
Chapter 2

Local behavior

By local behavior we mean the study of the motion in a neighbor-
hood of a point. As we have seen in the linear case, the motion can leave
the neighborhood in a fixed time but it is also possible that it stays in the
neighborhood for an unlimited time. In the latter case we will have the first
example of how to tackle one of our stated goals: the study of the motion for
long times. We start with a trivial case.

2.1 Flow box theorem

Let us consider the differential equation

ẋ = V (x) (2.1.1)

where V ∈ C2loc(Rd,Rd). By the results of the previous chapter there exist
δ−, δ+ : Rd → R+ and φ : {(z, t) ∈ Rd×R : t ∈ (−δ−(z), δ+(z))} =: D → Rd
such that φ(z, t) is the solution of (2.1.1) with initial condition z. We would
like to study the solution in a neighborhood of x0 ∈ Rd such that V (x0) 6= 0.

Theorem 2.1.1 (Flow box Theorem) In the hypotheses above there exists
a neighborhood U of x0 and a change of variables Θ ∈ C1(U,Rd) such that
Θ(φ(x, t)) = Θ(x) + t(0, . . . , 0, 1), for each x ∈ U , (x, t) ∈ D.

Proof. Let S = {x ∈ Rd : 〈x − x0, V (x0)〉 = 0} and {ei}d−1i=1 ⊂ S the
an orthonormal base.1 For r > 0 small enough let Dr = {z ∈ Rd | |zi| ≤ r}.
Then define Ξ : Dr → U by Ξ(ξ) = φ(x0 +

∑d−1
i=1 ξiei, ξd). Note that Ξ is

invertible since if Ξ(ξ) = Ξ(ξ′), ξ′d ≤ ξd, it would be

φ(x0 +

d−1∑
i=1

ξiei, ξd − ξ′d) = x0 +

d−1∑
i=1

ξ′iei.

1That is 〈ei, ej〉 = δij .
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That is there would be x ∈ S and τ = ξd − ξ′d ∈ (0, 2r) such that φ(x, τ) ∈ S.
But 〈V (x0), φ(x, 0)〉 = 〈V (x0), φ(x, τ)〉 = 0 by definition and, for t ∈ [0, 2r],

〈V (x0), φ(x, t)〉
dt

= 〈V (x0), V (φ(x, t))〉 > 0

provided that r is chosen small enough. Hence ξd = ξ′d and, consequently,
ξ = ξ′. We can then define Θ = Ξ−1 and, for each x = Ξ(ξ),

Θ(φ(x, t)) = Θ(φ(φ(x0 +

d−1∑
i=1

ξiei, ξd), t) = Θ(φ(x0 +

d−1∑
i=1

ξiei, ξd + t))

= Θ(Ξ(ξ + (0, . . . , 0, t))) = ξ + (0, . . . , 0, t)

= Θ(x) + (0, . . . , 0, t).

�

2.2 Behavior close to a fixed point

In this section we will consider a more interesting situation: the study of the
solutions of (2.1.1) in a neighborhood of a point x0 such that V (x0) = 0 and
det(Dx0

V ) 6= 0.

Problem 2.1 Note that the condition det(Dx0
V ) 6= 0 can always be achieved

by a small C1 change of the vector field. On the contrary, a zero of the vector
field cannot be eliminated by small C1 changes of the vector field: prove that
if V (x0) = 0 and W is a vector field C1 close enough to V , then there exists
a x∗ close to x0 such that W (x∗) = 0, and Dx∗W is close to Dx0

V . In this
sense we will say that the above conditions are generic (more on this concept
later).

It is then necessary to understand the behavior of the equation in the
vicinity of the point x0. First of all, by a translation, we can assume without
loss of generality x0 = 0. Then we can develop V by the Taylor formula to
obtain

ẋ = Ax+R(x) (2.2.2)

where ‖R(x)‖ ≤ C‖x‖2 and ‖DxR‖ ≤ C‖x‖, for all ‖x‖ ≤ 1.

Problem 2.2 Show that, by a linear change of variable, one can transform
A in its Jordan canonical form. Show then that, by an arbitrary small C1
change of the vector field one can eliminate all the Jordan blocks and insure
that all the eigenvalues have real part different from zero: this is called the
hyperbolic case.
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For now, in view of Problem 2.2, we limit ourselves to the hyperbolic case.
We will start by considering the case in which all the eigenvalue of A have

real part strictly smaller than zero.

Problem 2.3 Prove that if A is diagonal with eigenvalues with real part
strictly smaller than zero, then there exists σ > 0 such that, for all x ∈ Cn,2

〈x, (A+A∗)x〉 ≤ −σ〈x, x〉 (2.2.3)

Prove that if A has only simple (that is with algebraic multiplicity one) eigen-
values, then there exists a positive matrix B (that is B∗ = B and 〈x,Bx〉 > 0
for all x 6= 0) such that

〈x,B(A+A∗)x〉 ≤ −σ〈x,Bx〉

In other words (2.2.3) still holds provided one redefines the scalar product
conveniently. Prove the same for a general matrix A with all the eigenvalues
with real part strictly smaller than zero.

Till the end of this section we assume that all the eigenvalue of A are
strictly negative, hence we assume (2.2.3). In this case it is well known that
the linear part of (2.2.2) has solutions that tend to zero exponentially fast,
the question is: does the same holds true for the solutions of the equation
(2.2.2)?

To see it, consider z := 〈x, x〉. By Problem 2.3,

d

dt
z = 〈x,Ax+R(x)〉+ 〈Ax+R(x), x〉

= 〈x, (A+A∗)x〉+O(‖x‖3) ≤ −σz +O(z
3
2 ).

If we assume ‖x‖ ≤ σ
2 , then we have

d

dt
z ≤ −σ

2
z

which implies that also the solutions of (2.2.2) tend exponentially fast to zero.

Remark 2.2.1 What we have just seen is that, locally, F (x) := 〈x, x〉 is
a Lyapunov function for (2.2.2). Given a differential equation like (2.1.1),
where 0 is a fixed point, a Lyapunov function is any C1 function L such that
L(0) = 0, L ≥ 0 and 〈∇xL, V (x)〉 < 0 for all x 6= 0. This implies that, for
each solution x(t) of (2.1.1) holds

dL(x(t))

dt
= 〈∇x(t)L, V (x(t))〉 < 0.

This readily implies that limt→∞ x(t) = 0. (Prove it !).

2As usual 〈x, y〉 :=
∑n
i=1 x̄iyi where ā is the complex conjugate of a. Moreover by A∗

we mean the adjoint of A.
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Yet, the above result is far from being satisfactory: it is possible to tend
to zero in many different ways and it would be nice to understand better how
this happens.

Let us start with a very simple example: x ∈ R, A = −1, R(x) = bx2.
Then the equation reads

ẋ = −x+ bx2. (2.2.4)

If we consider the change of variables

z = Ψ(x) =
x

1− bx

we have

ż =
−x+ bx2

1− bx
+
bx(−x+ bx2)

(1− bx)2
= − x

1− bx
= −z.

We have just seen that in a neighborhood of size smaller than b−1 of zero
we have a diffeomorphism that conjugate the solution of (2.2.4) with its linear
part.

One can then suspect that this is always the case. This is not so: consider

ẋ = −2x+ cy2

ẏ = −y
(2.2.5)

Let us consider a change of variables

z = x+ αx2 + βxy + γy2 + q(x, y)

η = y + p(x, y)

where q is of third order and p of second. Substituting in (2.2.5) one can see
that it is always possible to choose p ≡ 0, while the first of the (2.2.5) yields

ż = −2x+ cy2 − 2x(2αx+ βy)− y(βx+ 2γy) +O(3)

where by O(3) we designate third order terms. If we try to impose the right
hand side of the above equation equal to −2z (up to second order) we obtain

−2αx2 − 2βxy − 2γy2 = −4αx2 − 3βxy − (2γ + c)y2

that does not admit any solutions if c 6= 0.

So there is no hope of finding an analytic conjugation with the linear part.

What can be salvaged?
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2.2.1 Grobman–Hartman

One can look for a less regular change of variables. This may not make sense
for the o.d.e. itself but it is meaningful for the associated flows.

Thus let us fix some small r > 0 and consider a smooth non increasing
function g : R+ → [0, 1] such that g(x) = 1 for x ≤ r and g(x) = 0 for
x ≥ 2r, with −g′ ≤ C. We can then define the functions ϕ : Rd → [0, 1]
F0, F : Rd → Rd as ϕ(x) := g(‖x‖) and

F0(x) := eAx

F (x) := eAx+ ϕ(x)
[
φ1(x)− eAx

]
=: F0(x) + ∆(x),

where φ1 is the time one flow associated to (2.2.2). Remember that we are still
considering the case in which all the eigenvalues of A have strictly negative
real part. Clearly, for ‖x‖ ≤ r the two functions are simply the time one
map of the linear flow and the time one map of (2.2.2), moreover they are
globally Lip. Since we will be interested only in x in the ball of radius r the
modification outside such a ball is totally irrelevant and it has been done only
to facilitate the exposition of the following argument.

Problem 2.4 Show that, for r small enough, F is a diffeomorphism. Prove
that ‖∆‖∞ <∞.

The idea is to consider the maps F0, F : Rd → Rd and to show that they can
be conjugated, that is there exists an homeomorphism Φ̃ : Rd → Rd such that
Φ̃ ◦ F = F0 ◦ Φ̃.

Let us look for a solution in the form Φ̃(x) = x+ Φ(x), then we have

F0(x+ Φ(x)) = F (x) + Φ(F (x))

or, setting ξ = F (x),

Φ(ξ) = F0(F−1(ξ) + Φ ◦ F−1(ξ))− ξ.

We define then the operator K : C0(Rd)→ C0(Rd) defined by

K(Φ)(ξ) := F0(F−1(ξ) + Φ ◦ F−1(ξ))− ξ

then our problem boils down to establishing the existence of a fixed point for
K. First of all notice that, for each ‖ξ‖ ≥ 2r + ‖φ‖∞,

‖K(Φ)(ξ)‖ = ‖F0(Φ ◦ F−1(ξ)‖ ≤ e−σ/2‖Φ‖∞.

Thus ‖K(Φ)‖∞ ≤ 4rC + e−σ/2‖Φ‖∞. Thus the set {h ∈ C0 : ‖h‖∞ ≤
4rC(1− e−σ/2)−1} is invariant for the operator K.
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Now, given two functions h, g ∈ C0(Rd), holds

sup
ξ∈Rd

‖K(h)(ξ)−K(g)(ξ)‖ = sup
x∈Rd

‖F0(x+ h(x))− F0(x+ g(x))‖

≤ e−σ

2
‖h− g‖∞

Thus the contracting mapping theorem yields the wanted result.

Problem 2.5 What can be done if all the eigenvalues of A have strictly pos-
itive real part?

We have then, topologically, the behavior of a source, a node or a stable
or unstable focus are the same as the one of the linear part of the equation.
But the generic case is the one in which both eigenvalues with positive and
negative real part are present, does the same conclusions hold for such a more
general situation? The answer is yes. To see it consider that in such a case
Rd is naturally split into two spaces V ⊕W , invariant for A and such that A
restricted to V has only eigenvalues with negative real part while restricted to
W has eigenvalues with positive real part. Then the spaces are invariant for
F0 as well, on one F0 contracts, on the other expands. Call ds the dimension
of V and du the dimension of W . Clearly ds + du = d.

Then each e ∈ Rd has a unique splitting as e = v + w, v ∈ V , w ∈ W . It
is then convenient to define the projections p1 : Rd → V and p2 : Rd → W
p1(e) = v, p2(e) = w. Moreover we can split C0(Rd) as V ⊕W where V :=
{f ∈ C0(Rd) : p2 ◦ f = 0} and W := {f ∈ C0(Rd) : p1 ◦ f = 0}. We can
then write canonically f as (f1, f2) := (p1 ◦ f, p2 ◦ f).

Accordingly our conjugation equation F0 ◦ Φ̃ = Φ̃ ◦ F , becomes

BΦ̃1 = Φ̃1 ◦ F
DΦ̃2 = Φ̃2 ◦ F

where F0((x1, x2)) =: (Bx1, Dx2). We transform the first equation as we did
for the contracting case, while on the second we act as you probably did if
you solved Problem 2.5:

Φ̃1 = BΦ̃1 ◦ F−1

Φ̃2 = D−1Φ̃2 ◦ F.

Note that, if we apply the above reasoning directly to such equations we
obtain that they have only one bounded solution: Φ̃ = 0, yet we are not
looking for bounded solutions but rather for solutions of the form Φ̃(x) =
x + Φ(x), where Φ is bounded. Substituting such a form for Φ̃ one can
see that bounded function are mapped into bounded functions (thanks to
Problem 2.4), hence the contracting map argument applies and the existence
of a unique conjugation is established.
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Remark 2.2.2 By the way, what we just proved is known as the Grobman-
Hartman Theorem.

2.3 Dominated Splitting and center manifold

Let U ⊂ Rd be an open set containing zero and let us consider a vector field
V ∈ Ck(U,Rd), k ≥ 1, such that V (0) = 0 and A := D0V has a spectrum
that splits into two disjoint parts. More precisely, assume there exists real
numbers α < β, such that σ(A) = Σ1 ∪ Σ2 where µ ∈ Σ1 implies <(µ) ≥ β
and µ ∈ Σ2 implies <(µ) ≤ α. Let V1,V2 be the eigenspaces associated to
Σ1,Σ2, respectively.

We say that a manifold W is locally invariant at zero under the flow φt
generated by the vector field V if there exists δ > 0 such that, for all t ∈ R,
there exists δt ∈ (0, δ] such that φt(W ∩B(0, δt)) ⊂W .

Note that, letting R̃(x) := V (x) − Ax, we can then write the differential
equation as

ẋ = Ax+ R̃(x). (2.3.6)

In the special case R̃ ≡ 0, the differential equation is linear and the subspaces
Vi are invariant manifolds for the above differential equation. It is then nat-
ural to wonder if there exists invariant manifolds also for the non linear case.
Note that the nonlinearity is small only in a neighborhood of zero, it is then
natural to look for local invariant manifolds at zero.

We are thus interested in the solutions of (2.3.6) only in a neighborhood
of zero. It is then convenient to modify the equation outside the ball B(0, δ)
so that the dynamics is linear outside such a ball. This will allow us to look
for a globally invariant manifold for the modified dynamics with the property
of bein locally invariant for the original one.

Namely, let ϕ ∈ C∞(R+, [0, 1]), be a decreasing function such that ϕ(t) = 1

for t ≤ δ and ϕ(t) = 0 for t ≥ 2δ. We then define R(x) = R̃(x)ϕ(‖x‖). Clearly,
if we construct an invariant manifold for the differential equation

ẋ = Ax+R(x),

then it is a locally invariant manifold for (2.3.6) as well. By the variation of
constant formula we have

x(t) = eAtx(0) +

∫ t

0

eA(t−s)R(x(s))ds.

To put the problem into a more general context it is convenient to define, for
a given τ large enough, the map F ∈ Ck such that F (x(0)) = x(τ).

Problem 2.6 Prove that
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1. F is invertible;

2. we can choose δ > 0 such that F (B(0, 3e‖A‖τδ)) ⊃ B(0, 2δ);

3. F (0) = 0, D0F = eAτ and DxF = eAτ for ‖x‖ ≥ 3e‖A‖τδ;

4. for each ε > 0 we can chose δ such that ‖DxF − eAτ‖∞ ≤ ε;

5. for each β > β′ > α′ > α ≥ 0 there is τ such that ‖e−Aτ |V1‖ ≤ e−β
′τ

and ‖eAτ |V2
‖ ≤ eα′τ .

Problem 2.7 Show that a manifold W is locally invariant at zero for (2.3.6)
if and only if it is so for F .

The above shows the relevance of the following theorem

Theorem 2.3.1 Let F ∈ Ck(Rd,Rd), k ≥ 1, be an invertible map from Rd to
itself such that it enjoys the properties of Problem 2.6 and, for a sufficiently
small ε, ‖DxF − D0F‖∞ ≤ ε. Then, there exists a Ck−1 locally invariant
manifold W . In addition, W is dim(V1) dimensional and tangent to V1 at
zero.

Proof. By the hypotheses σ(D0F ) splits in two parts Σ̃1, Σ̃2. Let V1,V2

be the associated eigenspaces. By a change of variable we can assume that
V1 = {(ξ, 0)}ξ∈Rd1 and V2 = {(0, η)}ξ∈Rd2 . Also, let Π1(ξ, η) = (ξ, 0), Π2 =
1 − Π1, Π1D0FΠ1 = Λ and Π2D0FΠ2 = Γ. In addition,3 the hypotheses
imply that ‖Λ−1‖ ≤ e−β and ‖Γ‖ ≤ eα with α < β.

The basic idea is to consider manifolds that can be described by a function
G : Rd1 → Rd2 via W = {(ξ,G(ξ)}ξ∈Rd1 . Obviously we need to limit the set
to which G might belong. To this end we define,

Ω = {G ∈ Ck(Rd1 ,Rd1) : G(0) = 0, ‖DG‖∞ ≤ 1}.

Let
F (ξ, η) = (Λξ +A(ξ, η),Γη +B(ξ, η)).

If ‖η‖ ≤ ‖ξ‖ and ε is small enough, we have that there exists β′ > α such
that

‖Λξ +A(ξ, η)‖ ≥ eβ
′
‖ξ‖.

Thus, for eachG ∈ Ω the map TG(ξ) = Λξ+A(ξ,G(ξ)) is invertible. Moreover,
for ‖ξ‖ ≥ Cδ we have TG(ξ) = Λξ. We can then describe the evolution of the
manifolds of interest:

F (ξ,G(ξ)) = (TG(ξ), SG ◦ T−1G (TG(ξ)))

3 For convenience I am renaming the constants α, β and, possibly, substituting Fn to
F in order to offsets the constants coming from the equivalence of the norms in the new
coordinates.
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where SG(ξ) = ΓG(ξ) + B(ξ,G(ξ)). Again note that, for ‖ξ‖ ≥ Cδ we have
SG(ξ) = ΓG(ξ). It follows that the image manifold is described by the oper-
ator K : Ω→ Ck(Rd,Rd)

K(G)(ξ) = SG ◦ T−1G (ξ).

For G ∈ Ω, K(G)(0) = 0. Also

D[K(G)] =
[
(ΓDG+ ∂ξA+ ∂ηADG)(Λ + ∂ξB + ∂ηBDG)−1

]
◦ T−1G .

Note that, if DG(0) = 0, then also D(K(G))(0) = 0.
From the above computations it follows that, for ε small enough, there

exists σ ∈ [0, 1] such that

‖D[K(G)]‖∞ ≤ σ‖DG‖∞ + Cε < ‖DG‖∞. (2.3.7)

Accordingly, K(Ω) ⊂ Ω. A direct computation shows that, for G1, G2 ∈ Ω,

‖TG1 − TG2‖∞ ≤ C#ε‖G1 −G2‖∞
‖SG1 − SG2‖∞ ≤ (eα + C#ε)‖G1 −G2‖∞.

On the other hand, for all ξ ∈ Rd1 ,

‖T−1G1
(ξ)− T−1G2

(ξ)‖ = ‖T−1G2
◦ TG2

◦ T−1G1
(ξ)− T−1G2

(ξ)‖
≤ (e−β + C#ε)‖TG2 ◦ T−1G1

(ξ)− TG1 ◦ T−1G1
(ξ)‖

≤ C#(e−β + C#ε)ε‖G1 ◦ T−1G1
(ξ)−G2 ◦ T−1G1

(ξ)‖.

To conclude we introduce the norm4

|||G||| = sup
ξ∈Rd1

‖G(ξ)‖ · ‖ξ‖−1.

Remark that if G ∈ Ω, then |||G||| ≤ 1. Next, note that

‖K(G1)(ξ)−K(G2)(ξ)‖ ≤ ‖SG1
◦ T−1G1

(ξ)− SG1
◦ T−1G2

(ξ)‖
+ ‖SG1

◦ T−1G2
(ξ)− SG2

◦ T−1G2
(ξ)‖

≤ (eα + C#ε)‖T−1G1
(ξ)− T−1G2

(ξ)‖+ (eα + C#ε)‖G1 ◦ T−1G2
(ξ)−G2 ◦ T−1G2

(ξ)‖.

Accordingly,

|||K(G1)(ξ)−K(G2)||| ≤
[
C#(e−β + ε)εe−β

′
+ (eα + C#ε)e

−β′
]
|||G1 −G2|||

4 This norm is necessary only because we do not assume α < 0. If we would do so, then
the usual sup norm would work perfectly.
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Hence, provided ε is small enough, there exists σ ∈ (0, 1), such that for each
G1, G2 ∈ Ω

|||K(G1)−K(G2)||| ≤ σ |||G1 −G2||| .

The above implies that K has a unique fixed point G = limn→∞Kn(0). In
addition, G is of the form G(ξ) = ‖ξ‖Ĝ(ξ) with Ĝ ∈ C0.

We leave to the reader the task of checking that the contraction takes
place in Ck−1 as well. In particular, if k ≥ 2, it is trivial to check that
DG(0) = 0. �

From the above we directly obtain the following very useful result.

Theorem 2.3.2 (Center Manifold Theorem) Let F ∈ Ck be an invert-
ible map from Rd to itself such that it enjoys the properties (1-4) of Problem
2.6. Moreover assume that the spectrum of the matrix A now splits into three
disjoint parts Σ− ∪ Σ0 ∪ Σ+ such that µ ∈ Σ− implies <(µ) ≤ α < 0, µ ∈ Σ0

implies α < <(µ) < β and µ ∈ Σ+ implies <(µ) ≥ β > 0. Let V0 be the
eigenspace associated to Σ0 and d0 be its dimension. Then, there exists a
Ck−1 d0 dimensional locally invariant manifold W . In addition, W is tangent
to V0 at zero.

Proof. Let V+,V0,V− be the eigenspaces associated to the splitting of
the spectrum and d+, d0, d− be their dimensions. Simply apply Theorem 2.3.1
to F with the splittings Σ1 = Σ+∪Σ0, Σ2 = Σ− and to F−1 with the splitting
Σ1 = Σ+, Σ2 = Σ− ∪ Σ0. In such a way we obtain two invariant manifolds:
W+ (the weak unstable manifold) and W− (the weak stable manifold) re-
spectively of dimension d+ + d0 and d− + d0. The reader can easily check
that the hypotheses of the implicit function theorem apply and prove that
W = W+ ∩W− is a d0 dimensional Ck−1 locally invariant manifold tangent
to V0 in zero.5 �

2.4 Hadamard-Perron

Theorem 2.3.2 is quite general but it has a couple of disadvantages: a slightly
annoying loss of regularity (from Ck to Ck−1) and, most importantly, it does
not provides any information on the dynamics when restricted to the invariant
manifold which, in fact, can be pretty much anything. To eliminate such short-
coming it is necessary to consider situations in which there are no eighevalues
with zero real part. This gives rise to a sharper results: the Hadamard-Perron
theorem. We will discuss it in the simplest possible setting, also we will repeat
several arguments to make this section independent on the previous one.

5 To show that the matrix at zero is invertible, remember (2.3.7) which says that the
manifolds are graphs of functions with derivative strictly less than one.
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Definition 2.4.1 Given a smooth map T : X → X, X being a Riemannian
manifold, and a fixed point p ∈ X (i.e. Tp = p) we call (local) stable manifold
(of size δ) a manifold W s(p) such that6

W s(p) = {x ∈ Bδ(x) ⊂ X | lim
n→∞

d(Tnx, p) = 0}.

Analogously, we will call (local) unstable manifold (of size δ) a manifold
Wu(p) such that

Wu(p) = {x ∈ Bδ(x) ⊂ X | lim
n→∞

d(T−nx, p) = 0}.

It is quite clear that TW s(p) ⊂ W s(p) and TWu(p) ⊃ Wu(p) (Problem
2.8). Less clear is that these sets deserve the name “manifold.” Yet, if one
thinks of a linear map it is obvious that the stable and unstable manifolds at
zero are just segments in the stable and unstable direction, the next Theorem
shows that this is a quite general situation.

Theorem 2.4.2 (Hadamard-Perron) Consider an invertible map T : U ⊂
R2 → R2, T ∈ C1(U,R2), such that T0 = 0 and

D0T =

(
λ 0
0 µ

)
(2.4.8)

where 0 < µ < 1 < λ.7 That is, the map T is hyperbolic at the fixed point
0. Then there exists unique C1 stable and unstable manifolds at 0. Moreover,
T0W s(u) = Es(u) where Es(u) are the expanding and contracting subspaces of
D0T .8

Remark 2.4.3 There is an issue not completely addresses in our formulation
of Hadamard-Perron theorem: the uniqueness of the manifolds.9 It is not hard
to prove that the W s(u) are indeed the only sets satisfying Definition 2.4.1 (see
Problem 2.11).

The proof of Theorem 2.4.2 will be done in two steps: first we will show
the existence of the invariant manifolds and then we will prove the regularity.

6Sometime we will write W s
δ (p) when the size really matters. By Bδ(x) we will always

mean the open ball of radius δ centered at x.
7Notice that if D0T has eigenvalues 0 < µ < 1 < λ then one can always perform a

change of variables such that (2.4.8) holds.
8By T0W s(u) I mean the tangent space to the manifold (curve) Wu (or W s) at the point

zero.
9Namely the doubt may remain that a less regular set satisfying Definition 2.4.1 exists.
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2.4.1 Existence of the invariant manifold: a fixed point
argument

We will deal explicitly only with the unstable manifold since the stable one
can be treated exactly in the same way by considering T−1 instead of T .

Proof of existence of the unstable manifold. Since the map is con-
tinuously differentiable for each ε > 0 we can choose δ > 0 so that, in a
2δ-neighborhood of zero, we can write

T (x) = D0Tx+R(x) (2.4.9)

where ‖R(x)‖ ≤ ε‖x‖, ‖DxR‖ ≤ ε.
The first step is to decide how to represent manifolds. In the present case,

since we deal only with curves, it seems very reasonable to consider the set of
curves Γδ,c passing through zero and “close” to being horizontal, that is the
differentiable functions γ : [−δ, δ]→ R2 of the form

γ(t) =

(
t

u(t)

)
and such that γ(0) = 0; ‖(1, 0) − γ′‖∞ ≤ c. It is immediately clear that any
smooth curve passing through zero and with tangent vector, at each point,
in the cone C := {(a, b) ∈ R2 | | ba | ≤ c}, can be associated to a unique
element of Γδ,c, just consider the part of the curve contained in the strip
{(x, y) ∈ R2 | |x| ≤ δ}. Moreover, if γ ∈ Γδ,c then γ ⊂ B2δ(0), provided
c ≤ 1/2.

Notice that it suffices to specify the function u in order to identify uniquely
an element in Γδ,c. It is then natural to study the evolution of a curve through
the change in the associated function.

To this end let us investigate how the image of a curve in Γδ,c under T
looks like.

Tγ(t) =

(
λt+R1(t, u(t))

µu(t) +R2(t, u(t))

)
:=

(
αu(t)
βu(t)

)
.

At this point the problem is clearly that the image it is not expressed in
the way we have chosen to represent curves, yet this is easily fixed. First of
all, αu(0) = βu(0) = 0. Second, by choosing ε < λ, we have α′u(t) > 0, that
is, αu is invertible. In addition, αu([−δ, δ]) ⊃ [−λδ + εδ, λδ − εδ] ⊃ [−δ, δ],
provided ε ≤ λ−1. Hence, α−1u is a well defined function from [−δ, δ] to itself.
Finally,

| d
dt
βu ◦ α−1u (t)| =

∣∣∣∣β′u(α−1u (t))

α′u(α−1u (t))

∣∣∣∣ ≤ µc+ ε

λ− ε
≤ c

where, again, we have chosen ε ≤ c(λ−µ)
1+c .
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We can then consider the map T̃ : Γδ,c → Γδ,c defined by

T̃ γ(t) :=

(
t

βu ◦ α−1u (t)

)
(2.4.10)

which associates to a curve in Γδ,c its image under T written in the chosen
representation. It is now natural to consider the set of functions Bδ,c = {u ∈
C1([−δ, δ]) | u(0) = 0, |u′|∞ ≤ c} in the vector space Lip([−δ, δ]).10 As
we already noticed Bδ,c is in one-one correspondence with Γδ,c, we can thus

consider the operator T̂ : Lip([−δ, δ])→ Lip([−δ, δ]) defined by

T̂ u = βu ◦ α−1u (2.4.11)

From the above analysis follows that T̂ (Bδ,c) ⊂ Bδ,c and that T̂ u deter-
mines uniquely the image curve.

The problem is then reduced to studying the map T̂ . The easiest, although
probably not the most productive, point of view is to show that T̂ is a con-
traction in the sup norm. Note that this creates a little problem since C1 it
is not closed in the sup norm (and not even Lip([−δ, δ]) is closed). Yet, the

set B∗δ,c = {u ∈ Lip([−δ, δ]) | u(0) = 0, supt,s∈[−δ, δ]
|u(s)−u(t)|
|t−s| < c} is closed

(see Problem 2.9). Thus Bδ,c ⊂ B∗δ,c. This means that, if we can prove that
the sup norm is contracting, then the fixed point will belong to B∗δ,c and we
will obtain only a Lipschitz curve. We will need a separate argument to prove
that the curve is indeed smooth.

Let us start to verify the contraction property. Notice that

α−1u (t) = λ−1t+ λ−1R1(α−1u (t), u(α−1u (t))),

thus, given u1, u2 ∈ Bδ,c, by Lagrange Theorem

|α−1u1
(t)− α−1u2

(t)| ≤ λ−1|〈∇ζR1, (α−1u1
(t)− α−1u2

(t), u1(α−1u1
(t))− u2(α−1u2

(t)))〉|

≤ ε

λ

{
|α−1u1

(t)− α−1u2
(t)|+ |u1(α−1u2

(t))− u2(α−1u2
(t))|

}
.

This implies immediately

|α−1u1
(t)− α−1u2

(t)| ≤ λ−1ε

1− λ−1ε
‖u1 − u2‖∞. (2.4.12)

On the other hand

|βu1
(t)− βu2

(t)| ≤ µ|u1(t)− u2(t)|+ |〈∇ζR2, (0, u1(t)− u2(t))〉|
≤ (µ+ ε)‖u1 − u2‖∞. (2.4.13)

10This are the Lipschitz functions on [−δ, δ], that is the functions such that

supt,s∈[−δ, δ]
|u(s)−u(t)|
|t−s| <∞.
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Moreover,
|β′u(t)| ≤ µ+ ε. (2.4.14)

Collecting the estimates (2.4.12, 2.4.13, 2.4.14) readily yields

‖T̂ u1 − T̂ u2‖∞ ≤ ‖βu1
◦ α−1u1

− βu1
◦ α−1u2

‖∞ + ‖βu1
◦ α−1u2

− βu2
◦ α−1u2

‖∞

≤
{

[µ+ ε]
λ−1ε

1− λ−1ε
+ (µ+ ε)

}
‖u1 − u2‖∞

≤ σ‖u1 − u2‖∞,

for some σ ∈ (0, 1), provided ε is chosen small enough.
Clearly, the above inequality immediately implies that there exists a unique

element γ∗ ∈ Γγ,c such that T̃ γ∗ = γ∗, this is the local unstable manifold of
0. �

2.4.2 Regularity of invariant manifolds–a cone field ar-
gument

As already mentioned, a separate argument is needed to prove that γ∗ is
indeed a C1 curve.

To prove this, one possibility could be to redo the previous fixed point
argument trying to prove contraction in C1Lip (the C1 functions with Lipschitz
derivative); yet this would require to increase the regularity requirements on
T . A more geometrical, more instructive and more inspiring approach is the
following.

Proof of the regularity of the unstable manifold. Let δ > 0 such
that the arguments of section 2.4.1 apply. We want to define local cone fields
in the region {ξ = (ξx, ξy) ∈ R2 : |ξx| < δ}. For each |u| ≤ cδ and 0 < θ ≤ cδ
we define the affine cone field Cθ(ξ, u) := {ξ+(a, b) ∈ R2 : |b−au| ≤ θ |a|}.11
As we need to perform a local argument we must localise the cones. To this
end we will intersect them with cylinders of the form Dh(ξ) = {ξ + (a, b) ∈
R2 : |a| ≤ h}. We define thus a local affine cone field (that in the following
we will simply call cone field) by

Cθ,h(ξ, u) = Cθ(ξ, u) ∩Dh(ξ) = {ξ + (a, b) ∈ R2 : |a| ≤ h; |b− au| ≤ θ |a|}.

By the construction in Section 2.4.1, Dh(ξ) ∩ γ∗ ⊂ Ccδ,h(ξ, 0) for each ξ ∈ γ∗.
We will study the evolution of such a cone field on γ∗.

For all η ∈ Cθ,h(ξ, u), if (a, b) = η − ξ and (α, β) = Tη − Tξ, it holds

(α, β) = D0T (a, b) +O(ε|a|) = (λa, µb) +O(ε|a|).
11 A set C is a cone iff, for all y ∈ C and α ∈ R, αy ∈ C. A set C is an affine cone if there

exists z such that {y − z : y ∈ C} is a cone.
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and, at the same time, since T is C1, ‖(α, β) − DξT (a, b)‖ ≤ εθ|a| provided
h ≤ hθ for some hθ small enough. Thus, setting (α′, β′) = DξT (a, ua) and

u′ = β′

α′ , one can compute

‖(α, β)− (α′, β′)− (0, µ(b− ua))‖ ≤ ‖(DξT −D0T )(0, b− ua)‖+ θε|a|
≤ Cθε|a|.

Hence,∣∣∣∣βα − u′
∣∣∣∣ ≤ ∣∣∣∣βα − β′

α

∣∣∣∣+

∣∣∣∣β′α
∣∣∣∣ ∣∣∣1− α

α′

∣∣∣ ≤ µθ

λ− Cε
+

(µ+ Cε)Cθε

(λ− Cε)2
.

Accordingly, if h ≤ hθ, then there exists σ ∈ (0, 1) such that

Dh(Tξ) ∩ TCθ,h(ξ, u) ⊂ Cσθ,h(Tξ, u′). (2.4.15)

A similar, but rougher, computation yields

Dh(Tξ) ∩ TCθ,h(ξ, u) ⊂ Cθ,h(Tξ, 0). (2.4.16)

Finally, let ξ ∈ γ∗, then, for each n ∈ N, T−nξ ∈ γ∗ and γ∗ ∩Dhn
(T−nξ) ⊂

Ccδ,hn(T−nξ, 0). Thus, for all hn ≤ hσncδ, (2.4.15) implies12

γ∗ ∩Dhn
(ξ) ⊂ TnCcδ,hn

(T−nξ, 0) ∩Dhn
(ξ)

= Tn−1
(
TCcδ,hn(T−nξ, 0) ∩Dhn(Tn−1ξ)

)
∩Dhn(ξ)

⊂ Tn−1Cσcδ,hn
(T−n+1ξ, vn,1) ∩Dhn

(ξ)

⊂ Cσncδ,hn
(ξ, vn)

(2.4.17)

where (a, avn,k(ξ)) = DT−nξT
k(1, 0), for some a ∈ R+, and vn(ξ) = vn,n(ξ).

The last relevant fact is that the limit

v∗ = lim
n→∞

vn (2.4.18)

exists. The proof of this fact is left as an entertainment for the reader (see
Problem 2.10). Using (2.4.17), (2.4.18) and remembering that γ∗ admits the
parametrization γ∗(t) = (t, u∗(t)) we can compute the derivative. Indeed, let
τ so that (τ, u∗(τ)) = ξ ∈ γ∗, then for each ε > 0 let m so that σmcδ ≤ ε

2 and
|vm − v∗| ≤ ε

2 , then for each h ≤ hm holds∣∣∣∣u∗(ξ + h)− u∗(ξ)− v∗h
h

∣∣∣∣ ≤ ∣∣∣∣u∗(ξ + h)− u∗(ξ)− vmh
h

∣∣∣∣+
ε

2

≤ cσmδ +
ε

2
≤ ε.

12 Remember that the map T expands in the first coordinate, hence TDh(ξ) ⊃ Dh(Tξ)
provided ξ ∈ Ccδ,δ(0, 0) and h is small enough.
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That is, γ∗ is differentiable and

γ′∗(τ) = (1, v∗). (2.4.19)

�

There is another point of view that can be adopted in the study of stable
and unstable manifolds: to “grow” the manifolds. This is done by starting
with a very short curve in Γδ,c, e.g. γ0(t) = (t, 0) for t ∈ [λ−nδ, λnδ], and
showing that the sequence γn := Tnγ0 converges to a curve in the strip [−δ, δ],
independent of γ0. From a mathematical point of view, in the present case,
it corresponds to spell out explicitly the proof of the fixed point theorem.
Nevertheless, it is a more suggestive point of view and it is more convenient
when the hyperbolicity is non uniform. For example consider the map13.

T

(
x
y

)
:=

(
2x− sinx+ y
x− sinx+ y

)
(2.4.20)

then 0 is a fixed point of the map but

D0T =

(
1 1
0 1

)
is not hyperbolic, yet, due to the higher order terms, there exist stable and
unstable manifolds (see Problems 2.13, 2.14, 2.15).

Problems

2.8. Show that, if p is a fixed point, then TW s(p) ⊂ W s(p) and TWu(p) ⊃
Wu(p).

2.9. Prove that the set B∗δ,c in section 2.4.1 is closed with respect to the sup
norm ‖u‖∞ = supt∈[−δ,δ] |u(t)|.

2.10. Prove that the limit in (2.4.19) is well defined and depend continuously
on ξ.

2.11. Prove that, in the setting of Theorem 2.4.2, the unstable manifold is
unique.

2.12. Show that Theorem 2.4.2 holds assuming only T ∈ C1(U,U).

2.13. Consider the Lewowicz map (2.4.20), show that, given the set of curves
Γδ,c := {γ : [−δ, δ] → R2 | γ(t) = (t, u(t)); γ(0) = 0; |u′(t)| ∈
[c−1t, ct]}, it is possible to construct the map T̃ : Γδ,c → Γδ(1+c−1δ), c in
analogy with (2.4.10).

13Some times this is called Lewowicz map
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2.14. In the case of the previous problem show that for each γi ∈ Γδ,c holds

d(T̃ γ1, T̃ γ2) ≤ (1− cδ)d(γ1, γ2).

2.15. Show that for the Lewowicz map zero has a unique unstable manifold.

Hints to solving the Problems

2.1. Use the implicit function theorem on the one parameter vector fields
V (λ) = V + λ(W − V ).

2.4. By the variation of constant method follows that

φt(x) = eAtx+

∫ t

0

eA(t−s)R(φs(x))ds.

2.10 By (2.4.16) and arguing as in (2.4.17) it follows

TnCcδ,hn
(T−nξ, 0) ∩Dhn

(ξ) ⊂ Tn−1Ccδ,hn
(T−n+1ξ, 0) ∩Dhn

(ξ)

⊂ Cσn−1cδ,hn
(ξ, vn−1(ξ)).

Since, for a small enough, Tn(T−nξ + (a, 0)) = ξ + aDT−nξT
n(1, 0) +

o(a), it follows that (a, vn(ξ)a) ∈ Cσn−1cδ,hn
(ξ, vn−1(ξ)). Hence |vn(ξ)−

vn−1(ξ)| ≤ σn−1cδ. From this the Problem easily follows.

2.11. This amounts to showing that the set of points that are attracted to
zero are exactly the manifolds constructed in Theorem 2.4.2. Use the
local hyperbolicity to show that.

2.14. Grow the manifolds, that is, for each n > 1 define δn := ρ
n . Show that

one can choose ρ such that δn−1 ≥ δn(1 + c−1δn). according to Problem
2.13 it follows that T̃ : Γδn,c → Γδn−1,c. Moreover,

d(T̃n−1γ1, T̃
n−1γ2) ≤

n∏
i=1

(1− cδi)d(γ1, γ2).

Finally, show that, setting γn(t) = (0, t) ∈ Γδn,c, the sequence T̃n−1γn
is a Cauchy sequence that converges in C0 to a curve in Γ1,c invariant

under T̃ .

Notes

The content of this section is quite standard and rather sketchy, it is intended
only to introduce the reader to some basic ideas and techniques. The treat-
ment of the Hadamard-Perron Theorem follows mostly [HK95].


