
Algebra 2. The symmetric groups Sn. Roma, December 15, 2009

In this note we determine the automorphism groups of the symmetric groups Sn. For n = 2
this is very easy: we have S2

∼= Z2 and hence Aut(S2) is trivial. Therefore we suppose
from now on that n > 2. The main result is Theorem 8.

For the convenience of the reader we first recall some basic properties of the groups
Sn and the subgroups An of even permutations.

Lemma 1. Let n > 2.
(a) The center of Sn is trivial;
(b) For n > 3 the center of An is trivial.

Proof. (a) Let σ ∈ Z(Sn). If σ 6= id, then there exist two distinct a, b ∈ {1, 2, . . . , n} with
σ(a) = b. Choose c ∈ {1, 2, . . . , n} with c 6= a and c 6= b. Then (b c)σ 6= σ(b c) because
(b c)σ maps a to c, while σ(b c) maps a to b. This shows that σ = id and Z(Sn) must be
trivial, as required.
(b) Similarly, suppose that σ ∈ Z(An) is non-trivial. Pick two distinct a, b ∈ {1, 2, . . . , n}
with σ(a) = b and choose two elements c, d ∈ {1, 2, . . . , n} different from a and b. Then
(b c d)σ 6= σ(b c d) because the two permutations map a to different elements.

Lemma 2. Two elements of Sn are conjugate if and only if they have the same cycle type.

Proof. For any σ ∈ Sn and any d ≤ n we have

σ(1 2 . . . d)σ−1 = (σ(1)σ(2) . . . σ(d)).

This shows that any conjugate of a d-cycle is again a d-cycle. Since every permutation
is a product of disjoint cycles, it follows that the cycle types of conjugate permutations
are the same. In the other direction, let τ = (a1 . . . ar)(ar+1 . . . as) . . . (al . . . am) and
τ ′ = (a′1 . . . a

′
r)(a′r+1 . . . a

′
s) . . . (a

′
l . . . a

′
m) be two permutations having the same cycle type.

Define σ ∈ Sn by σ(ai) = a′i for i = 1, 2, . . . ,m. Then

στσ−1 = σ(a1 . . . ar)σ−1σ(ar+1 . . . as)σ
−1 . . . σ(al . . . am)σ−1,

= (a′1 . . . a
′
r)(a′r+1 . . . a

′
s) . . . (a

′
l . . . a

′
m),

= τ ′.

This shows that τ and τ ′ are conjugate, as required.

Lemma 3. Let n > 2.
(a) The group An is generated by 3-cycles.
(b) Any normal subgroup of An that contains a 3-cycle, is equal to An itself.

Proof. (a) The product (1 2)(2 3) is equal to the 3-cycle (1 2 3). The product of two
disjoint 2-cycles (a b) and (c d) is equal to (a b)(b c)(b c)(c d) and is hence a product of two
3-cycles. Since any element of An is a product of an even number of transpositions, it is
therefore a product of 3-cycles.
(b) Let N ⊂ An be a normal subgroup and suppose that (1 2 3) ∈ N . Let σ′ ∈ An be an
arbitrary 3-cycle. Then σ′ = τ(1 2 3)τ−1 for some τ ∈ Sn. If τ ∈ An, then σ′ ∈ N and we
are done. If not, then τ ′ = τ(1 2) is in An and σ′ = τ ′(1 3 2)τ ′−1 is once again in N .
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Lemma 4. The commutator subgroup of Sn is equal to An. For n ≥ 5 the commutator
subgroup of An is equal to An itself.

Proof. Since Sn/An is commutative, the commutator subgroup S′n is contained in An.
Conversely, we have (1 2)(1 3)(1 2)−1(1 3)−1 = (1 2 3), showing that every 3-cycle is in S′n.
By Lemma 3 (a) the group An is generated by 3-cycles, so that S′n = An as required.

The identity
(1 2 3)(3 4 5)(1 2 3)−1(3 4 5)−1 = (1 4 3).

shows that for n ≥ 5 every 3-cycle is a commutator of An. This implies the second
statement.

We remark that the group A3 is abelian, so that its commutator subgroup is trivial.
The group A4 is not abelian. Its commutator subgroup is

V4 = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
Indeed, V4 is normal and the quotient A4/V4 has order 3 and is hence abelian. It follows
that A′4 ⊂ V4. Equality follows from the identity (1 2 3)(1 2 4)(1 2 3)−1(1 2 4)−1 = (1 2)(3 4).

Proposition 5. Let n ≥ 5. Then the group An is simple, i.e. does not contain any proper
normal subgroups. The only proper normal subgroup of Sn is An.

Proof. Let N ⊂ An be a non-trivial normal subgroup. We will show that N contains a
3-cycle. Then Lemma 3 (b) implies the required result.

Step 1. Suppose that N contains a permutation σ which is a product of disjoint cycles at
least one of which has length d ≥ 4. Then, up to renumbering, we have σ = (1 2 . . . d)τ
where τ leaves {1, 2, . . . , d} invariant. The permutation σ−1(1 2 3)σ(1 2 3)−1 is contained
in N . One easily checks that it is equal to the 3-cycle (1 3 d).

Step 2. This leaves us with the possibility that all permutations in N are products of
disjoint cycles of length ≤ 3. Suppose that N contains a permutation σ admitting a
3-cycle. If it admits only one 3-cycle, then its square is a 3-cycle and we are done. If
it contains at least two 3-cycles, we may assume that σ = (1 2 3)(4 5 6)τ where τ leaves
{1, 2, . . . , 6} invariant. Then σ−1(1 2 4)σ(1 2 4)−1 is contained in N . One easily checks that
it is equal to (1 4 2 3 6) and we are done by Step 1.

Step 3. This leaves us with the possibility that all permutations in N are products of
disjoint transpositions. Let σ ∈ N be a non-trivial element. Since σ is even, it is a
product of at least two transpositions and we may assume that σ = (1 2)(3 4)τ , where τ
leaves {1, 2, 3, 4} invariant. Then σ(1 2 3)σ(1 2 3)−1 = (1 3)(2 4) is in N . Since n ≥ 5 the
permutation (1 3)(2 4)(1 3 5)(1 3)(2 4)(1 3 5)−1 is in N . It is equal to the 3-cycle (1 3 5) and
we are done.

To prove the second statement of the Proposition, let N be a proper normal subgroup
of Sn. Then N ∩An is a normal subgroup of An. So either N ⊂ An in which case N = {1}
or N = An or we have N ∩ An = {1}. In the latter case #N ≤ 2 and hence N ⊂ Z(Sn).
Lemma 1 implies then that N = {1}. This proves the proposition.

We remark that the possibility that arises in Step 3 of the proof of Lemma 5, actually
occurs for n = 4. In that case the group V4 mentioned above is a normal subgroup of A4.
Its elements are products of disjoint transpositions.
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Corollary 6. For n ≥ 5, the proper subgroups of An have index at least n.

Proof. Let H ⊂ An be a subgroup of index m. Translation of the left cosets of H gives
rise to a non-trivial homomorphism An −→ Sm. By Lemma 4 the group An admits no
proper normal subgroups, so that the map is injective. This implies 1

2n! ≤ m!, which can
only happen when n ≤ m as required.

Lemma 7. Let n > 2 and let F : Sn −→ Sn be an automorphism mapping transpositions
to transpositions. Then F is an inner automorphism.

Proof. The product of two distinct transpositions has order 2 when the transpositions
are disjoint, while it is a 3-cycle and thus has order 3 when they are not. Therefore any
automorphism of Sn maps pairs of disjoint transpositions to pairs of disjoint transpositions.

Let F (1 2) = (a b). Let x ∈ {1, 2, . . . , n} be different from 1 or 2. Since (1 2)(1x) is a
3-cycle, so is F (1 2)F (1x) = (a b)F (1x). It follows that the 2-cycle F (1x) moves either a
or b. Switching a and b if necessary, we may assume that it moves a, so that F (1x) = (a c)
for some c different from a and b.

Claim. For every y 6= 1 we have F (1 y) = (a d) for some d ∈ {1, 2, . . . , n} different from a.

Proof of the claim. This is clear when y = 2 or y = x, so we may assume y 6= 2, x.
Since both permutations (1 y)(1 2) and (1 y)(1x) are 3-cycles, so are their images under F .
We have F (1 2) = (a b) and F (1x) = (a c). Therefore, if F (1 y) is not moving a, then it
must move both b and c. Since F (1 y) is a transposition, this means that F (1 y) = (b c).
Applying F−1 to the relation

(a b)(a c)(b c) = (a c),

we find
(1 2)(1x)(1 y) = (1x).

Since y 6∈ {1, 2, x}, the permutation on the left maps 1 to y. Since x 6= y, this is absurd and
we conclude that F (1 y) actually moves a so that F (1 y) = (a d) for some d as required.

Define the permutation σ ∈ Sn by putting σ(1) = a and for every y 6= 1 put σ(y) = d,
where d is the unique element for which F (1 y) = (a d). Its existence is guaranteed by the
claim. Let s : Sn −→ Sn denote the conjugation by σ map. For every y we have

s−1F (1 y) = s−1(a d) = σ−1(a d)σ = (1 y).

In other words, s−1F fixes all transpositions of the form (1 y). Since (y z) = (1 z)(1 y)(1 z),
the group Sn is generated by these transpositions. Therefore s−1F fixes every element of
Sn, so that F = s. This proves the lemma.

Consider the homomorphism

Sn −→ Aut(Sn)

that maps σ ∈ Sn to the automorphism given by conjugation by σ. Its image is the
subgroup of inner automorphisms of Aut(Sn). The kernel is precisely the center of Sn.
Lemma 1 implies therefore that it is trivial. Therefore we can identify Sn with its image
in Aut(Sn). The main result of this note if the following
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Theorem 8. Let n > 2. We have Aut(Sn) = Sn except when n = 6. In the exceptional
case we have [Aut(S6) : S6] = 2.

Proof. The involutions (i.e. elements of order 2) of Sn are precisely the products of
disjoint transpositions. For each k with 1 ≤ k ≤ n/2, the set of products of k disjoint
transpositions make up a conjugacy class Ck of Sn. Any automorphism of Sn maps in-
volutions to involutions. Moreover, any automorphism F of Sn has the property that
when σ, τ ∈ Sn are conjugate, so are F (σ) and F (τ). Therefore an automorphism of Sn

necessarily permutes the conjugacy classes Ck. We have

#Ck =
1

k!

(
n

2

)(
n− 2

2

)
. . .

(
n− 2(k − 1)

2

)
.

Let n 6= 6. Then an application of Lemma 9 below shows that #C1 6= #Ck for any k 6= 1.
It follows that an automorphism F : Sn −→ Sn necessarily maps C1 to itself. In other
words, F maps transpositions to transpositions. Lemma 7 implies then that F is an inner
automorphism, as required.

When n = 6, of number of transpositions is 15. This is the same as the number 1
3!

(
6
2

)(
6
4

)
of involutions of cycle type (1 2)(3 4)(5 6). On the other hand, there are 45 involutions of
cycle type (1 2)(3 4). In other words, we have #C1 = #C3 = 15, while #C2 = 45.
See Table 12 below. Therefore, any automorphism F : S6 −→ S6 either preserves the
transpositions and is by Lemma 2 an inner automorphism or it switches the conjugacy
classes C1 and C3 and is not an inner automorphism. It follows that the composition of
any two non-inner automorphisms preserves C1 and is interior. This shows that [Aut(S6) :
S6] ≤ 2. Below we actually construct a non-inner automorphism of S6, showing that the
index is 2, as required.

Lemma 9. The only solution k,m ∈ Z of the equation(
m

2

)(
m− 2

2

)
. . .

(
m− 2(k − 1)

2

)
= (k + 1)!

with m ≥ 3 and 1 ≤ k ≤ m/2, is given by m = 4 and k = 2.

Proof. The left hand side of the equation is equal to

m(m− 1) . . . (m+ 2− 2k)(m+ 1− 2k)

2k
=

m!

(m− 2k)!2k
.

Therefore the equation can be rewritten as(
m

2k

)
=

(k + 1)!2k

(2k)!
.

For k = 1 this becomes m(m − 1) = 4, which has no solutions in Z. For k = 2 we find
m(m−1)(m−2)(m−3) = 24 whose only solutions in Z are m = 4 and m = −1. For k ≥ 3
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the right hand side of the equation is less than 1. On the other hand, since 1 ≤ k ≤ m/2,
the binomial coefficient

(
m
2k

)
is a positive integer. This shows that there are no further

solutions, as required.

Construction of an outer automorphism of S6. Consider the symmetric group S5.
It contains 24 5-cycles and hence has six cyclic subgroups of cardinality 5. Since S5 acts
by conjugation transitively on the 5-cycles, it also acts transitively on the set of six groups
of cardinality 5. Therefore we obtain a homomorphism j : S5 −→ S6 whose image has
cardinality at least 6. By Lemma 4 the group S5 has no non-trivial normal subgroups
except A5. Therefore j is injective.

Remark. The homomorphism j : S5 −→ S6 preserves parity.

Proof. The morphism j maps commutators to commutators. So Lemma 4 implies j(A5) ⊂
A6. By Corollary 6 the group A6 does not admit any subgroups of index 3. Therefore the
image of j is not contained in A6. This explains the remark.

Let H denote the image of j. It is isomorphic to S5 and has index 6 inside S6. Let X
denote the set of left cosets of H. The group S6 acts on X by left translation. This gives
rise to a homomorphism

F : S6 −→ S(X) ∼= S6,

which is injective, because S6 contains no proper normal subgroups except A6.
The homomorphism F is an outer automorphism of S6. Indeed, suppose that F (1 2)

is a transposition. Then it has fixed points. This means that (1 2)xH = xH for some coset
xH. It follows that H contains the transposition x−1(1 2)x. Since the homomorphism
S5 −→ S6 preserves parity, the permutation σ ∈ S5 that is mapped to this transposition
is odd. It follows that σ is a transposition that normalizes an order 5 subgroup P of S5.

We may assume that P is generated by (1 2 3 4 5) and that σ fixes 1. Then

σ(1 2 3 4 5)σ−1 = (1σ(2)σ(3), σ(4)σ(5))

is equal to (1 2 3 4 5) or its inverse. This implies that σ = id or σ = (2 5)(3 4) respectively,
contradicting the fact that σ is odd. We conclude that F (1 2) is not a transposition.
Lemma 7 implies now that F is not an inner automorphism. This proves Theorem 2.

Indeed, as was explained above, the automorphsm F constructed above necessarily
switches the transpositions and the involution with cycle type (1 2)(3 4)(5 6). In order to
describe certain properties of the outer automorphisms of S6, we consider the normalizer
of an order 5 subgroup P of S5.

Lemma 10. The normalizer N(P ) of an order 5 subgroup P of S5 has 20 elements.

Proof. Suppose that P is generated by (1 2 3 4 5). Then the 4-cycle (2 3 5 4) normalizes P .
The group generated by (1 2 3 4 5) and (2 3 5 4) is contained in N(P ). It has order 20 and
is not contained in A5. If N(P ) were strictly larger, then its intersection with A5 would
be a subgroup of A5 of index 2 or 3. This is impossible by Corollary 6. The proves the
Lemma.
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Corollary 11. Any outer automorphism F of S6 switches the 3-cycles and permutations
of type (1 2 3)(4 5 6) and it switches the 6-cycles and the permutations of type (1 2 3)(4 5).

Proof. If F were to map (1 2 3) to a 3-cycle, the subgroup H that appears in the con-
struction of the non-inner automorphism F above, contains a 3-cycle. It is the image of a
3-cycle in S5. Since a 3-cycle has fixed points, the normalizer of an order 5 subgroup of
S5 contains a permutation of order 3. This contradicts Lemma 10. Similarly, if F maps
the conjugacy class of permutations of type (1 2 3)(4 5) to itself, then H contains a per-
mutation of type (1 2 3)(4 5). Since such a permutation has a fixed point, this means that
the normalizer of an order 5 subgroup of S5 contains an element of order 6, contradicting
Lemma 5.

The conjugacy classes of the 4-cycles and of the permutations of type (1 2 3 4)(5 6)
both contain 90 elements. However, the automorphism F does not switch these conjugacy
classes, because it preserves the characteristic subgroup A6 of S6. Therefore the signs of
the permutations σ and F (σ) are equal for all σ.

In conclusion, in the table below, any outer automorphism of S6 switches the conjugacy
classes (i) and (ii), it switches (vi) and (vii) and it switches (viii) and (ix). It preserves
the other ones.

Table 12. Conjugacy classes of S6.

conjugacy class cycle type order sign # #

(i) (1 2 3 4 5 6) 6 − 5! 120

(ii) (1 2 3 )(4 5) 6 − 6 · 2 ·
(
5
2

)
120

(iii) (1 2 3 4 5) 5 + 1
56! 144

(iv) (1 2 3 4) 4 −
(
6
2

)
3! 90

(v) (1 2 3 4)(5 6) 4 +
(
6
2

)
3! 90

(vi) (1 2 3) 3 + 2
(
6
3

)
40

(vii) (1 2 3)(4 5 6) 3 + 1
2 · 4 ·

(
6
3

)
40

(viii) (1 2) 2 −
(
6
2

)
15

(ix) (1 2)(3 4)(5 6) 2 − 1
3!

(
6
2

)(
6
4

)
15

(x) (1 2)(3 4) 2 + 1
2

(
6
2

)(
6
4

)
45

(xi) (1) 1 + 1 1
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