Algebra 2. The symmetric groups S_n.

Roma, December 15, 2009

In this note we determine the automorphism groups of the symmetric groups S_n. For $n = 2$ this is very easy: we have $S_2 \cong \mathbb{Z}_2$ and hence $\text{Aut}(S_2)$ is trivial. Therefore we suppose from now on that $n > 2$. The main result is Theorem 8.

For the convenience of the reader we first recall some basic properties of the groups S_n and the subgroups A_n of even permutations.

Lemma 1. Let $n > 2$.
(a) The center of S_n is trivial;
(b) For $n > 3$ the center of A_n is trivial.

Proof. (a) Let $\sigma \in Z(S_n)$. If $\sigma \neq \text{id}$, then there exist two distinct $a, b \in \{1, 2, \ldots, n\}$ with $\sigma(a) = b$. Choose $c \in \{1, 2, \ldots, n\}$ with $c \neq a$ and $c \neq b$. Then $(b c) \sigma \neq \sigma(b c)$ because $(b c) \sigma$ maps a to c, while $\sigma(b c)$ maps a to b. This shows that $\sigma = \text{id}$ and $Z(S_n)$ must be trivial, as required.
(b) Similarly, suppose that $\sigma \in Z(A_n)$ is non-trivial. Pick two distinct $a, b \in \{1, 2, \ldots, n\}$ with $\sigma(a) = b$ and choose two elements $c, d \in \{1, 2, \ldots, n\}$ different from a and b. Then $(b c d) \sigma \neq \sigma(b c d)$ because the two permutations map a to different elements.

Lemma 2. Two elements of S_n are conjugate if and only if they have the same cycle type.

Proof. For any $\sigma \in S_n$ and any $d \leq n$ we have

$$\sigma(1 2 \ldots d) \sigma^{-1} = (\sigma(1) \sigma(2) \ldots \sigma(d)).$$

This shows that any conjugate of a d-cycle is again a d-cycle. Since every permutation is a product of disjoint cycles, it follows that the cycle types of conjugate permutations are the same. In the other direction, let $\tau = (a_1 \ldots a_r)(a_{r+1} \ldots a_s)(a_{l} \ldots a_m)$ and $\tau' = (a_1' \ldots a_r')(a_{r+1}' \ldots a_s')(a_{l}' \ldots a_m')$ be two permutations having the same cycle type. Define $\sigma \in S_n$ by $\sigma(a_i) = a_i'$ for $i = 1, 2, \ldots, m$. Then

$$\sigma \tau \sigma^{-1} = \sigma(a_1 \ldots a_r) \sigma^{-1} \sigma(a_{r+1} \ldots a_s) \sigma^{-1} \ldots \sigma(a_l \ldots a_m) \sigma^{-1},$$

$$= (a_1' \ldots a_r')(a_{r+1}' \ldots a_s')(a_{l}' \ldots a_m'),$$

$$= \tau'.$$

This shows that τ and τ' are conjugate, as required.

Lemma 3. Let $n > 2$.
(a) The group A_n is generated by 3-cycles.
(b) Any normal subgroup of A_n that contains a 3-cycle, is equal to A_n itself.

Proof. (a) The product $(1 2)(2 3)$ is equal to the 3-cycle $(1 2 3)$. The product of two disjoint 2-cycles $(a b)$ and $(c d)$ is equal to $(a b)(b c)(b c)(c d)$ and is hence a product of two 3-cycles. Since any element of A_n is a product of an even number of transpositions, it is therefore a product of 3-cycles.
(b) Let $N \subset A_n$ be a normal subgroup and suppose that $(1 2 3) \in N$. Let $\sigma' \in A_n$ be an arbitrary 3-cycle. Then $\sigma' = \tau(1 2 3) \tau^{-1}$ for some $\tau \in S_n$. If $\tau \in A_n$, then $\sigma' \in N$ and we are done. If not, then $\tau' = \tau(1 2)$ is in A_n and $\sigma' = \tau'(1 3 2) \tau'^{-1}$ is once again in N.

1
Lemma 4. The commutator subgroup of S_n is equal to A_n. For $n \geq 5$ the commutator subgroup of A_n is equal to A_n itself.

Proof. Since S_n/A_n is commutative, the commutator subgroup S'_n is contained in A_n. Conversely, we have $(12)(13)(12)^{-1}(13)^{-1} = (123)$, showing that every 3-cycle is in S'_n. By Lemma 3 (a) the group A_n is generated by 3-cycles, so that $S'_n = A_n$ as required.

The identity

$$(123)(345)(123)^{-1}(345)^{-1} = (143),$$

shows that for $n \geq 5$ every 3-cycle is a commutator of A_n. This implies the second statement.

We remark that the group A_3 is abelian, so that its commutator subgroup is trivial. The group A_4 is not abelian. Its commutator subgroup is

$$V_4 = \{(1), (12)(34), (13)(24), (14)(23)\}.$$

Indeed, V_4 is normal and the quotient A_4/V_4 has order 3 and is hence abelian. It follows that $A'_4 \subset V_4$. Equality follows from the identity $(123)(124)(123)^{-1}(124)^{-1} = (12)(34)$.

Proposition 5. Let $n \geq 5$. Then the group A_n is simple, i.e. does not contain any proper normal subgroups. The only proper normal subgroup of S_n is A_n.

Proof. Let $N \subset A_n$ be a non-trivial normal subgroup. We will show that N contains a 3-cycle. Then Lemma 3 (b) implies the required result.

Step 1. Suppose that N contains a permutation σ which is a product of disjoint cycles at least one of which has length $d \geq 4$. Then, up to renumbering, we have $\sigma = (12\ldots d)\tau$ where τ leaves $\{1,2,\ldots,d\}$ invariant. The permutation $\sigma^{-1}(123)\sigma(123)^{-1}$ is contained in N. One easily checks that it is equal to the 3-cycle $(13d)$.

Step 2. This leaves us with the possibility that all permutations in N are products of disjoint cycles of length ≤ 3. Suppose that N contains a permutation σ admitting a 3-cycle. If it admits only one 3-cycle, then its square is a 3-cycle and we are done. If it contains at least two 3-cycles, we may assume that $\sigma = (123)(456)\tau$ where τ leaves $\{1,2,\ldots,6\}$ invariant. Then $\sigma^{-1}(124)\sigma(124)^{-1}$ is contained in N. One easily checks that it is equal to (14236) and we are done by Step 1.

Step 3. This leaves us with the possibility that all permutations in N are products of disjoint transpositions. Let $\sigma \in N$ be a non-trivial element. Since σ is even, it is a product of at least two transpositions and we may assume that $\sigma = (12)(34)\tau$, where τ leaves $\{1,2,3,4\}$ invariant. Then $\sigma(123)\sigma(123)^{-1} = (13)(24)$ is in N. Since $n \geq 5$ the permutation $(13)(24)(135)(13)(24)(135)^{-1}$ is in N. It is equal to the 3-cycle (135) and we are done.

To prove the second statement of the Proposition, let N be a proper normal subgroup of S_n. Then $N \cap A_n$ is a normal subgroup of A_n. So either $N \subset A_n$ in which case $N = \{1\}$ or $N = A_n$ or we have $N \cap A_n = \{1\}$. In the latter case $\#N \leq 2$ and hence $N \subset Z(S_n)$. Lemma 1 implies then that $N = \{1\}$. This proves the proposition.

We remark that the possibility that arises in Step 3 of the proof of Lemma 5, actually occurs for $n = 4$. In that case the group V_4 mentioned above is a normal subgroup of A_4. Its elements are products of disjoint transpositions.
Corollary 6. For $n \geq 5$, the proper subgroups of A_n have index at least n.

Proof. Let $H \subset A_n$ be a subgroup of index m. Translation of the left cosets of H gives rise to a non-trivial homomorphism $A_n \rightarrow S_m$. By Lemma 4 the group A_n admits no proper normal subgroups, so that the map is injective. This implies $\frac{1}{2}n! \leq m!$, which can only happen when $n \leq m$ as required.

Lemma 7. Let $n > 2$ and let $F : S_n \rightarrow S_n$ be an automorphism mapping transpositions to transpositions. Then F is an inner automorphism.

Proof. The product of two distinct transpositions has order 2 when the transpositions are disjoint, while it is a 3-cycle and thus has order 3 when they are not. Therefore any automorphism of S_n maps pairs of disjoint transpositions to pairs of disjoint transpositions.

Let $F(12) = (ab)$. Let $x \in \{1, 2, \ldots, n\}$ be different from 1 or 2. Since $(1 2)(1 x)$ is a 3-cycle, so is $F(12)F(1 x) = (ab)F(1 x)$. It follows that the 2-cycle $F(1 x)$ moves either a or b. Switching a and b if necessary, we may assume that it moves a, so that $F(1 x) = (ac)$ for some c different from a and b.

Claim. For every $y \neq 1$ we have $F(1 y) = (ad)$ for some $d \in \{1, 2, \ldots, n\}$ different from a.

Proof of the claim. This is clear when $y = 2$ or $y = x$, so we may assume $y \neq 2, x$. Since both permutations $(1 y)(1 2)$ and $(1 y)(1 x)$ are 3-cycles, so are their images under F. We have $F(1 2) = (ab)$ and $F(1 x) = (ac)$. Therefore, if $F(1 y)$ is not moving a, then it must move both b and c. Since $F(1 y)$ is a transposition, this means that $F(1 y) = (bc)$. Applying F^{-1} to the relation

$$(ab)(ac)(bc) = (ac),$$

we find

$$(1 2)(1 x)(1 y) = (1 x).$$

Since $y \notin \{1, 2, x\}$, the permutation on the left maps 1 to y. Since $x \neq y$, this is absurd and we conclude that $F(1 y)$ actually moves a so that $F(1 y) = (ad)$ for some d as required.

Define the permutation $\sigma \in S_n$ by putting $\sigma(1) = a$ and for every $y \neq 1$ put $\sigma(y) = d$, where d is the unique element for which $F(1 y) = (ad)$. Its existence is guaranteed by the claim. Let $s : S_n \rightarrow S_n$ denote the conjugation by σ map. For every y we have

$$s^{-1}F(1 y) = s^{-1}(ad) = \sigma^{-1}(ad)\sigma = (1 y).$$

In other words, $s^{-1}F$ fixes all transpositions of the form $(1 y)$. Since $(yz)(1 y)(1 z)$, the group S_n is generated by these transpositions. Therefore $s^{-1}F$ fixes every element of S_n, so that $F = s$. This proves the lemma.

Consider the homomorphism

$$S_n \rightarrow \text{Aut}(S_n)$$

that maps $\sigma \in S_n$ to the automorphism given by conjugation by σ. Its image is the subgroup of inner automorphisms of $\text{Aut}(S_n)$. The kernel is precisely the center of S_n. Lemma 1 implies therefore that it is trivial. Therefore we can identify S_n with its image in $\text{Aut}(S_n)$. The main result of this note if the following
Theorem 8. Let \(n > 2 \). We have \(\text{Aut}(S_n) = S_n \) except when \(n = 6 \). In the exceptional case we have \([\text{Aut}(S_6) : S_6] = 2\).

Proof. The involutions (i.e. elements of order 2) of \(S_n \) are precisely the products of disjoint transpositions. For each \(k \) with \(1 \leq k \leq n/2 \), the set of products of \(k \) disjoint transpositions make up a conjugacy class \(C_k \) of \(S_n \). Any automorphism of \(S_n \) maps involutions to involutions. Moreover, any automorphism \(F \) of \(S_n \) has the property that when \(\sigma, \tau \in S_n \) are conjugate, so are \(F(\sigma) \) and \(F(\tau) \). Therefore an automorphism of \(S_n \) necessarily permutes the conjugacy classes \(C_k \). We have

\[
#C_k = \frac{1}{k!} \binom{n}{2} \binom{n - 2}{2} \cdots \binom{n - 2(k - 1)}{2}.
\]

Let \(n \neq 6 \). Then an application of Lemma 9 below shows that \(#C_1 \neq #C_k \) for any \(k \neq 1 \). It follows that an automorphism \(F : S_n \to S_n \) necessarily maps \(C_1 \) to itself. In other words, \(F \) maps transpositions to transpositions. Lemma 7 implies then that \(F \) is an inner automorphism, as required.

When \(n = 6 \), of number of transpositions is 15. This is the same as the number \(\frac{1}{3!} \binom{6}{2} \binom{6}{4} \) of involutions of cycle type \((1 2)(3 4)(5 6) \). On the other hand, there are 45 involutions of cycle type \((1 2)(3 4) \). In other words, we have \(#C_1 = #C_3 = 15 \), while \(#C_2 = 45 \). See Table 12 below. Therefore, any automorphism \(F : S_6 \to S_6 \) either preserves the transpositions and is by Lemma 2 an inner automorphism or it switches the conjugacy classes \(C_1 \) and \(C_3 \) and is not an inner automorphism. It follows that the composition of any two non-inner automorphisms preserves \(C_1 \) and is interior. This shows that \([\text{Aut}(S_6) : S_6] \leq 2\). Below we actually construct a non-inner automorphism of \(S_6 \), showing that the index is 2, as required.

Lemma 9. The only solution \(k, m \in \mathbb{Z} \) of the equation

\[
\left(\frac{m}{2} \right) \binom{m - 2}{2} \cdots \binom{m - 2(k - 1)}{2} = (k + 1)!
\]

with \(m \geq 3 \) and \(1 \leq k \leq m/2 \), is given by \(m = 4 \) and \(k = 2 \).

Proof. The left hand side of the equation is equal to

\[
\frac{m(m - 1) \cdots (m + 2 - 2k)(m + 1 - 2k)}{2^k} = \frac{m!}{(m - 2k)! 2^k}.
\]

Therefore the equation can be rewritten as

\[
\binom{m}{2k} = \frac{(k + 1)! 2^k}{(2k)!}.
\]

For \(k = 1 \) this becomes \(m(m - 1) = 4 \), which has no solutions in \(\mathbb{Z} \). For \(k = 2 \) we find \(m(m - 1)(m - 2)(m - 3) = 24 \) whose only solutions in \(\mathbb{Z} \) are \(m = 4 \) and \(m = -1 \). For \(k \geq 3 \)
the right hand side of the equation is less than 1. On the other hand, since $1 \leq k \leq m/2$, the binomial coefficient $\binom{m}{k}$ is a positive integer. This shows that there are no further solutions, as required.

Construction of an outer automorphism of S_6. Consider the symmetric group S_5. It contains 24 5-cycles and hence has six cyclic subgroups of cardinality 5. Since S_5 acts by conjugation transitively on the 5-cycles, it also acts transitively on the set of six groups of cardinality 5. Therefore we obtain a homomorphism $j : S_5 \rightarrow S_6$ whose image has cardinality at least 6. By Lemma 4 the group S_5 has no non-trivial normal subgroups except A_5. Therefore j is injective.

Remark. The homomorphism $j : S_5 \rightarrow S_6$ preserves parity.

Proof. The morphism j maps commutators to commutators. So Lemma 4 implies $j(A_5) \subset A_6$. By Corollary 6 the group A_6 does not admit any subgroups of index 3. Therefore the image of j is not contained in A_6. This explains the remark.

Let H denote the image of j. It is isomorphic to S_5 and has index 6 inside S_6. Let X denote the set of left cosets of H. The group S_6 acts on X by left translation. This gives rise to a homomorphism

$$F : S_6 \rightarrow S(X) \cong S_6,$$

which is injective, because S_6 contains no proper normal subgroups except A_6.

The homomorphism F is an outer automorphism of S_6. Indeed, suppose that $F(12)$ is a transposition. Then it has fixed points. This means that $(12)xH = xH$ for some coset xH. It follows that H contains the transposition $x^{-1}(12)x$. Since the homomorphism $S_5 \rightarrow S_6$ preserves parity, the permutation $\sigma \in S_5$ that is mapped to this transposition is odd. It follows that σ is a transposition that normalizes an order 5 subgroup P of S_5.

We may assume that P is generated by (12345) and that σ fixes 1. Then

$$\sigma(12345)\sigma^{-1} = (1\sigma(2)\sigma(3), \sigma(4)\sigma(5))$$

is equal to (12345) or its inverse. This implies that $\sigma = \text{id}$ or $\sigma = (25)(34)$ respectively, contradicting the fact that σ is odd. We conclude that $F(12)$ is not a transposition. Lemma 7 implies now that F is not an inner automorphism. This proves Theorem 2.

Indeed, as was explained above, the automorphism F constructed above necessarily switches the transpositions and the involution with cycle type $(12)(34)(56)$. In order to describe certain properties of the outer automorphisms of S_6, we consider the normalizer of an order 5 subgroup P of S_5.

Lemma 10. The normalizer $N(P)$ of an order 5 subgroup P of S_5 has 20 elements.

Proof. Suppose that P is generated by (12345). Then the 4-cycle (2354) normalizes P. The group generated by (12345) and (2354) is contained in $N(P)$. It has order 20 and is not contained in A_5. If $N(P)$ were strictly larger, then its intersection with A_5 would be a subgroup of A_5 of index 2 or 3. This is impossible by Corollary 6. The proves the Lemma.
Corollary 11. Any outer automorphism F of S_6 switches the 3-cycles and permutations of type $(123)(456)$ and it switches the 6-cycles and the permutations of type $(123)(45)$.

Proof. If F were to map (123) to a 3-cycle, the subgroup H that appears in the construction of the non-inner automorphism F above, contains a 3-cycle. It is the image of a 3-cycle in S_5. Since a 3-cycle has fixed points, the normalizer of an order 5 subgroup of S_5 contains a permutation of order 3. This contradicts Lemma 10. Similarly, if F maps the conjugacy class of permutations of type $(123)(45)$ to itself, then H contains a permutation of type $(123)(45)$. Since such a permutation has a fixed point, this means that the normalizer of an order 5 subgroup of S_5 contains an element of order 6, contradicting Lemma 5.

The conjugacy classes of the 4-cycles and of the permutations of type $(1234)(56)$ both contain 90 elements. However, the automorphism F does not switch these conjugacy classes, because it preserves the characteristic subgroup A_6 of S_6. Therefore the signs of the permutations σ and $F(\sigma)$ are equal for all σ.

In conclusion, in the table below, any outer automorphism of S_6 switches the conjugacy classes (i) and (ii), it switches (vi) and (vii) and it switches (viii) and (ix). It preserves the other ones.

Table 12. Conjugacy classes of S_6.

<table>
<thead>
<tr>
<th>conjugacy class</th>
<th>cycle type</th>
<th>order</th>
<th>sign</th>
<th>#</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>(123456)</td>
<td>6</td>
<td>–</td>
<td>5!</td>
<td>120</td>
</tr>
<tr>
<td>(ii)</td>
<td>(123)(45)</td>
<td>6</td>
<td>–</td>
<td>$6 \cdot 2 \cdot \frac{5}{2}$</td>
<td>120</td>
</tr>
<tr>
<td>(iii)</td>
<td>(12345)</td>
<td>5</td>
<td>+</td>
<td>$\frac{1}{3} \cdot 5!$</td>
<td>144</td>
</tr>
<tr>
<td>(iv)</td>
<td>(1234)</td>
<td>4</td>
<td>–</td>
<td>$\binom{6}{2} \cdot 3!$</td>
<td>90</td>
</tr>
<tr>
<td>(v)</td>
<td>(1234)(56)</td>
<td>4</td>
<td>+</td>
<td>$\binom{6}{2} \cdot 3!$</td>
<td>90</td>
</tr>
<tr>
<td>(vi)</td>
<td>(123)</td>
<td>3</td>
<td>+</td>
<td>$\frac{1}{3} \cdot 4 \cdot \binom{6}{3}$</td>
<td>40</td>
</tr>
<tr>
<td>(vii)</td>
<td>(123)(456)</td>
<td>3</td>
<td>+</td>
<td>$\frac{1}{3} \cdot 4 \cdot \binom{6}{3}$</td>
<td>40</td>
</tr>
<tr>
<td>(viii)</td>
<td>(12)</td>
<td>2</td>
<td>–</td>
<td>$\binom{6}{2}$</td>
<td>15</td>
</tr>
<tr>
<td>(ix)</td>
<td>(12)(34)(56)</td>
<td>2</td>
<td>–</td>
<td>$\frac{1}{3} \cdot \binom{6}{2} \cdot \binom{6}{4}$</td>
<td>15</td>
</tr>
<tr>
<td>(x)</td>
<td>(12)(34)</td>
<td>2</td>
<td>+</td>
<td>$\frac{1}{2} \cdot \binom{6}{2} \cdot \binom{6}{4}$</td>
<td>45</td>
</tr>
<tr>
<td>(xi)</td>
<td>(1)</td>
<td>1</td>
<td>+</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>