $a_j \in C^{\infty}(\mathfrak{A}^*G)$ is homogeneous of order $j: a_j(x, \lambda \xi) = \lambda^j a_j(x, \xi)$ and

$$\varphi \sim \sum_{k=0}^{\infty} a_{m-k}$$

i.e. for any N the function $\varphi - \sum_{k=0}^{N} a_{m-k} \in \mathcal{S}^{m-N}(\mathfrak{A}^*G)$, grows less fast at ∞ then an order m-N polynomial in $|\xi|$, as well as all its derivatives.

• For any $m \in \mathbb{Z}$, the set $\mathcal{P}_m(G) \subset \mathcal{M}(C_c^{\infty}(G))$ of pseudodifferential operators of order m on G:

• For any $m \in \mathbb{Z}$, the set $\mathcal{P}_m(G) \subset \mathcal{M}(C_c^{\infty}(G))$ of pseudodifferential operators of order m on $G: P \in \mathcal{P}_m(G)$ is a multiplier of the form $P = P_0 + K$ where $K \in C_c^{\infty}(G)$ and for any $f \in C_c^{\infty}(G)$ and $\gamma \in G$:

$$P_0 * f(\gamma) = \int_{\eta \in G^{r(\gamma)}} P_0(\eta) f(\eta^{-1} \gamma) (d\eta)$$

• For any $m \in \mathbb{Z}$, the set $\mathcal{P}_m(G) \subset \mathcal{M}(C_c^{\infty}(G))$ of pseudodifferential operators of order m on $G: P \in \mathcal{P}_m(G)$ is a multiplier of the form $P = P_0 + K$ where $K \in C_c^{\infty}(G)$ and for any $f \in C_c^{\infty}(G)$ and $\gamma \in G$:

$$P_0 * f(\gamma) = \int_{\eta \in G^{r(\gamma)}} P_0(\eta) f(\eta^{-1} \gamma) (d\eta)$$

Where there is a polyhomogeneous symbol $\varphi \in \mathcal{S}^m(\mathfrak{A}^*G)$ such that P_0 is the limit in $\mathcal{M}(\mathcal{C}_c^\infty(G))$ of P_0^R when $R \to \infty$ where :

$$P_0^R(\eta) = \int_{\substack{\xi \in \mathfrak{A}^* G_{r(\eta)} \\ \|\xi\| \le R}} e^{i < \theta^{-1}(\eta), \xi > \varphi(r(\eta), \xi) d\xi}$$

• For any $m \in \mathbb{Z}$, the set $\mathcal{P}_m(G) \subset \mathcal{M}(C_c^{\infty}(G))$ of pseudodifferential operators of order m on $G: P \in \mathcal{P}_m(G)$ is a multiplier of the form $P = P_0 + K$ where $K \in C_c^{\infty}(G)$ and for any $f \in C_c^{\infty}(G)$ and $\gamma \in G$:

$$P_0 * f(\gamma) = \int_{\eta \in G^{r(\gamma)}} P_0(\eta) f(\eta^{-1} \gamma) (d\eta)$$

Where there is a polyhomogeneous symbol $\varphi \in \mathcal{S}^m(\mathfrak{A}^*G)$ such that P_0 is the limit in $\mathcal{M}(\mathcal{C}_c^{\infty}(G))$ of P_0^R when $R \to \infty$ where :

$$P_0^R(\eta) = \int_{\substack{\xi \in \mathfrak{A}^* G_{r(\eta)} \\ \|\xi\| \le R}} e^{i < \theta^{-1}(\eta), \xi > \varphi(r(\eta), \xi) d\xi}$$

We usually denote $P_0(\eta)=\int_{\xi\in\mathfrak{A}^*G_{r(\eta)}}e^{i<\theta^{-1}(\eta),\xi>}arphi(r(\eta),\xi)d\xi$

Facts:

For $m \leq 0$, P extends to a multiplier of $C^*(G)$

Facts:

For $m \le 0$, P extends to a multiplier of $C^*(G)$ and when m < 0 it belongs to $C^*(G)$.

We denote by $\Psi^*(G)$ the closure of $\mathcal{P}_0(G)$ in $\mathcal{M}(C^*(G))$.

Facts:

For $m \le 0$, P extends to a multiplier of $C^*(G)$ and when m < 0 it belongs to $C^*(G)$.

We denote by $\Psi^*(G)$ the closure of $\mathcal{P}_0(G)$ in $\mathcal{M}(C^*(G))$.

The principal symbol map $P\mapsto a_0$ is well defined and extends to a morphism

$$\sigma_0: \Psi^*(G) \to C(S^*(\mathfrak{A}G))$$

Facts:

For $m \le 0$, P extends to a multiplier of $C^*(G)$ and when m < 0 it belongs to $C^*(G)$.

We denote by $\Psi^*(G)$ the closure of $\mathcal{P}_0(G)$ in $\mathcal{M}(C^*(G))$.

The principal symbol map $P\mapsto a_0$ is well defined and extends to a morphism

$$\sigma_0: \Psi^*(G) \to C(S^*(\mathfrak{A}G))$$

moreover it gives the short exact sequence :

$$0 \to C^*(G) \longrightarrow \Psi_0^*(G) \longrightarrow C(S^*\mathfrak{A}G) \to 0 \tag{PDO}$$

Choose an exponential map $\theta: V' \subset \mathfrak{A}G \stackrel{\simeq}{\longrightarrow} V \subset G$ for G.

The adiabatic groupoid is $G_{ad}=G imes\mathbb{R}_+^*\cup\mathfrak{A}G imes\{0\}
ightrightarrows\mathcal{R}_+$

Choose an exponential map $\theta: V' \subset \mathfrak{A}G \stackrel{\simeq}{\longrightarrow} V \subset G$ for G.

The adiabatic groupoid is
$$G_{ad}=G imes\mathbb{R}_+^*\cup\mathfrak{A}G imes\{0\}
ightrightarrows\mathcal{R}_+$$

Let $W' = \{(x,X,t) \in \mathfrak{A}G imes \mathbb{R}_+ \mid (x,tX) \in V'\}$ and ask the map

$$\Theta: \quad W' \quad \longrightarrow \quad G_{ad}$$

$$(x,X,t) \quad \mapsto \quad \left\{ \begin{array}{l} \theta(x,tX,t) \text{ for } t \neq 0 \\ (x,X,0) \text{ for } t = 0 \end{array} \right.$$

to be a diffeomorphism on its image.

Choose an exponential map $\theta: V' \subset \mathfrak{A}G \stackrel{\simeq}{\longrightarrow} V \subset G$ for G.

The adiabatic groupoid is
$$G_{ad}=G imes\mathbb{R}_+^*\cup\mathfrak{A}G imes\{0\}
ightrightarrows\mathcal{R}_+$$

Let $W'=\{(x,X,t)\in \mathfrak{A} G imes \mathbb{R}_+\mid (x,tX)\in V'\}$ and ask the map

$$\Theta: \quad W' \quad \longrightarrow \quad G_{ad} \\ (x,X,t) \quad \mapsto \quad \left\{ \begin{array}{l} \theta(x,tX,t) \ \textit{for} \ t \neq 0 \\ (x,X,0) \ \textit{for} \ t = 0 \end{array} \right.$$

to be a diffeomorphism on its image.

The natural action of \mathbb{R}_+^* on G_{ad} is :

$$\begin{array}{ccc} G_{ad} \times \mathbb{R}_{+}^{*} & \longrightarrow & G_{ad} \\ \left(\gamma, t, \lambda\right) & \mapsto & \left(\gamma, \lambda t\right) \text{ for } t \neq 0 \\ \left(x, X, 0, \lambda\right) & \mapsto & \left(x, \frac{1}{\lambda} X, 0\right) \text{ for } t = 0 \end{array}$$

Choose an exponential map $\theta: V' \subset \mathfrak{A}G \stackrel{\simeq}{\longrightarrow} V \subset G$ for G.

The adiabatic groupoid is
$$G_{ad}=G imes\mathbb{R}_+^*\cup\mathfrak{A}G imes\{0\}
ightrightarrows\mathcal{R}_+$$

Let $W' = \{(x,X,t) \in \mathfrak{A} G imes \mathbb{R}_+ \mid (x,tX) \in V'\}$ and ask the map

$$\Theta: \quad W' \quad \longrightarrow \quad G_{ad} \\ (x,X,t) \quad \mapsto \quad \left\{ \begin{array}{l} \theta(x,tX,t) \ \textit{for} \ t \neq 0 \\ (x,X,0) \ \textit{for} \ t = 0 \end{array} \right.$$

to be a diffeomorphism on its image.

The natural action of \mathbb{R}_+^* on G_{ad} is :

$$\begin{array}{ccc} G_{ad} \times \mathbb{R}_{+}^{*} & \longrightarrow & G_{ad} \\ \left(\gamma, t, \lambda\right) & \mapsto & \left(\gamma, \lambda t\right) \text{ for } t \neq 0 \\ \left(x, X, 0, \lambda\right) & \mapsto & \left(x, \frac{1}{\lambda} X, 0\right) \text{ for } t = 0 \end{array}$$

The Gauge adiabatic groupoid is then $G_{ga} = G_{ad} \rtimes \mathbb{R}_+^* \rightrightarrows G^{(0)} \times \mathbb{R}_+$.

The evaluation map at 0 gives the exact sequence :

$$0 \to C^*(G_{ad}|_{\mathbb{R}_+^*}) \longrightarrow C^*(G_{ad}) \xrightarrow{\text{ev}_0} C^*(\mathfrak{A}G) \to 0$$
$$\simeq C^*(G) \otimes C_0(\mathbb{R}_+^*) \simeq C_0(\mathfrak{A}^*G)$$

The evaluation map at 0 gives the exact sequence :

$$0 \to C^*(G_{ad}|_{\mathbb{R}_+^*}) \longrightarrow C^*(G_{ad}) \xrightarrow{ev_0} C^*(\mathfrak{A}G) \to 0$$

$$\simeq C^*(G) \otimes C_0(\mathbb{R}_+^*) \simeq C_0(\mathfrak{A}^*G)$$

Look at the ideal $C_0(\mathfrak{A}^*G\setminus G^{(0)})\subset C_0(\mathfrak{A}^*G)$ and set $J(G)=ev_0^{-1}(C_0(\mathfrak{A}^*G\setminus G^{(0)})).$

The evaluation map at 0 gives the exact sequence :

$$0 \to C^*(G_{ad}|_{\mathbb{R}_+^*}) \longrightarrow C^*(G_{ad}) \xrightarrow{ev_0} C^*(\mathfrak{A}G) \to 0$$

$$\simeq C^*(G) \otimes C_0(\mathbb{R}_+^*) \simeq C_0(\mathfrak{A}^*G)$$

Look at the ideal $C_0(\mathfrak{A}^*G\setminus G^{(0)})\subset C_0(\mathfrak{A}^*G)$ and set $J(G)=ev_0^{-1}(C_0(\mathfrak{A}^*G\setminus G^{(0)}))$. Then one gets :

$$0 \to C^*(G) \otimes C_0(\mathbb{R}_+^*) \longrightarrow J(G) \longrightarrow C_0(\mathfrak{A}^*G \setminus G^{(0)}) \to 0$$

The evaluation map at 0 gives the exact sequence :

$$0 \to C^*(G_{ad}|_{\mathbb{R}_+^*}) \longrightarrow C^*(G_{ad}) \xrightarrow{ev_0} C^*(\mathfrak{A}G) \to 0$$

$$\simeq C^*(G) \otimes C_0(\mathbb{R}_+^*) \simeq C_0(\mathfrak{A}^*G)$$

Look at the ideal $C_0(\mathfrak{A}^*G\setminus G^{(0)})\subset C_0(\mathfrak{A}^*G)$ and set $J(G)=ev_0^{-1}(C_0(\mathfrak{A}^*G\setminus G^{(0)}))$. Then one gets :

$$0 \to C^*(G) \otimes C_0(\mathbb{R}_+^*) \longrightarrow J(G) \longrightarrow C_0(\mathfrak{A}^*G \setminus G^{(0)}) \to 0$$

Which is equivariant under the action of \mathbb{R}_+^* and leads to

$$\begin{array}{c} 0 \to \left(C^*(G) \otimes C_0(\mathbb{R}_+^*) \right) \rtimes \mathbb{R}_+^* \to J(G) \rtimes \mathbb{R}_+^* \to C_0(\mathfrak{A}^*G \setminus G^{(0)}) \rtimes \mathbb{R}_+^* \to 0 \\ & \simeq C^*(G) \otimes \mathcal{K} & \subset C^*(G_{ga}) & \simeq C(S^*\mathfrak{A}G) \otimes \mathcal{K} \end{array} \tag{GAG}$$

Short break: where are we...

Short break: where are we...

We have two short exact sequences:

• From Analysis : The pseudo differential operators exact sequence

$$0 \to C^*(G) \longrightarrow \Psi_0^*(G) \longrightarrow C(S^*\mathfrak{A}G) \to 0 \tag{PDO}$$

 From Geometry: The Gauge adiabatic groupoid short exact sequence:

$$0 \to C^*(G) \otimes \mathcal{K} \longrightarrow J(G) \rtimes \mathbb{R}_+^* \longrightarrow C(S^*\mathfrak{A}G) \otimes \mathcal{K} \to 0 \quad \text{(GAG)}$$

Which look two much the same to be really different.

Short break: where are we...

We have two short exact sequences:

• From Analysis : The pseudo differential operators exact sequence

$$0 \to C^*(G) \longrightarrow \Psi_0^*(G) \longrightarrow C(S^*\mathfrak{A}G) \to 0 \tag{PDO}$$

 From Geometry: The Gauge adiabatic groupoid short exact sequence:

$$0 \to C^*(G) \otimes \mathcal{K} \longrightarrow J(G) \rtimes \mathbb{R}_+^* \longrightarrow C(S^*\mathfrak{A}G) \otimes \mathcal{K} \to 0 \quad \text{(GAG)}$$

Which look two much the same to be really different.

The aim now is to take a fresh look on $\Psi_0^*(G)$ with the gauge adiabatic groupoid in mind.

• The ideal $\mathcal{J}_0(G) = S(\mathbb{R}_+^*, C_c^\infty(G)) \subset C^*(G_{ad})$ of rapidly decreasing functions at 0:

• The ideal $\mathcal{J}_0(G) = S(\mathbb{R}_+^*, C_c^\infty(G)) \subset C^*(G_{ad})$ of rapidly decreasing functions at $0: f = (f_t)_{t \in \mathbb{R}_+^*}$ belongs to $\mathcal{J}_0(G)$ if and only if setting $f_0 = 0$, the map $(f_t)_{t \in \mathbb{R}_+}$ belongs to $C_c^\infty(G \times \mathbb{R}_+)$ and for any $k \in \mathbb{N}$ the map $(\gamma, t) \mapsto t^{-k} f_t(\gamma)$ extends smoothly on $G \times \mathbb{R}_+$.

- The ideal $\mathcal{J}_0(G) = S(\mathbb{R}_+^*, C_c^\infty(G)) \subset C^*(G_{ad})$ of rapidly decreasing functions at $0: f = (f_t)_{t \in \mathbb{R}_+^*}$ belongs to $\mathcal{J}_0(G)$ if and only if setting $f_0 = 0$, the map $(f_t)_{t \in \mathbb{R}_+}$ belongs to $C_c^\infty(G \times \mathbb{R}_+)$ and for any $k \in \mathbb{N}$ the map $(\gamma, t) \mapsto t^{-k} f_t(\gamma)$ extends smoothly on $G \times \mathbb{R}_+$.
- The schwartz algebra $S_c(G_{ad})$:

$$S_c(G_{ad}) = \mathcal{J}_0(G) + \{g \in C^{\infty}(W) \mid g \circ \Theta \text{ is uniformaly schwartz along } \mathfrak{A}G\}$$

- The ideal $\mathcal{J}_0(G) = S(\mathbb{R}_+^*, C_c^\infty(G)) \subset C^*(G_{ad})$ of rapidly decreasing functions at $0: f = (f_t)_{t \in \mathbb{R}_+^*}$ belongs to $\mathcal{J}_0(G)$ if and only if setting $f_0 = 0$, the map $(f_t)_{t \in \mathbb{R}_+}$ belongs to $C_c^\infty(G \times \mathbb{R}_+)$ and for any $k \in \mathbb{N}$ the map $(\gamma, t) \mapsto t^{-k} f_t(\gamma)$ extends smoothly on $G \times \mathbb{R}_+$.
- The schwartz algebra $S_c(G_{ad})$:

$$S_c(G_{ad}) = \mathcal{J}_0(G) + \{g \in C^{\infty}(W) \mid g \circ \Theta \text{ is uniformaly schwartz along } \mathfrak{A}G\}$$

For all $k, l \in \mathbb{N}^n$, $j, m \in \mathbb{N}$:

$$\sup \left((\|X\|^2 + t^2)^{\frac{m}{2}} \left| \frac{\partial^{|k|+|I|+j}}{\partial x^k \partial X^I \partial t^j} g \circ \Theta(x, X, t) \right| \right) < +\infty$$

Recall that $\Theta: W' \subset \mathfrak{A}G \times \mathbb{R}_+ \xrightarrow{\cong} W \subset G_{ad}$ is given by $\Theta(x,X,t) = (\theta(x,tX),t)$ for $t \neq 0$ and $\Theta(x,X,0) = (\theta(x,X),0)$.

Definition-Proposition

 $\mathcal{J}(G) \subset S_c(G_{ad})$ is the ideal of functions $f = (f_t)_{t \in \mathbb{R}_+}$ which satisfies the following equivalent conditions :

Definition-Proposition

 $\mathcal{J}(G) \subset S_c(G_{ad})$ is the ideal of functions $f = (f_t)_{t \in \mathbb{R}_+}$ which satisfies the following equivalent conditions :

1 For any $g \in C_c^{\infty}(\mathfrak{A}G)$ the map

$$(x,t) \in G^{(0)} \times \mathbb{R}_+ \mapsto \int_{\mathfrak{A}G_x} g(x,X) \chi \cdot f_t \circ \theta(x,X) dX$$

vanishes as well as all its derivatives on $G^{(0)} \times \{0\}$.

Definition-Proposition

 $\mathcal{J}(G) \subset S_c(G_{ad})$ is the ideal of functions $f = (f_t)_{t \in \mathbb{R}_+}$ which satisfies the following equivalent conditions :

1 For any $g \in C_c^{\infty}(\mathfrak{A}G)$ the map

$$(x,t) \in G^{(0)} \times \mathbb{R}_+ \mapsto \int_{\mathfrak{A}G_x} g(x,X) \chi \cdot f_t \circ \theta(x,X) dX$$

vanishes as well as all its derivatives on $G^{(0)} \times \{0\}$.

2 The map

$$(x,\xi,t) \in \mathfrak{A}^*G \times \mathbb{R}_+ \mapsto \widehat{\chi \cdot f_t} \circ \widehat{\theta}(x,\xi) dX$$

vanishes as well as all its derivatives on $G^{(0)} \times \{0\}$.

 $\chi \in C_c^{\infty}(V)$ is equal to 1 near $G^{(0)} \subset G$.

Definition-Proposition (The following)

ullet For any $g\in C_c^\infty(G)$, $(f_t*g)_{t\in\mathbb{R}_+^*}$ belongs to $\mathcal{J}_0(G)$.

Definition-Proposition (The following)

- ullet For any $g\in C_c^\infty(G)$, $(f_t*g)_{t\in\mathbb{R}_+^*}$ belongs to $\mathcal{J}_0(G)$.
- f = h + g where $h \in \mathcal{J}_0(G)$ and $g \in C^{\infty}(W)$ satisfies : For all $k, l \in \mathbb{N}^n, j \in \mathbb{N}$ and $m \in \mathbb{Z}$:

$$\sup \left((\|\xi\|^2 + t^2)^{\frac{m}{2}} \left| \frac{\partial^{|k| + |I| + j}}{\partial x^k \partial \xi^I \partial t^j} \widehat{g \circ \Theta}(x, \xi, t) \right| \right) < +\infty$$

Definition-Proposition (The following)

- ullet For any $g\in C_c^\infty(G)$, $(f_t*g)_{t\in\mathbb{R}_+^*}$ belongs to $\mathcal{J}_0(G)$.
- f = h + g where $h \in \mathcal{J}_0(G)$ and $g \in C^{\infty}(W)$ satisfies : For all $k, l \in \mathbb{N}^n$, $j \in \mathbb{N}$ and $m \in \mathbb{Z}$:

$$\sup\Bigl((\|\xi\|^2+t^2)^{\frac{m}{2}}\Bigl|\frac{\partial^{|k|+|I|+j}}{\partial x^k\partial\xi^I\partial t^j}\widehat{g\circ\Theta}(x,\xi,t)\Bigr|\Bigr)<+\infty$$

Remark : Condition 3 bellow reassures us : the definition of $\mathcal{J}(G)$ do not depends on the choice of the exponential map θ .

Theorem (D. & Skandalis)

For $f=(f_t)_{t\in\mathbb{R}_+}\in\mathcal{J}(G)$ and $m\in\mathbb{N}$ let

$$P = \int_0^{+\infty} t^m f_t \frac{dt}{t} \quad \text{and} \quad \sigma : (x, \xi) \in \mathfrak{A}^* G \mapsto \int_0^{+\infty} t^m \widehat{f}(x, t \xi, 0) \frac{dt}{t}$$

Then P belongs to $\mathcal{P}_{-m}(G)$ and its principal symbol is σ .

Theorem (D. & Skandalis)

For $f=(f_t)_{t\in\mathbb{R}_+}\in\mathcal{J}(G)$ and $m\in\mathbb{N}$ let

$$P = \int_0^{+\infty} t^m f_t \frac{dt}{t} \quad and \quad \sigma : (x, \xi) \in \mathfrak{A}^*G \mapsto \int_0^{+\infty} t^m \widehat{f}(x, t\xi, 0) \frac{dt}{t}$$

Then P belongs to $\mathcal{P}_{-m}(G)$ and its principal symbol is σ .

What does it mean:

Theorem (D. & Skandalis)

For $f=(f_t)_{t\in\mathbb{R}_+}\in\mathcal{J}(G)$ and $m\in\mathbb{N}$ let

$$P = \int_0^{+\infty} t^m f_t \frac{dt}{t} \quad \text{and} \quad \sigma : (x, \xi) \in \mathfrak{A}^* G \mapsto \int_0^{+\infty} t^m \widehat{f}(x, t \xi, 0) \frac{dt}{t}$$

Then P belongs to $\mathcal{P}_{-m}(G)$ and its principal symbol is σ .

What does it mean: There exists a pseudodifferential operator $P \in \mathcal{P}_{-m}(G)$ with principal symbol σ such that if $g \in C_c^{\infty}(G)$:

$$P*g = \int_0^{+\infty} t^m f_t * g \frac{dt}{t}$$
 and $g*P = \int_0^{+\infty} t^m g * f_t \frac{dt}{t}$

Theorem (D. & Skandalis)

For $f=(f_t)_{t\in\mathbb{R}_+}\in\mathcal{J}(G)$ and $m\in\mathbb{N}$ let

$$P = \int_0^{+\infty} t^m f_t \frac{dt}{t} \ \text{ and } \ \sigma: (x,\xi) \in \mathfrak{A}^*G \mapsto \int_0^{+\infty} t^m \widehat{f}(x,t\xi,0) \frac{dt}{t}$$

Then P belongs to $\mathcal{P}_{-m}(G)$ and its principal symbol is σ .

What does it mean: There exists a pseudodifferential operator $P \in \mathcal{P}_{-m}(G)$ with principal symbol σ such that if $g \in C_c^{\infty}(G)$:

$$P*g = \int_0^{+\infty} t^m f_t * g \frac{dt}{t}$$
 and $g*P = \int_0^{+\infty} t^m g * f_t \frac{dt}{t}$

Remark : Moreover any $P \in \mathcal{P}_{-m}(G)$ is a $P_f = \int_0^{+\infty} t^m f_t \frac{dt}{t}$ for some $f = (f_t)_{t \in \mathbb{R}_+} \in \mathcal{J}(G)$.

ullet No problem for $f\in\mathcal{J}_0(G)$: $\int_0^{+\infty}t^mf_trac{dt}{t}$ belongs to $C_c^\infty(G)$.

- ullet No problem for $f\in\mathcal{J}_0(G)$: $\int_0^{+\infty}t^mf_trac{dt}{t}$ belongs to $C_c^\infty(G)$.
- If $f \in C^{\infty}(W)$ with $\widehat{f \circ \Theta}$ flat on $G^{(0)} \times \{0\} \subset \mathfrak{A}^*G \times \mathbb{R}_+$ then $f(\gamma,t) = t^{-n}\chi(\gamma)\chi'(t)\varphi(\frac{\theta^{-1}(\gamma)}{t},t)$ where $\varphi \in C_c^{\infty}(\mathfrak{A}G \times \mathbb{R}_+)$ and $\widehat{\varphi}$ vanishes as well as all its derivatives on $G^{(0)} \times \{0\}$.

- ullet No problem for $f\in\mathcal{J}_0(G)$: $\int_0^{+\infty}t^mf_trac{dt}{t}$ belongs to $C_c^\infty(G)$.
- If $f \in C^{\infty}(W)$ with $\widehat{f \circ \Theta}$ flat on $G^{(0)} \times \{0\} \subset \mathfrak{A}^*G \times \mathbb{R}_+$ then $f(\gamma,t) = t^{-n}\chi(\gamma)\chi'(t)\varphi(\frac{\theta^{-1}(\gamma)}{t},t)$ where $\varphi \in C^{\infty}_c(\mathfrak{A}G \times \mathbb{R}_+)$ and $\widehat{\varphi}$ vanishes as well as all its derivatives on $G^{(0)} \times \{0\}$. Playing with Fourrier and inverse Fourrier gives

$$f_t(\gamma) = (2\pi)^{-n} \chi(\gamma) \chi'(t) \int e^{i < \theta^{-1}(\gamma), \xi > \hat{\varphi}(x, t\xi, t) d\xi}$$

- No problem for $f \in \mathcal{J}_0(G)$: $\int_0^{+\infty} t^m f_t \frac{dt}{t}$ belongs to $C_c^{\infty}(G)$.
- If $f \in C^{\infty}(W)$ with $\widehat{f \circ \Theta}$ flat on $G^{(0)} \times \{0\} \subset \mathfrak{A}^*G \times \mathbb{R}_+$ then $f(\gamma,t) = t^{-n}\chi(\gamma)\chi'(t)\varphi(\frac{\theta^{-1}(\gamma)}{t},t)$ where $\varphi \in C^{\infty}_c(\mathfrak{A}G \times \mathbb{R}_+)$ and $\widehat{\varphi}$ vanishes as well as all its derivatives on $G^{(0)} \times \{0\}$. Playing with Fourrier and inverse Fourrier gives

$$f_t(\gamma) = (2\pi)^{-n} \chi(\gamma) \chi'(t) \int e^{i < \theta^{-1}(\gamma), \xi > \hat{\varphi}(x, t\xi, t) d\xi}$$

In the multiplier algebra of $C_c^{\infty}(G)$ we have

$$\int_0^{+\infty} t^m f_t \frac{dt}{t} = (2\pi)^{-n} \chi(\gamma) \int e^{i < \theta^{-1}(\gamma), \xi >} a(x, \xi) d\xi$$

where

$$a(x,\xi) = \int_0^{+\infty} t^m \chi'(t) \hat{\varphi}(x,t\xi,t) \frac{dt}{t}$$

Now for small t write

$$\hat{\varphi}(x,\xi,t) \sim \sum_{k=0}^{\infty} b_k(x,\xi)t^k$$

Now for small t write

$$\hat{\varphi}(x,\xi,t) \sim \sum_{k=0}^{\infty} b_k(x,\xi)t^k$$

For ξ big enough we get

$$a(x,\xi) \sim \sum_{k=0}^{\infty} a_{k+m}(x,\xi)$$

where

$$a_{k+m}(x,\xi) = \int_0^\infty b_k(x,t\xi)t^{k+m}\frac{dt}{t}$$

is homogeneous in ξ of degree -k-m.