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A Brief Introduction to Fractional Calculus
Newton, Leibniz and the Derivatives of Integer Order

In Newton’s definition and
notation we discover

ḟ , lim
h→0

f (x + h)− f (x)

h
,

f̈ , lim
h→0

ḟ (x + h)− ḟ (x)

h
,

...
f , lim

h→0

f̈ (x + h)− f̈ (x)

h
,

...

In Leibniz’s notation we read
instead

d f

d x
,

d2 f

d x2
,

...
dn f

d xn
n ∈ N.

And notation is often a pathway
to unforeseen generalization. . .
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ḟ , lim
h→0

f (x + h)− f (x)

h
,

f̈ , lim
h→0
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A Brief Introduction to Fractional Calculus
But why n should be an integer?

In a letter by Leibniz to de L’Hospitala,
“John Bernoulli seems to have told you
of my having mentioned to him a mar-
velous analogy which makes it possible to
say in a way that successive differentials
are in geometric progression. One can ask
what would be a differential having as its
exponent a fraction. You see that the re-
sult can be expressed by an infinite series.
Although this seems removed from Ge-
ometry, which does not yet know of such
fractional exponents, it appears that one
day these paradoxes will yield useful con-
sequences, since there is hardly a paradox
without utility. Thoughts that mattered
little in themselves may give occasion to
more beautiful ones.”

aSeptember 30, 1695, Leibniz 1849-, II, XXIV, 197ff. 2/45



A Brief Introduction to Fractional Calculus
But why n should be an integer?

Since we want to introduce derivatives. . . let us start from integrals!

Given a suitable function f ∈ C0[c, b] how can we compute

cD
−n
x f (x) =

∫ x

c
dx1

∫ x1

c
dx2

∫ x2

c
dx3 · · ·

∫ xn−1

c
f (t)dt, x < b?
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I we can now proceed by induction to obtain a formula for the
n–fold integral!

I we start from the case n = 2
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I we start from the case n = 2 with G (x1, t) ≡ f (t):
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c
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1
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c
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we have reduced the n–fold integral of f to a single integral!
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A Brief Introduction to Fractional Calculus
Enters the Γ(·) function

We can rewrite our expression for the n–fold integral

cD
−n
x f (x) =

1
(n − 1)!

∫ x

c
(x − t)n−1f (t)dt,
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A Brief Introduction to Fractional Calculus
Enters the Γ(·) function

We can rewrite our expression for the n–fold integral

cD
−n
x f (x) =

1
Γ(n)

∫ x

c
(x − t)n−1f (t)dt,

Γ(·) is the Euler Gamma,
i.e., the analytic continuation to
all complex numbers (except the
non–positive integers) of the con-
vergent improper integral function

Γ(t) =

∫ +∞

0
x t−1e−xdx .

-4 -2 0 2 4

-5

0

5

10
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Remark: from Wielandt’s Theorem we know
that the Gamma function Γ is the only holomor-
phic function in the right half plane such that
Γ(z + 1) = zΓ(z) and that is bounded in the
strip S = {z ∈ C : <z ∈ [1, 2)}.
It represents a natural extension to the factorial!
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A Brief Introduction to Fractional Calculus
Enters the Γ(·) function

We can rewrite our expression for the n–fold integral

cD
−n
x f (x) =

1
Γ(n)

∫ x

c
(x − t)n−1f (t)dt,

Riemann–Liouville Fractional Integral
Let <α > 0, and let f be piecewise continuous on J ′ = (0,+∞)
and integrable on any finite subinterval of J = [0,+∞).
Then for t > 0 we call

0D
−α
t f (t) =

1
Γ(α)

∫ t

0
(t − ξ)α−1f (ξ) dξ.

the Riemann–Liouville fractional integral of f of order α.

4/45



A Brief Introduction to Fractional Calculus
An Example of Fractional Integral

Let’s look to an example of Riemann–Liouville fractional integral,
we wish to integrate the function f (t) = tµ with µ > −1 and t > 0

0D
−α
t tµ =

1
Γ(α)

∫ t

0
(t − ξ)α−1ξµ dξ,

that should be the simplest possible example. . .

as simple as using
the Euler Beta Function:

B(x , y) ,
∫ 1

0
ux−1(1− u)y−1 du =

Γ(x)Γ(y)

Γ(x + y)
<x > 0,<y > 0.

We do the substitution u = ξ/t, then

0D
−α
t tµ =

tα+µ

Γ(α)

∫ 1

0
uµ(1− u)α−1 du = .

5/45
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0D
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t tµ =
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∫ 1

0
uµ(1− u)α−1 du = .

We do not attempt the computation of frac-
tional integrals of elementary functions as ex-
ponentials, sines and cosines, since they lead to
the definition of higher transcendental functions.
Numerical methods are strictly necessary.
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A Brief Introduction to Fractional Calculus
Exercise I

1. Compute the fractional integral of constant function f (t) = K for a
fixed constant K .

2. There exists several formulas for computing the values of the Gamma
function, e.g., the Spouge’s approximation

Γ(z + 1) = (z + a)z+1/2e−z−a

(
c0 +

a−1∑
k=1

ck
z + k

+ εa(z)

)
,

c0 =
√
2π,

ck =
(−1)k−1

(k − 1)!
(−k + a)k−

1/2e−k+a, k ∈ {1, 2, . . . , a− 1}.

With ε = |Γ(z−1)−εa(z)|
Γ(z−1) < a−1/2(2π)−a−1/2, if <z > 0 and a > 2. For

what value of a we obtain m significant digits? Can the formula be
implemented as such? Is the theoretical bound sharp from the
application point of view? Try to implement the procedure.



A Brief Introduction to Fractional Calculus
Finally some Fractional Derivatives!

We need now a definition for

cD
α
t f (t), <α > 0,

since we already know cD
−α
t f (t) let’s use it!

I Let n be the smallest integer greater or equal than α: n = dαe
I Let Dn be the derivative of order n, i.e., D = d/dt,
I We propose the following Definition:

cD
α
t f (t) =

1
Γ(n − α)

dn

dtn

∫ t

c
(t − ξ)n−α−1f (ξ) dξ

I A class of functions for which this exists is indeed the class of
functions f for which the Riemann–Liouville fractional integral
exists.
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A Brief Introduction to Fractional Calculus
But it doesn’t look like a derivative at all. . .

“The derivative of a function is the limit of the ratio of
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A Brief Introduction to Fractional Calculus
But it doesn’t look like a derivative at all. . .
To find something more interesting than 0 let us choose n such that h = t−c/n,
so that n→ +∞ as h→ 0

p = 1: for t − nh = c and f (t) continuous we have

lim
h→0

nh=t−c

f
(−1)
h (t) =

∫ t

c

f (ξ)dξ.

p = 2: since
[
2
r

]
= 2·3·...·(2+r−1)/r ! = r + 1 we find

lim
h→0

nh=t−c

f
(−2)
h (t) =

∫ t

c

(t − ξ)f (ξ)dξ.

p < n then by induction we conclude (again)

lim
h→0

nh=t−c

f
(−p)
h (t) =

1
(p − 1)!

∫ t

c

(t − ξ)p−1f (ξ)dξ = cD
−p
t f (t).
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We have proved the equality with the n–fold in-
tegrals, even if under stricter hypothesis. What
about the generalization to an arbitrary positive
p ∈ R?

It can be done, but requires a technical Lemma
by Letnikov 1868. We focus instead on the
derivative of arbitrary order.
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A Brief Introduction to Fractional Calculus
The Grünwald–Letnikov Derivative

We need to compute the limit for <p > 0:

lim
h→0

nh=t−c

1
hp

n∑
r=0

(−1)r
(
p

r

)
f (t − rh) ≡ lim

h→0
nh=t−c

f
(p)
h (t).

It is easy to prove that(
p

r

)
=

(
p − 1
r

)
+

(
p − 1
r − 1

)
,

thus

f
(p)
h (t) =

1
hp

n∑
r=0

(−1)r
(
p − 1
r

)
f (t − rh)

+
1
hp

n∑
r=0

(−1)r
(
p − 1
r − 1

)
f (t − rh)
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Remark: the quantity

∆1f (t − rh) , [f (t − rh)− f (t − (r + 1)h)]

is the first–order backward difference of f at the
point ξ = t − rh.
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A Brief Introduction to Fractional Calculus
The Grünwald–Letnikov Derivative

We can now iterate the binomial identity m–times to obtain:

f
(p)
h (t) =

m∑
k=0

(−1)n−k
(
p − k − 1
n − k

)
1
hp

∆k f (c + kh)

+
1
hp

n−m−1∑
r=0

(−1)r
(
p −m − 1

r

)
∆m+1f (t − rh).
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p − k − 1
n − k

)
1
hp

∆k f (c + kh)

+
1
hp

n−m−1∑
r=0

(−1)r
(
p −m − 1

r

)
∆m+1f (t − rh).

We compute now the limit part–by–part, starting from

lim
h→0

nh=t−c

(−1)n−k
(
p − k − 1
n − k

)
1
hp

∆k f (c + kh)

= lim
h→0

nh=t−c

(−1)n−k
(
p − k − 1
n − k

)
(n − k)p−k

(
n

n − k

)p−k
·

·(nh)k−p
∆k f (c + kh)

hk

And now:
lim
h→0

nh=t−c

(nh)k−p = (t − c)−p+k ,

lim
n→+∞

(−1)n−k
(
p − k − 1
n − k

)
(n − k)p−k =

1
Γ(−p + k + 1)

,

lim
n→+∞

(
n

n − k

)p−k

= 1,

lim
h→0

∆k f (c + kh)

hk
= f (k)(c).
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We can now iterate the binomial identity m–times to obtain:

lim
h→0

nh=t−c

f
(p)
h (t) = lim

h→0
nh=t−c

m∑
k=0

f (k)(c)(t − c)−p+k

Γ(−p + k + 1)

+
1
hp

n−m−1∑
r=0

(−1)r
(
p −m − 1

r

)
∆m+1f (t − rh).

We compute now the limit part–by–part, then for the second part
we need again the Letnikov’s Lemma, to obtain

lim
h→0

nh=t−c

1
hp

n−m−1∑
r=0

(−1)r
(
p −m − 1

r

)
∆m+1f (t − rh)

=
1

Γ(−p + m + 1)

∫ t

c
(t − ξ)m−pf (m+1)(ξ)dξ.
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The assumptions we have used to derive this formula are
I f (k)(t), k = 1, 2, . . . ,m + 1, continuous in [c , t],
I m ∈ N such that p − 1 < m < p < m + 1.
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I f (k)(t), k = 1, 2, . . . ,m + 1, continuous in [c , t],
I m ∈ N such that p − 1 < m < p < m + 1.

What is the link between the Riemann–Liouville Integral Definition
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A Brief Introduction to Fractional Calculus
Three derivatives board a lecture. . .

I Derivative of Integer Order n ∈ N

dnf (t)

dtn
= lim

h→0

f (n−1)(t)− f (n−1)(t − h)

h
,

I Riemann–Liouville derivative of order α, <α > 0, n = dαe

RL
cD

α
t f (t) =

1
Γ(n − α)

dn

dtn

∫ t

c
(t − ξ)n−α−1f (ξ) dξ

I Grünwald–Letnikov Derivative of order α, <α > 0, n = dαe

GL
cD

α
t f (t) =

n−1∑
k=0

f (k)(c)(t − c)−α+k

Γ(−α + k + 1)

+
1

Γ(n − α)

∫ t

c
(t − ξ)n−α−1f (n)(ξ)dξ
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A Brief Introduction to Fractional Calculus
Three derivatives board a lecture. . .

Observe that:

n−1∑
k=0

f (k)(c)(t − c)−α+k

Γ(−α + k + 1)
+

1
Γ(n − α)

∫ t

c

(t − ξ)n−α−1f (n)(ξ)dξ

can be written as

dn

dtn

(
n−1∑
k=0

f (k)(c)(t − c)n+k−α

Γ(1 + n + k − α)
+

1
Γ(2n − α)

∫ t

c

(t − ξ)2n−α−1f (n)(ξ) dξ

)

If we integrate n times by parts we find

1
Γ(2n − α)

∫ t

c

(t − ξ)2n−α−1f (n)(ξ) dξ
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Γ(2n − α)

∫ t

c

(t − ξ)2n−α−1f (n)(ξ) dξ

=
1

Γ(2n − α)

(
(t − ξ)2n−α−1f (n−1)(ξ)

∣∣∣t
c

+(2n − α− 1)

∫ t

c

(t − ξ)2n−α−2f (n−1)(ξ) dξ

)
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Γ(1 + n + k − α)
+

1
Γ(2n − α)

∫ t

c

(t − ξ)2n−α−1f (n)(ξ) dξ

)

If we integrate n times by parts and sum

dn

dtn

(
1

Γ(n − α)

∫ t

c

(t − ξ)n−α−1f (ξ) dξ

)
⇒ GL

cD
α
t f (t) ≡ RL

cD
α
t f (t)
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(
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∫ t

c

(t − ξ)n−α−1f (ξ) dξ

)
⇒ GL
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α
t f (t) ≡ RL

cD
α
t f (t)

If f (t) is (n − 1)–times continuously differentiable in [c , t] and f (n)(t) is
integrable in [c , t].
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A Brief Introduction to Fractional Calculus
Three derivatives board a lecture. . . and a numerical method comes out!

The equivalence (even if under somewhat restrictive assumptions)
between the Riemann–Liouville and the Grünwald–Letnikov
derivatives is very important for us, since we can use it to discretize
the first one on the interval [c ,T ] with stepsize h = T−c

M , M ∈ N
in tm = c + mh:

RL
cD

α
t f (t)

∣∣∣
t=tn

=
1

Γ(n − α)

dn

dtn

∫ t

c
(t − ξ)n−α−1f (ξ) dξ

∣∣∣∣
t=tm

= lim
h→0

Mh=T−c

1
hα

M∑
r=0

(−1)r
(
α

r

)
f (t − rh)

∣∣∣∣∣∣
t=tm

≈ 1
hα

m∑
r=0

(−1)r
(
α

r

)
f (tm−r ).
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A Brief Introduction to Fractional Calculus
A matter of Left– and Right–side

Histoire socialiste de la France contemporaine (tome I)
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A Brief Introduction to Fractional Calculus
A matter of Left– and Right–side

Until now we have used
I integration on the interval [c , t] with fixed c and moving t > c ,
I backward differences,

nobody stops us from using instead
I integration on the interval [t,T ] with fixed c and moving t < T ,
I forward differences.

It should not be too surprising that everything could be restated
this way. . .
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α
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(−1)n
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Until now we have used
I integration on the interval [c , t] with fixed c and moving t > c ,
I backward differences,

nobody stops us from using instead
I integration on the interval [t,T ] with fixed c and moving t < T ,
I forward differences.

It should not be too surprising that everything could be restated
this way. . .
I Grünwald–Letnikov Derivative of order α, <α > 0, n = dαe

GL
cD

α
t f (t) = lim

h→0
Mh=c−T

1
hα

M∑
r=0

(−1)r
(
α

r

)
f (t + rh)
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A Brief Introduction to Fractional Calculus
Exercise II

1. Compute
RL
0D

α
t t

µ, µ ∈ R, µ > 0.

2. Let ω(α)
k be the coefficients ω(α)

k = (−1)k
(
α
k

)
, prove that they can be

computed recursively as{
ω

(α)
0 = 1, k = 0,
ω

(α)
k =

(
1− 1+α

k

)
ω

(α)
k−1, k ≥ 1.



Fractional Diffusion Equations
Back to the basics

Before starting with fractional diffusion let us revise ordinary
diffusion equations
I Consider two heaps of N particles sitting on the axis at the

position x = ±1/2∆x ,

−1
2∆x 1

2∆x

xi

mi (0)
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Before starting with fractional diffusion let us revise ordinary
diffusion equations
I Consider two heaps of N particles sitting on the axis at the

position x = ±1/2∆x ,

−1
2∆x 1

2∆x

xi

mi (0)

Remark: this “initial condi-
tion” is reminiscent of an im-
pulse applied in the origin of
the axis: δ1(x).
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Fractional Diffusion Equations
Back to the basics

Before starting with fractional diffusion let us revise ordinary
diffusion equations
I We start a clock, then at each time–step ∆t every particles

make a random choiche with probability q of going to the right
(or 1− q of going to the left),

−1
2∆x 1

2∆x

q1− q

xi

mi (0)
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Fractional Diffusion Equations
Back to the basics

I After nT steps each particles attains the position
xi = (i − 1/2)∆x for i ∈ Z and we call mi (n) the number of
particles in each position
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Fractional Diffusion Equations
Back to the basics

I Since particles do not disappear, we have a conservation of mass, i.e.,

n+1∑
i=−n

mi (k) = 2N, ∀ n ∈ N,∀ k = 0, . . . , n,

I thus the density distribution of the particles is defined as

pi (n) ,
1
2N

mi (n), ∀i = −n, . . . , n + 1,
n+1∑
i=−n

pi (n) = 1,

I to reach our diffusion equation we need only to define now the expected
particle position (at step n)

15/45



Fractional Diffusion Equations
Back to the basics

I Since particles do not disappear, we have a conservation of mass, i.e.,

n+1∑
i=−n

mi (k) = 2N, ∀ n ∈ N,∀ k = 0, . . . , n,

I thus the density distribution of the particles is defined as

pi (n) ,
1
2N

mi (n), ∀i = −n, . . . , n + 1,
n+1∑
i=−n

pi (n) = 1,

I to reach our diffusion equation we need only to define now the expected
particle position (at step n)

15/45



Fractional Diffusion Equations
Back to the basics

I Since particles do not disappear, we have a conservation of mass, i.e.,

n+1∑
i=−n

mi (k) = 2N, ∀ n ∈ N,∀ k = 0, . . . , n,

I thus the density distribution of the particles is defined as

pi (n) ,
1
2N

mi (n), ∀i = −n, . . . , n + 1,
n+1∑
i=−n

pi (n) = 1,

I to reach our diffusion equation we need only to define now the expected
particle position (at step n)

x̄(n) ,
n+1∑
i=−n
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I Since particles do not disappear, we have a conservation of mass, i.e.,

n+1∑
i=−n

mi (k) = 2N, ∀ n ∈ N,∀ k = 0, . . . , n,

I thus the density distribution of the particles is defined as

pi (n) ,
1
2N

mi (n), ∀i = −n, . . . , n + 1,
n+1∑
i=−n

pi (n) = 1,

I to reach our diffusion equation we need only to define now the expected
particle position (at step n) x̄(n) and the variance:

s2(n) ,
n+1∑
i=−n

(xi − x̄(n))2pi (n) = −x̄2(n) +
n+1∑
i=−n

x2
i pi (n).
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Fractional Diffusion Equations
Back to the basics

The mean position moves from
zero, but remains small

0 20 40 60 80 100 120 140 160 180
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-0.1

-0.05

0

0.05

0.1

0.15

x̄

∆x
∝ c∆x , c < 1.

The scaled variance grows
(almost) at a constant rate!
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1
∆x2

≈ 1 t=n∆t⇒ ds2

dt
≈ ∆x2

∆t
.
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Fractional Diffusion Equations
Back to the basics

The (linear) growth of the variaton is explained in terms of the
unsteady diffusion equation: ∂u

∂t
= κ

∂2 u

∂ x2
,

u(x , 0) = δ1(x).

By definition the solution of this equation is the Green’s function

u(x , t) ≡ G(x , t) ,
1√
4κπt

exp

(
− x2

4κt

)
, t > 0,

and it is easy to prove that

σ2(t) ≡
∫ +∞

−∞
x2G(x , t)dx = 2κt.
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unsteady diffusion equation: ∂u

∂t
= κ
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,

u(x , 0) = δ1(x).

By definition the solution of this equation is the Green’s function

u(x , t) ≡ G(x , t) ,
1√
4κπt

exp

(
− x2

4κt

)
, t > 0,

and it is easy to prove that

σ2(t) ≡
∫ +∞

−∞
x2G(x , t)dx = 2κt.

Remark: the quantity

κ =
1
2

∆ x2

∆t

is called Einstein diffusivity, by it
G(x , t) is in perfect agreement with
the results of the discrete simula-
tion.
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Fractional Diffusion Equations
Anomalous Diffusion

Nevertheless, not every diffusion process shows a linear growth of
the scaled variance!

I In our particle model, this means having a significant fraction
of particles that are able to perform long jumps ⇒ no more
Brownian walkers!

I Discrete probability distributions that produce this
phenomenon are model by finite characteristic waiting time
and diverging jump length variance.

I By the same Einstein–like procedure, we can extract several
type of “Fractional Diffusion Equation”, in which we replace
the ordinary second order derivative with a combination of
Riemann–Liouville fractional derivatives.
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phenomenon are model by finite characteristic waiting time
and diverging jump length variance.

I By the same Einstein–like procedure, we can extract several
type of “Fractional Diffusion Equation”, in which we replace
the ordinary second order derivative with a combination of
Riemann–Liouville fractional derivatives.

R. Metzler and J. Klafter, The random walk’s guide to
anomalous diffusion: a fractional dynamics approach, Phys.
Rep. 339 (2000), no. 1, 77 pp.
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Riemann–Liouville fractional derivatives.
R. Metzler and J. Klafter, The random walk’s guide to
anomalous diffusion: a fractional dynamics approach, Phys.
Rep. 339 (2000), no. 1, 77 pp.

There are more distributions in
heaven and earth. . . we can con-
sider also Continuous Time Ran-
domWalk (CTRW) with anomalous
properties, these produces Frac-
tional Differential Equation with
Fractional Derivatives in time, but
we are excluding them from our pre-
sentation.
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Fractional Diffusion Equations
One-Sided Space-Fractional Diffusion Equation
We consider the following space–fractional diffusion equation with
Dirichlet boundary conditions

∂u

∂t
= d(x) RL

aD
α
t u + g(x , t), (x , t) ∈ (a, b)× (0,T ],

u(x , 0) = u0(x), x ∈ (a, b),
u(a, t) = ua(t), u(b, t) = ub(t), t ∈ (0,T ].

where α ∈ (1, 2] and d(x) > 0.

I For the , at least in principle, all the classical numerical methods for
time discretization can be used: Explicit/Implicit Euler,
Crank–Nicholson, BDFk methods and so on. . .

I For the approximation of the Riemann–Liouville derivative we use the
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Fractional Diffusion Equations
One-Sided Space-Fractional Diffusion Equation – Building the Discretization

I The time domain is [0,T ], then ∆t is the time step size and ∆t = T/nT ,
i.e., {tn = n∆}nTn=0,

I The space domain is I = (a, b), then the space step size is ∆ x = (b−a)/N for
N a positive integer, i.e., {xi = a + i∆x}Ni=0,

I We approximate the function values with u
(n)
i = u(xi , tn), and

g
(n)
i = g(xi , tn) or, in vector form, as u(n) = (u

(n)
0 , . . . , u

(n)
N )T and

g(n) = (g
(n)
0 , . . . , g

(n)
N )T , di = d(xi ),

I If we choose Explicit Euler method as time integrator we find

u
(n+1)
i − u

(n)
i

∆t
=

di
∆xα

i∑
j=0

ω
(α)
j u

(n)
i−j + g

(n)
i , i = 1, 2, . . . ,N − 1,

I If we choose Implicit Euler method as time integrator we find

u
(n+1)
i − u

(n)
i

∆t
=

di
∆xα

i∑
j=0

ω
(α)
j u

(n+1)
i−j + g

(n+1)
i , i = 1, 2, . . . ,N − 1.
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Fractional Diffusion Equations
One-Sided Space-Fractional Diffusion Equation – Stability

Before thinking of solving the discrete equation given by the two
methods we need to inquire about their numerical stability,

therefore, we start from the Explicit Euler and assume that
I u

(0)
i is perturbed by an error ε(0)

i , then we are working instead
with u

(0)
i = u

(0)
i + ε

(0)
i

I now we propagate the perturbation by letting the method
march in time ⇒ u

(1)
i = u

(1)
i + ε

(1)
i

u
(1)
i =µiu

(0)
i +

∆t

∆xα
di

i∑
j=1

ω
(α)
j u0i−j + ∆tg

(0)
i

=µiε
0
i + u1i , µi = 1 +

∆ t

∆xα
di

I By linearity, after n iterations, ε(n)
i = µ

(n)
i ε

(0)
i .
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Numerical Stability: “the method
is stable if the total variation of the
numerical solution at a fixed time
remains bounded as the step size
goes to zero.”
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|µi | > 1, ∀∆x suff.ly small

The method is not stable!
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Fractional Diffusion Equations
One-Sided Space-Fractional Diffusion Equation – Stability

Similarly for the Implicit Euler
I we can compute the solution as(

1− di∆t

∆xα

)
u

(n+1)
i = u

(n)
i +

di∆t

∆xα

i∑
j=1

ω
(α)
j u

(n+1)
i−j + ∆t g

(n+1)
i

I then, assuming again that u(0)
i is perturbed by an error ε(0)

i ,
we find

u
(n+1)
i = µiu

(n)
i + µi

 di
∆xα

i∑
j=1

ω
(α)
j u

(n+1)
i−j + g

(n+1)
i

∆t

where µi = (1− di∆t/∆xα)−1,

I By linearity, after n iterations, ε(n)
i = µ

(n)
i , we find

ε
(n)
i = µni ε

(0)
i .
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Fractional Diffusion Equations
One-Sided Space-Fractional Diffusion Equation – Stability & Convergence

To remedy to this uncomfortable situation, we introduce a simple
variant of the Grünwald–Letnikov approximation: we simply shift
the function evaluations to the right!

RL
aD

α
x u(x , t)

∣∣∣
x=xi
≈ 1

∆xα

i+p∑
j=0

ω
(α)
j u(xi−j + p∆x , t)

I For an opportune value p we can prove that this modification
makes the two methods consistent and
(conditionally/unconditionally) stable

I Lax equivalence Theorem ⇒ the methods are also convergent!

How do we select the value of p?
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Fractional Diffusion Equations
One-Sided Space-Fractional Diffusion Equation – Consistency

We assume working with u ∈ L1(R) ∩ C1+α(R)

I Let F [u](k) = û(k) =
∫
e i k xu(x)dx be the Fourier transform of u,

I We compute the Fourier Transform of our shifted approximation

F

 1
∆xα

+∞∑
j=0

(−1)j
(
α

j

)
u(xi−j+p, t)

 (k)

=
1

∆xα

+∞∑
j=0

(−1)j
(
α

j

)
e ik(j−p)∆x û(k)

=
1

∆xα
e−ik∆x p

(
1− e ik∆ x

)α
û(k)

=
1

∆xα
(−ik∆x)α

(
1− e ik∆x

−ik∆x

)α
e−ik∆x pû(k)

= (−ik)αω(−ik∆x)û(k),
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 (k)

= (−ik)αω(−ik∆x)û(k),

I where (ik)α = sign(u)|u|α exp(iπα/2) and

ω(z) =

(
1− e−z

z

)
ezp

Taylor
= 1−

(
p − α

2

)
z + O(|z |2)
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Fractional Diffusion Equations
One-Sided Space-Fractional Diffusion Equation – Consistency

We can then express

(−ik)αω(−ik∆x)f̂ (k) =(−ik)αû(k) + (−ik)α(ω(−ik∆x)− 1)û(k)

=F [Dαu](k) + ϕ̂(∆x , k),

where
I F [Dαu](k) is the Fourier transform of the RL Derivative of

order α,

I ϕ(∆x , x) =
1
2πi

∫ +∞

−∞
e−ikx ϕ̂(∆x , k)dk ,

I |ϕ̂(∆x , x)| ≤ |k|αC |hk||û(k)|.
Then

|ϕ(∆x , x)| ≤
∫ +∞

−∞

∣∣∣e−ikx(−ik)α(ω(−ik∆x)− 1)û(k)
∣∣∣ dk
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I |ω(−ik∆x)− 1| ≤ C |k∆x |, with C = |p − α/2|

I |(−ik)α| ≤ |k|α| exp(iπα/2)|

I I =

∫ +∞

−∞
(1 + |k |)α+1 |û(k)| <∞

u ∈ L1(R) ∩ C1+α(R)

I We have obtained order 1 consistency!
I Question: for what p we obtain the best

constant (α ∈ (1, 2))?
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Fractional Diffusion Equations
One-Sided Space-Fractional Diffusion Equation – Back to Stability
We investigate again the stability with the p = 1 shifted formula!

I Explicit Euler Method:

u
(n+1)
i − u

(n)
i

∆t
=

di
∆xα

i+1∑
j=0

ω
(α)
j u

(n)
i+1−j + g

(n)
i , i = 1, 2, . . . ,N − 1,

that in matrix form reads as

u(n+1) =

(
I +

∆t

∆xα
DS

)
u(n) + ∆tg(n) +

∆t

∆xα

(
b(α)
l u

(n)
0 + b(α)

r u(n)
N

)
where:

S =


ω

(α)
1 ω

(α)
0 0 · · · 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 · · · 0

...
...

...
. . .

...
ω

(α)
N−2 ω

(α)
N−3 ω

(α)
N−4 · · · ω

(α)
0

ω
(α)
N−1 ω

(α)
N−2 ω

(α)
N−3 · · · ω

(α)
1

 , D =


d1

d2
. . .

dN−1

 .
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I =
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1

1
. . .

1

 , b(α)
l =


d2ω

(α)
2

d3ω
(α)
3
...

dN−1ω
(α)
N−1

dNω
(α)
N

 , b(α)
r =


0
0
...
0

d0ω
(α)
0
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(
b(α)
l u

(n+1)
0 + b(α)
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)
Then stability is equivalent to having the eigenvalues of the time propagators(
I + ∆t

∆xαDS
)
and

(
I − ∆t

∆xαDS
)−1

in the region of stability of the Explicit and
Implicit Euler methods.
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Fractional Diffusion Equations
One-Sided Space-Fractional Diffusion Equation – Back to Stability

We need to bound the Eigenvalues λ of the matrix I + ∆t
∆xαDS ,

since this is a matrix polynomial in DS , we start working on it:
I From Gerschgorin first Theorem we have

|λ− diω
(α)
1 | ≤ diω

(α)
0 + di

i∑
j=2

ω
(α)
j ≤ −diω

(α)
1 ,

thus

−2α max
i=0,...,N

di = 2 max
i=0,...,N

diω
(α)
1 ≤ 2diω

(α)
1 ≤ λ < 0,

and then the Explicit Euler Method is stable if

1− 2
∆t

∆xα
α max

i=0,...,N
di ≥ −1⇔

∆t

∆xα
≤ 1
αmaxi=0,...,N di
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Fractional Diffusion Equations
One-Sided Space-Fractional Diffusion Equation – Back to Stability

We need to bound the Eigenvalues λ of the matrix I + ∆t
∆xαDS ,

since this is a matrix polynomial in DS , we start working on it:
I the Explicit Euler Method is stable if

1− 2
∆t

∆xα
α max

i=0,...,N
di ≥ −1⇔

∆t

∆xα
≤ 1
αmaxi=0,...,N di

I on the other hand, since the eigenvalues of I − ∆t
∆xαDS are all

equal or greater than 1, the Implicit Euler Method is
unconditionally stable.
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Fractional Diffusion Equations
An Example
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Fractional Diffusion Equations
A more general case

Having discussed the one–sided equation then its simplest (and more
natural) generalization is given by

∂u

∂t
= d+(x , t) RL

aD
α
t u + d−(x , t) RL

tD
α
b u + g(x , t), (x , t) ∈ (a, b)× (0,T ],

u(x , 0) = u0(x), x ∈ (a, b),
u(a, t) = ua(t), u(b, t) = ub(t), t ∈ (0,T ].

where α ∈ (1, 2] and d+(x , t), d−(x , t) > 0.
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Exercise III

I The Crank–Nicolson method with p = 1 for the one–sided problem is given
by

u
(n+1)
i − u

(n)
i

∆t
=

di
2∆xα

 i+1∑
j=0

ω
(α)
j u

(n+1)
i+1−j + g

(n+1)
i +

i+1∑
j=0

ω
(α)
j u

(n)
i+1−j + g

(n)
i


I Write the matrix form of the method,
I Prove that the method is unconditionally stable.

I Write down the matrix sequence generated for the two–sided equation with
p = 1 shifted Grünwald–Letnikov discretization and backward Euler method.
Prove that the obtained discretization scheme is still convergent.



Matrix Sequences
From the discretization of the Fractional Diffusion Equation we
have obtained several matrices, what we are going to do in this
section is analyzing them to uncover their properties, if we assume
that d(x) ≡ 1

I then the building block of the discretization is the matrix

{SN}N =


ω

(α)
1 ω

(α)
0 0 · · · 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 · · · 0

...
...

...
. . .

...
ω

(α)
N−2 ω

(α)
N−3 ω

(α)
N−4 · · · ω

(α)
0

ω
(α)
N−1 ω

(α)
N−2 ω

(α)
N−3 · · · ω

(α)
1


(N−1)×(N−1)

I This is a sequence of Toeplitz Matrices,
I This is a lower Hessenberg Matrix,
I The elements {ω(α)

j }j decay away from the main diagonal,
I It is a dense matrix.
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(N−1)×(N−1)

I This is a sequence of Toeplitz Matrices,
I This is a lower Hessenberg Matrix,
I The elements {ω(α)

j }j decay away from the main diagonal,
I It is a dense matrix.

Remark:
I the matrix being Toeplitz correspond to

the operator being (almost) translation
invariant,

I the matrix being Dense correspond to the
operator being non–local.

For a reasonable discretization every matrix
property should correspond to a property of the
operator!
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Matrix Sequences
Toeplitz Structure

I A Toeplitz Matrix is a matrix with constant coefficients along
the diagonals

Tn =


t0 t−1 . . . t2−n t1−n
t1 t0 t−1 . . . t2−n
... t1 t0

. . .
...

tn−2 . . .
. . . . . . t−1

tn−1 tn−2 . . . t1 t0

 ,

I A subset of this linear space of matrices is given by the
matrices for which exists an f ∈ L1([−π, π]), such that

tk =
1
2π

∫ π

−π
f (θ)e−ikθdθ, k = 0,±1,±2, . . . ,

the tk are the Fourier coefficients of f . In this case we write
Tn = Tn(f ) where f is the generating function of the matrix
Tn(f ).
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Matrix Sequences
Toeplitz Structure

Our matrix sequence is exactly a sequence of this type!
I We can construct the generating function directly:

fα(θ) =
+∞∑
k=0

ω
(α)
k e i(k−1)θ =

∞∑
k=0

(−1)k
(
α

k

)
e i(k−1)θ

=
+∞∑
k=0

(
α

k

)
e i(k−1)θe ikπ = e−iθ

+∞∑
k=0

(
α

k

)
ek(θ+k)

=e−iθ
(
1 + e i(θ+π)

)α
= e−iθ

(
1− e iθ

)α
,

I This is a powerful piece of knowledge on our sequence since it can be
used to obtain information on the whole sequence, particularly
spectral and singular values distributions
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Toeplitz Structure
Our matrix sequence is exactly a sequence of this type!
I We can construct the generating function directly:

fα(θ) = e−iθ
(
1− e iθ

)α
,

I This is a powerful piece of knowledge on our sequence since it can be
used to obtain information on the whole sequence, particularly
spectral and singular values distributions

Asymptotic singular values distribution
Given {Xn}n ∈ Cdn×dn with dn = {dimXn}n

n→+∞−→ ∞ monotonically and a
µ-measurable function f : D → R, with µ(D) ∈ (0,∞), we say that {Xn}n is
distributed in the sense of the singular values as the function f , {Xn}n ∼σ f , iff

lim
n→∞

1
dn

dn∑
j=0

F (σj(Xn)) =
1

µ(D)

∫
D

F (|f (t)|)dt, ∀F ∈ Cc(D),

where σj(·) is the j-th singular value.
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Matrix Sequences
Toeplitz Structure
Our matrix sequence is exactly a sequence of this type!
I We can construct the generating function directly:

fα(θ) = e−iθ
(
1− e iθ

)α
,

I This is a powerful piece of knowledge on our sequence since it can be
used to obtain information on the whole sequence, particularly
spectral and singular values distributions

Asymptotic eigenvalue distribution
Given {Xn}n ∈ Cdn×dn with dn = {dimXn}n

n→+∞−→ ∞ monotonically and a
µ-measurable function f : D → R, with µ(D) ∈ (0,∞), we say that {Xn}n is
distributed in the sense of the eigenvalues as the function f , {Xn}n ∼λ f , iff

lim
n→∞

1
dn

dn∑
j=0

F (λj(Xn)) =
1

µ(D)

∫
D

F (f (t))dt, ∀F ∈ Cc(D),

where λj(·) indicates the j-th eigenvalue.
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Matrix Sequences
Toeplitz Structure

Our matrix sequence is exactly a sequence of this type!
I We can construct the generating function directly:

fα(θ) = e−iθ
(
1− e iθ

)α
,

I This is a powerful piece of knowledge on our sequence since it can be
used to obtain information on the whole sequence, particularly
spectral and singular values distributions

I . . . and from that knowledge efficient preconditioners can be built.

I But what happens if d(x) is not 1, or a constant?
I It is easy to prove that D ∼λ d(x̂) = d(a + (b − a)x̂) and x̂ ∈ [0, 1].
I And a lot more technical (at least to prove) that with these ingredient

a generalization of the Toeplitz matrices for these cases can be built.
I The very good news is that the machinery is quite easy to use!
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Matrix Sequences
Generalized Locally Toeplitz Structure

GLT 1. If {An}n ∼GLT κ then {An}n ∼σ κ. If {An}n ∼GLT κ and the
matrices An are Hermitian then {An}n ∼λ κ.

GLT 2. If {An}n ∼GLT κ and An = Xn + Yn, where
I every Xn is Hermitian,
I ‖Xn‖, ‖Yn‖ ≤ C for some constant C independent of n,
I n−1‖Yn‖1 → 0,

then {An}n ∼λ κ.
GLT 3. We have

I {Tn(f )}n ∼GLT κ(x , θ) = f (θ) if f ∈ L1([−π, π]),
I {Dn(a)}n ∼GLT κ(x , θ) = a(x) if a : [0, 1]→ C is

Riemann-integrable,
I {Zn}n ∼GLT κ(x , θ) = 0 if and only if {Zn}n ∼σ 0.

GLT 4. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ then
I {A∗n}n ∼GLT κ,
I {αAn + βBn}n ∼GLT ακ+ βξ for all α, β ∈ C,
I {AnBn}n ∼GLT κξ.

GLT 5. If {An}n ∼GLT κ and κ 6= 0 a.e. then {A†n}n ∼GLT κ−1.
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I {Tn(f )}n ∼GLT κ(x , θ) = f (θ) if f ∈ L1([−π, π]),
I {Dn(a)}n ∼GLT κ(x , θ) = a(x) if a : [0, 1]→ C is

Riemann-integrable,
I {Zn}n ∼GLT κ(x , θ) = 0 if and only if {Zn}n ∼σ 0.

GLT 4. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ then
I {A∗n}n ∼GLT κ,
I {αAn + βBn}n ∼GLT ακ+ βξ for all α, β ∈ C,
I {AnBn}n ∼GLT κξ.

GLT 5. If {An}n ∼GLT κ and κ 6= 0 a.e. then {A†n}n ∼GLT κ−1.
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Matrix Sequences
Generalized Locally Toeplitz Structure

With this machinery we can compute the symbol for the time–stepping
operator of the two–sided fractional diffusion equation:

AN , νI + D+
N SN + D−N ST

N , ν =
∆xα

∆t

I By GLT3 we find {D±N }N ∼GLT d̂±(x̂) = d±(a + (b − a)x̂) x̂ ∈ [0, 1]

I By GLT3 we have that SN ∼GLT fα(θ) and ST
N ∼GLT fα(−θ)

(Toeplitz matrix with symbol in L1)
I By GLT4 (∗–algebra property) we then know that:

D+
N SN + D−N ST

N ∼GLT gα(x̂ , θ) = d̂+(x̂)fα(θ) + d̂−(x̂)fα(−θ)

I By GLT2, GLT4, and assuming that ν = o(1) we discover that
{νI}N ∼GLT 0 and conclude that: {AN}N ∼GLT gα(x̂ , θ).
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I By GLT2, GLT4, and assuming that ν = o(1) we discover that
{νI}N ∼GLT 0 and conclude that: {AN}N ∼GLT gα(x̂ , θ).

For general d±(x) this is sufficient only for ob-
taining singular value distribution via the first
part of GLT1.
If d+ ≡ d− , d , then {AN}N ∼GLT

{D−1N ANDN} ∼λ d̂(x̂)(fα(θ) + fα(−θ), where
we have used the Hermitian part of GLT1.

34/45



Matrix Sequences
Generalized Locally Toeplitz Structure

Why should we care about what the symbol and the spectral
distribution are?
I We are (probably) interested in Numerical Linear Algebra, so

it’s always nice to know stuff!

I It is a matter of patience to prove that the symbol has a zero
of order α in zero, and this implies that for non–constant d±
we have no hope of obtaining “optimal” Circulant
preconditioner for solving linear systems with these matrices.

I This information can be exploited for building band–Toeplitz
and Multigrid preconditioners.
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M. Donatelli, M. Mazza and S. Serra-Capizzano, Spectral
analysis and structure preserving preconditioners for
fractional diffusion equations, J. Comput. Phys. 307 (2016),
262–279.

H. Moghaderi et al., Spectral analysis and multigrid
preconditioners for two-dimensional space-fractional
diffusion equations, J. Comput. Phys. 350 (2017), 992–1011.
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Matrix Sequences
Decay Behavior

Let’s change perspective! We have looked at the spectral properties
of the matrix, let us look now at the magnitude of their elements.
From the definition of the coefficients ω(α)

κ = (−1)k
(
α
k

)
the

following properties (for α ∈ (1, 2)) are easily obtained
I ω

(α)
0 = 1 and ω(α)

1 = −α,
I
∑+∞

k=0 ω
(α)
k = 0,

I
∑N

k=0 ω
(α)
k < 0 for N > 1.

I ω
(α)
0 > ω

(α)
2 > ω

(α)
3 > . . . > 0,

This decay property is very useful! And more can be said about it:

|ω(α)
k | = O(k−α−1), for k → +∞.

That descend from the limit

lim
x→+∞

Γ(x + α)

xαΓ(x)
= 1, ∀α ∈ R.
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Matrix Sequences
Decay Behavior is inherited from the “Short Memory Principle”

This decaying property of the entries of the discretization matrices
is a structural property of the fractional differential operators.
I Let us fix a memory length a ≤ L < x ,
I Then RL

aD
α
x u(x) ≈ RL

a−LD
α
x u(x), x > a + L,

I The approximation error for a + L ≤ x ≤ b is given by:

E (x) = | RLaD
α
x u(x)− RL

a−LD
α
x u(x)| ≤

sup
x∈[a,b]

u(x)

Lα|Γ(1− α)|
,

We get the Short–Memory Principle.

I this means that one can use a banded approximation of the
time–propagator matrix with prescribed accuracy,

I we can compute “incomplete factorizations” of the system
matrix, e.g., A = LU + C with ‖C‖ < ε.
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I this means that one can use a banded approximation of the

time–propagator matrix with prescribed accuracy,
I we can compute “incomplete factorizations” of the system

matrix, e.g., A = LU + C with ‖C‖ < ε.

We have obtained these results for
the time–propagator matrix, what
about its inverse?
More generally, knowing a decay
pattern in a sequence of matrices
what can be said about the se-
quence of the inverses?
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Matrix Sequences
Decay Behavior of the Sequence of the Inverses

Decay behavior of matrix sequences is a very studied topic and thus
there are many results dealing with several cases
I banded matrices,
I inverses of matrices with polynomial/exponential decay,
I matrices with Kronecker product structure,
I function of matrices

For the application we have in mind we are mostly interested in this
case.

S. Jaffard, Propriétés des matrices “bien localisées” près
de leur diagonale et quelques applications, Ann. Inst. H.
Poincaré Anal. Non Linéaire 7 (1990), no. 5, 461–476.
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Matrix Sequences
Polynomial and Exponential Decay

The sets of invertible matrix (A)h,k ∈ B(`2(K)), K =
Z,N, such that either

|ah,k | ≤ C (1 + |h − k |)−s ,

or
|ah,k | ≤ C exp(−γ|h − k|)

are two algebras, respectively, Qs and Eγ , i.e., their
inverses have the same decay behavior.

I We have interpreted our matrices as elements of sequences of
matrices with growing size, we can take the opposite point of
view, i.e., our matrices are section of infinite operators.

I Thus the requirement (A)h,k ∈ B(`2(K)) is indeed a
requirement on the underlying operator!
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Matrix Sequences
Polynomial and Exponential Decay

How can we discover if (A)h,k ∈ B(`2(K))?

I You (may) know that a linear and bounded operator A on a
Banach space X is invertible in B(X ) if (and only if) its kernel
is {0} and its range is all of X (usually known as Banach’s
Theorem),

I For Toeplitz sequences this can be rewritten in a simple way:

Let T = [0, 2π], then if f ∈ C(T) the Toeplitz operator
T (f ) is invertible on `2 if and only if 0 /∈ f (T) and if
the winding number of the curve f (T) around the origin
is exactly 0, i.e.,

ν(f , 0) =

∮
f (T)

d z

z
= 0.
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Matrix Sequences
Polynomial and Exponential Decay

This is not a very good news. . .

I The symbol as a zero of order α
in 0!

I This is a characteristic of
differential operators they are
not bounded (classical example
fn = sin(nx), ‖fn‖∞ = 1 for
n ≥ 2, but
(Dfn)(x) = n cos(nx), and
hence ‖Dfn‖∞ = n) and have
non–zero kernel

I Moreover, if you think at the
Green functions as “inverses” of
derivatives, they have usually
support in all the domain.
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Matrix Sequences
Polynomial and Exponential Decay

But, on the other hand, numerical experiments do tell us something
different:

0
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2
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2.5

40

20
0 0

|Sh,k | = |(S100 + ST
100)h,k |

0

100

1

2

100

3

80

4

50
60

5

40

20
0 0

|S−1h,k | = |(S100 + ST
100)−1h,k |

These matrices do not form an algebra anymore, but polynomial decay is
still there (even if with different order and a different constant).
This information can be used to produce approximate sparse inverses for
this matrix sequence!
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Conclusions

We have
I introduced (some) concept(s) of Fractional Derivative,
I revised the classical diffusion equation,
I discussed the phenomenon of anomalous diffusion,
I introduced the fractional diffusion equation,
I produced discretizations and numerical schemes,
I discussed properties of the discrete problems.

43/45



Books

Miller, K. S., and B. Ross.
“An introduction to the
fractional calculus and
fractional differential
equations.” (1993).

Podlubny, I. “Fractional
differential equations.” Vol.

198. Elsevier, 1998.

Bertaccini, D., and F.
Durastante. Iterative

Methods and
Preconditioning for Large
and Sparse Linear Systems
with Applications. Chapman

and Hall/CRC, 2018.

https://www.amazon.it/Introduction-Fractional-Calculus-Differential-Equations/dp/0471588849/ref=sr_1_1?ie=UTF8&qid=1536153827&sr=8-1
https://www.amazon.it/Fractional-Differential-Equations-Introduction-Applications/dp/B009CPFEUA/ref=sr_1_fkmr1_2?ie=UTF8&qid=1536153731&sr=8-2-fkmr1
https://www.amazon.it/Iterative-Methods-Preconditioning-Systems-Applications/dp/1498764169/ref=sr_1_fkmr0_2?ie=UTF8&qid=1536153789&sr=8-2-fkmr0


Useful Readings I

I Theory of Fractional Differential Equations

R. Metzler and J. Klafter, The random walk’s guide to
anomalous diffusion: a fractional dynamics approach,
Phys. Rep. 339 (2000), no. 1, 77 pp.

I Discretizations and Numerical Methods

M. M. Meerschaert and C. Tadjeran, Finite difference
approximations for fractional advection-dispersion flow
equations, J. Comput. Appl. Math. 172 (2004), no. 1,
65–77.

M. M. Meerschaert and C. Tadjeran, Finite difference
approximations for two-sided space-fractional partial
differential equations, Appl. Numer. Math. 56 (2006),
no. 1, 80–90.



Useful Readings II

I Iterative Methods and Preconditioners

D. Bertaccini and F. Durastante, Solving mixed classical
and fractional partial differential equations using
short-memory principle and approximate inverses, Numer.
Algorithms 74 (2017), no. 4, 1061–1082.

D. Bertaccini and F. Durastante. Limited memory block
preconditioners for fast solution of fractional partial
differential equations. J. Sci. Comput. (2017): 1-21.

T. Breiten, V. Simoncini and M. Stoll, Low-rank solvers
for fractional differential equations, Electron. Trans.
Numer. Anal. 45 (2016), 107–132.

M. Donatelli, M. Mazza and S. Serra-Capizzano, Spectral
analysis and structure preserving preconditioners for
fractional diffusion equations, J. Comput. Phys. 307
(2016), 262–279.



Useful Readings III

H. Moghaderi et al., Spectral analysis and multigrid
preconditioners for two-dimensional space-fractional
diffusion equations, J. Comput. Phys. 350 (2017),
992–1011.

I Generalized Locally Toeplitz Theory

C. Garoni and S. Serra-Capizzano, Generalized Locally
Toeplitz Sequences: Theory and Applications, Volume 1.
Springer, 2017.

C. Garoni, et al. “Generalized Locally Toeplitz
Sequences: A Spectral Analysis Tool for Approximated
Differential Equations and Few Selected Examples.”.
Notes for the XVI Brazilian School of Cosmology and
Gravitation, Rio de Janeiro, Brasil, July 10–21, 2017.

Tilli, P. (1998). Locally Toeplitz sequences: spectral
properties and applications. Linear algebra and its
applications, 278(1-3), 91-120.



Solution of the Diffusion Equation by Finite Differences

The main idea of Finite Difference (FD) methods for solving PDEs
is to replace spatial and time derivatives of the strong form of the
differential equations by numerical approximation (evaluation) on a
time and space grid.

I Given a function f : [a, b] ⊂ R→ R and an integer n ∈ N we
can subdivide the interval [a, b] into intervals of length
∆x = (b−a)/n with grid points {xj}nj=0 = {xj = x0 + j∆x}nj=0:

x0 ≡ a

x1

x2

x3

xj = x0 + j∆x

xn−1

xn ≡ b

,
I and consider the values {fj}nj=0 = {f (xj)}nj=0
I Can we approximate the values of f ′(xj), for j = 1, . . . , n − 1,

by using only the values of f at the knots {fj}nj=0?
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The answer is YES! But let’s see how we can achieve it
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Solution of the Diffusion Equation by Finite Differences
Building the FD formulas
From the Definition we know that:
I The first derivative of f at x = xj can be expressed by using knots for

j ′ > j

f ′(xj) , lim
∆x→0

fj+1 − fj
∆x

≈
fj+1 − fj

∆x
, D+fj ,

xj−1 xj xj+1

I or equivalently by using knots for j ′ < j

f ′(xj) , lim
∆x→0

fj − fj−1
∆x

≈
fj − fj−1

∆x
, D−fj ,

xj−1 xj xj+1

I at last we can consider the arithmetic mean of previous two:

f ′(xj) ≈ D0fj ,
1
2

(D−fj + D+fj) =
fj+1 − fj−1

2∆x
,

xj−1 xj xj+1
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Solution of the Diffusion Equation by Finite Differences
Building the FD formulas

So what formula do we actually chose?
I We use Taylor Expansions to decide!

fj+1 =fj + ∆xf ′j +
1
2

∆x2f ′′j +
1
3

∆x3f ′′′j + O(∆x4),

fj−1 =fj −∆xf ′j +
1
2

∆x2f ′′j −
1
3

∆x3f ′′′j + O(∆x4),

I from which it is easy to see that

D+fj − f ′j =
1
2

∆xf ′′j +
1
6

∆x2f ′′′j + O(∆x3) = O(∆x)

D−fj − f ′j =− 1
2

∆xf ′′j +
1
6

∆x2f ′′′j + O(∆x3) = O(∆x)

D0fj − f ′j =
1
6

∆x2f ′′′j + O(∆x4) = O(∆x2)
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We have discovered that
I D− and D+ produce first order approximations.
I D0 produces second order approximation.

Now, to obtain the discretization of our diffusion equation we
need a FD formula for the second derivative of f (x). . .

3/XIV



Solution of the Diffusion Equation by Finite Differences
Building the FD formulas

So what formula do we actually chose?
I We use Taylor Expansions to decide!

fj+1 =fj + ∆xf ′j +
1
2

∆x2f ′′j +
1
3

∆x3f ′′′j + O(∆x4),

fj−1 =fj −∆xf ′j +
1
2

∆x2f ′′j −
1
3

∆x3f ′′′j + O(∆x4),

I from which it is easy to see that

D+fj − f ′j =
1
2

∆xf ′′j +
1
6

∆x2f ′′′j + O(∆x3) = O(∆x)

D−fj − f ′j =− 1
2

∆xf ′′j +
1
6

∆x2f ′′′j + O(∆x3) = O(∆x)

D0fj − f ′j =
1
6

∆x2f ′′′j + O(∆x4) = O(∆x2)

We have discovered that
I D− and D+ produce first order approximations.
I D0 produces second order approximation.

Now, to obtain the discretization of our diffusion equation we
need a FD formula for the second derivative of f (x). . .

3/XIV



Solution of the Diffusion Equation by Finite Differences
Building the FD formulas

There are several ways to obtain a formula for f ′′(xj), since
f ′′(x) = (f ′(x))′ an idea could be

D2fj =D+D−fj

=
1

∆x
[D−fj+1 − D−fj ] =

1
∆x

[
fj+1 − fj

∆x
−

fj − fj−1
∆x

]
=
fj−1 − 2fj + fj+1

2∆x2
,

xj−1 xj xj+1
.

I This is completely equivalent to D2fj = D−D+fj or to
D

∆x/2
0 D

∆x/2
0 fj , where D

∆x/2
0 is the centered difference on a grid

of stepsize ∆x/2,
I f ′′j = D2fj + O(∆x2),
I by this trick and the repeated derivative formula we have seen

FD for higher order derivative can be readily obtained.
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Solution of the Diffusion Equation by Finite Differences
Discretizing the Diffusion Equation

Let us start from the steady state diffusion equation, i.e.,

given f (x) find u s.t.


u′′(x) = f (x), x ∈ (0, 1),
u(0) = α,
u(1) = β,

if we use the grid on (0, 1) with stepsize ∆x = 1/n+1, n ∈ N we
can write the following discrete approximation

find u1, . . . , un s.t.


1

∆x
(uj−1 − 2uj + uj+1) = fj , j = 1, . . . , n

u0 = α,
un+1 = β,

to find an approximation of the solution on the knots we need
only to solve a set of n linear equations.
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Solution of the Diffusion Equation by Finite Differences
Discretizing the Diffusion Equation

By collecting everything in a matrix form we find

Anun ≡
1

∆x2



−2 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2




u1
u2
...

un−1
un

 =


f1 − α/∆x2

f2
...

fn−1
fn − β/∆x2

 ≡ fn

“Solving a linear boundary value problem” ≈ “Solving a Linear System”

To be sure that what we have done is “reasonable” we need to have that
the error between the values of the true solution û on the grid and the
values {uj}nj=1 goes to zero as ∆x → 0 (n→ +∞).
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Solution of the Diffusion Equation by Finite Differences
Local Truncation Error, Global Error, Stability, Consistency and Convergence
Let û be the vector of the evaluations of the true solution on the grid {xj},
we need to bound one norm of the vector en = un − ûn, e.g.,

‖en‖∞, ‖en‖1,∆x = ∆x
n∑

j=1

|ej |, ‖en‖2,∆x =

∆x
n∑

j=1

|ej |2
1/2

,

I if we call Local Truncation Error the vector

τ n = Anû− fn

I then the Global Error e satisfies the equation

Anen = −τ n, e0 = en+1 = 0,

I therefore we can express the Global Error in terms of known quantities

en = −A−1n τ n ⇒ ‖en‖ ≤ ‖A−1n ‖‖τ n‖
7/XIV



Solution of the Diffusion Equation by Finite Differences
Local Truncation Error, Global Error, Stability, Consistency and Convergence

Suppose an FD method for a linear BVP gives a sequence of
matrix equations of the form Anun = fn, where the meshwidth is
given by ∆x = o(1/n) for n → +∞. We say that the method is
stable if A−1n exists for all ∆x sufficiently small (∆x < ∆̄x), and
if there exists a constant C independent from ∆x , such that

‖A−1n ‖ ≤ C , ∀∆x < ∆̄x .

We say that an FD method for a linear BVP is consistent with
the differential equation and the boundary conditions if

‖τ n‖ → 0 as ∆x → 0.

“consistency” + “stability” ⇒ “convergence”

‖en‖ ≤ ‖A−1n ‖‖τ n‖ ≤ C‖τ n‖ → 0, as ∆x → 0.
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Solution of the Diffusion Equation by Finite Differences
Local Truncation Error, Global Error, Stability, Consistency and Convergence

The Finite Difference method for the Steady State Diffusion
Equation is
I stable in both norms ‖ · ‖2,∆x and ‖ · ‖∞,
I consistent in both norms ‖ · ‖2,∆x and ‖ · ‖∞ (straightforward

from the computations for the order of convergence of the
finite difference formulas),

therefore the method is convergent! If we refine the grid size ∆x ,
i.e., if we increase the number of grid nodes n, the error between
the approximated and true solution decreases as on O(∆x2).

We consider now the time–marching case!
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Solution of the Diffusion Equation by Finite Differences
Discretization in the time direction
We need to discretize now the equation:

∂u

∂t
= −κ∂

2 u

∂ x2
+ f (x , t), (x , t) ∈ (0, 1)× (0,T ]

u(x , 0) = u0(x), x ∈ (0, 1),
u(0, t) = α(t), t ∈ (0,T ],
u(1, t) = β(t), t ∈ (0,T ].

I We have just seen how to deal with the
derivative in space:
u′n(t) = −κAnun(t) + fn(t)

I We put a grid of stepsize
∆t = T/(M + 1) for M ∈ N, on the
time direction {tm}M+1

m=0 = {m∆t}M+1
m=0 ∆x

∆t

We can discretize
∂u

∂t
by the 1D difference in time: D±,t .
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Solution of the Diffusion Equation by Finite Differences
Forward and Backward Euler

Forward (Explicit) Euler
(m+1)
j

(m)
j

(m)
j−1

(m)
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D+,tu(m)
n = −Anu(m)

n + f(m)
n

u
(m+1)
n − u

(m)
n

∆t
= −Anu(m)

n + f(m)
n

um+1
n = (I −∆tAn)u(m)

n + ∆tf(m)
n

e(m+1) = (I −∆tAn)e(m) −∆tτ (m)

Backward (Implicit) Euler
(m+1)
j
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n − u

(m)
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= −Anu(m+1)

n + f(m+1)
n

(I + ∆tAn)u(m+1)
n = u(m+1)

n + ∆tf(m+1)
n

e(m+1) = (I + ∆tAn)−1e(m) −∆tτ (m)
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By using again the vector û(m)
n of the evaluation

of the true solution in tm is possible to express
again the error vector e(m) for the two methods!
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Solution of the Diffusion Equation by Finite Differences
Stability and Convergence

I As it was for the BVP we need a suitable
concept of stability, so let us consider the
scalar test problem:

u′(t) = λu(t), λ ∈ C,

if we apply Explicit Euler to this equation
we obtain u(n+1) = (1 + ∆tλ)u(n), thus we
define the region of absolute stability of
this method as

R = {z ∈ C : |1 + z | ≤ 1}, z = ∆tλ.

I For Implicit Euler we obtain the region of
absolute stability:

R = {z ∈ C : |(1−z)−1| ≤ 1}, z = ∆tλ.
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In practice what we are solving is a system of linear ODEs,
for which the coefficient matrix is the space discretization of
our liner PDE. Then the value λ represents an eigenvalue of
such matrix.

Therefore, to avoid a propagation of the error
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In practice what we are solving is a system of linear ODEs,
for which the coefficient matrix is the space discretization of
our liner PDE. Then the value λ represents an eigenvalue of
such matrix. Therefore, to avoid a propagation of the error
I if we use Forward Euler method, we need to require

that |1 + ∆tλ| ≤ 1 for λ any eigenvalue of −κAn, i.e,

κ∆t

∆x2
≤ 1

2
,

in this case we say that the method is conditionally
stable.

12/XIV



Solution of the Diffusion Equation by Finite Differences
Stability and Convergence

I As it was for the BVP we need a suitable
concept of stability, so let us consider the
scalar test problem:

u′(t) = λu(t), λ ∈ C,

if we apply Explicit Euler to this equation
we obtain u(n+1) = (1 + ∆tλ)u(n), thus we
define the region of absolute stability of
this method as

R = {z ∈ C : |1 + z | ≤ 1}, z = ∆tλ.

I For Implicit Euler we obtain the region of
absolute stability:

R = {z ∈ C : |(1−z)−1| ≤ 1}, z = ∆tλ.

-4 -2 0 2 4

-4

-2

0

2

4

Real

Imaginary

R for Forward Euler Method

-4 -2 0 2 4

-4

-2

0

2

4

Real

Imaginary

R for Backward Euler Method

In practice what we are solving is a system of linear ODEs,
for which the coefficient matrix is the space discretization of
our liner PDE. Then the value λ represents an eigenvalue of
such matrix. Therefore, to avoid a propagation of the error

I if we use Backward Euler Method, we need to require
that |(1−∆tλ)−1| ≤ 1 for λ any eigenvalue of −κAn,
i.e., we do not need to require anything, thus we say
that the method is unconditionally stable.
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Solution of the Diffusion Equation by Finite Differences
Stability and Convergence

The two method we have investigate have the form:

u(m+1) = B(∆t)u(m+1) + b(m)(∆t)

A linear method of this form is Lax–Ricthmeyer stable if, for each
time T , there is a constant CT > 0 such that

‖B(∆t)m‖ ≤ CT ,

for all ∆t > 0 and integers m for which ∆t ·m ≤ T .

A linear method of this form is consistent if

‖τ (m)‖ → 0 as ∆t → 0.

“consistency” + “Lax–Ricthmeyer stability” ⇒ “convergence”
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‖τ (m)‖ → 0 as ∆t → 0.

“consistency” + “Lax–Ricthmeyer stability” ⇒ “convergence”

e(m) = Bme(0) −∆t
m∑

k=1

Bm−kτ (k−1)
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k=1

‖Bm−k‖‖τ (k−1)‖
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