Exercises for the course

August 12, 2018. A >= 7 points; B >= 4 points; C >= 2points

Problem 1 (2 points). One have to solve convex optimization problem (dim $X = n^2$, $\sum_{i=1}^{n} \tilde{L}_i = \sum_{j=1}^{n} \tilde{W}_j = 1$)

$$f(X) = \sum_{i,j=1}^{n} c_{ij} X_{ij} + \gamma \sum_{i,j=1}^{n} X_{ij} \ln X_{ij} \to \min_{\substack{\sum_{j=1}^{n} X_{ij} = \tilde{L}_{i}, \sum_{i=1}^{n} X_{ij} = \tilde{W}_{j} \\ X_{ij} \ge 0, i, j = 1, \dots, n;}$$
(1)

Show that (up to a sign) the dual problem will be $(\dim x = 2n)$

$$\varphi\left(x=\left(\lambda,\mu\right)\right)=\gamma\ln\left(\sum_{i,j=1}^{n}\exp\left(\frac{\lambda_{i}+\mu_{j}-c_{ij}}{\gamma}\right)\right)-\left\langle\lambda,\tilde{L}\right\rangle-\left\langle\mu,\tilde{W}\right\rangle\rightarrow\min_{x=\left(\lambda,\mu\right)\in\mathbb{R}^{2n}}.$$
(2)

Problem 2 (2 points). How to find such x^N that for the problem (2) $\varphi(x^N) - \varphi_* \le \varepsilon$ with $N = O(\sqrt{LR^2/\varepsilon})$, $L = 2n/\gamma$, $R = ||x_*||_2 - 2$ -norm of the solution of the dual problem (2) and a cost of one iteration $O(n^2)$?

Problem 3 (3 points). Propose a way to find such X^N that (see (1) and (2))

$$f\left(X^{N}\right) + \varphi\left(x^{N}\right) \leq \varepsilon, \ \sqrt{\sum_{i=1}^{n} \left(\sum_{j=1}^{n} X_{ij}^{N} - \tilde{L}_{i}\right)^{2}} + \sum_{j=1}^{n} \left(\sum_{i=1}^{n} X_{ij}^{N} - \tilde{W}_{j}\right)^{2}} \leq \tilde{\varepsilon}.$$

with $N = O(\sqrt{LR^2/\varepsilon})$, $L = 2n/\gamma$, $R = ||x_*||_2 - 2$ -norm of the solution of the dual problem (2) and a cost of one iteration $O(n^2)$.

Problem 4. (2 points) Let's consider QP-problem ($n \times n$ matrix $A \succ 0$ is fully completed, $|A_{ij}| \le M$)

$$f(x) = \frac{1}{2} \langle x, Ax \rangle \rightarrow \min_{x \in S_n(1)}$$

Using Fast Gradient Method of Yu. Nesterov, one can find ε -solutions for

 $O(n^2 \sqrt{M \ln n/\varepsilon})$ arithmetic operations. // not good since $n \gg 1$ is huge

Show that if one use randomized Mirror Descend method with stochastic gradient $A^{\langle i[x] \rangle} - i[x]$ -column of matrix A and $P(i[x] = j) = x_j$, j = 1, ..., n (one can generate i[x] for O(n) arithmetic operations), then one can find (ε, σ) -solution for $O(nM^2 \ln n \cdot \ln(\sigma^{-1})/\varepsilon^2)$ arithmetic operations. Note, that vector \overline{x}^N is a (ε, σ) -solution iff $f(\overline{x}^N) - f_* \leq \varepsilon$ with probability $\geq 1 - \sigma$.

Problem 5. (4 points) Assume that the optimal configuration determines by the solution of the convex problem $f(x) \to \min_{x \in Q}.$

But each day (at each iteration) one can only observe independent stochastic gradients

$$\nabla_{x} f(x,\xi) \colon E_{\xi} \Big[\nabla_{x} f(x,\xi) \Big] = \nabla f(x), \ \left\| \nabla_{x} f(x,\xi) \right\|_{*} \leq M.$$

Mage can live $N \sim M^2 R^2 \ln(\sigma^{-1}) / \varepsilon^2$ iterations and Expert $N \sim M^2 R^2 / \varepsilon^2$. Compare what is better to ask a solution from Mage or from $K \sim \ln(\sigma^{-1})$ Experts $\overline{x}^K = \frac{1}{K} \sum_{i=1}^K \overline{x}^{N,i}$?

Problem 6 (2 points). Propose algorithm with complexity $O(\varepsilon^{-1})$ (required number of matrix-vector multiplications) that find ε -solution of the system Ax = b: $||Ax^N - b||_2 \le \varepsilon$. Try to estimate complexity more precisely.

Problem 7 (4 points). Assume that in Problem 6 $x_* \in S_n(1)$ (unit simplex in \mathbb{R}^n), b = 0 and square $n \times n$ matrix A has no more than $s \leq \sqrt{n}$ nonzero elements at each row and each column $(n \gg 1)$. Try to find ε -solution with complexity (total number of arithmetic operations) $O(n + s^2 \ln(n)/\varepsilon^2)$.

Hint. Use conditional gradient method and try to explain how one can fulfill iteration for $O(s^2 \ln(n))$. For that one should keep gradient components in a heap with fast control to its maximal element.

Problem 8 (2 + 3 points). How one should solve

$$\frac{1}{2} \|Ax - b\|_2^2 + \mu \sum_{k=1}^n x_k \ln x_k \to \min_{\sum_{k=1}^n x_k = 1, \ x \ge 0} ?$$

In case a) $\mu \ge 0$ – is small; b) μ – isn't small.

Problem 9 (3 + 2 points). Propose an efficient method for

$$\sum_{k=1}^{m} f_k\left(A_k^T x\right) + g\left(x\right) \to \min_{x \in Q},$$

where $g(x) = \frac{1}{2} ||x||_2^2$ and a) $f_k(y_k) = C \max\{0, 1 - b_k y_k\},$ b) $f_k(y_k) = C \cdot (y_k - b_k)^2.$