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Exercises for the course  

August 12, 2018. A >= 7 points; B >= 4 points; C >= 2points 

Problem 1 (2 points). One have to solve convex optimization problem (
2dim X n , 
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Show that (up to a sign) the dual problem will be ( dim 2x n ) 
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Problem 2 (2 points). How to find such 
Nx  that for the problem (2)   *

Nx     with  2N LR   , 

2L n  , * 2
R x  – 2-norm of the solution of the dual problem (2) and a cost of one iteration  2n ? 

 

Problem 3 (3 points). Propose a way to find such NX  that (see (1) and (2)) 
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with  2N LR   , 2L n  , * 2
R x  – 2-norm of the solution of the dual problem (2) and a cost of one 

iteration  2n . 

 

Problem 4. (2 points) Let’s consider QP-problem ( n n  matrix 0A  is fully completed, 
ijA M ) 
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Using Fast Gradient Method of Yu. Nesterov, one can find  -solutions for 

 2 lnn M n   arithmetic operations. // not good since 1n  is huge 

Show that if one use randomized Mirror Descend method with stochastic gradient 
 i x

A  –  i x -column of 

matrix A  and    jP i x j x  , 1,...,j n  (one can generate  i x  for  n  arithmetic operations), then one 

can find  ,  -solution for   2 1 2ln lnnM n     arithmetic operations. Note, that vector 
Nx  is a  ,  -

solution iff   *

Nf x f    with probability 1   . 
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Problem 5. (4 points) Assume that the optimal configuration determines by the solution of the convex problem 

  min
x Q
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 . 

But each day (at each iteration) one can only observe independent stochastic gradients 

 ,x f x  :    ,xE f x f x     ,  
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Mage can live  2 2 1 2lnN M R    iterations and Expert 2 2 2N M R  . Compare what is better to ask a 

solution from Mage or from  1lnK    Experts ,
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Problem 6 (2 points). Propose algorithm with complexity  1   (required number of matrix-vector 

multiplications) that find  -solution of the system Ax b : 
2

NAx b   . Try to estimate complexity more 

precisely. 

 

Problem 7 (4 points). Assume that in Problem 6  * 1nx S  (unit simplex in n ), 0b   and square n n  

matrix A  has no more than s n  nonzero elements at each row and each column ( 1n ). Try to find  -

solution with complexity (total number of arithmetic operations)   2 2lnn s n   . 

Hint. Use conditional gradient method and try to explain how one can fulfill iteration for   2 lns n . For that 

one should keep gradient components in a heap with fast control to its maximal element. 

 

Problem 8 (2 + 3 points). How one should solve 
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In case а) 0   – is small ; b)   –  isn’t small. 

 

Problem 9 (3 + 2 points). Propose an efficient method for 
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 а)    max 0,1k k k kf y C b y  ,  

b)    
2

k k k kf y C y b   . 

 


