Matrix Algebras

August 20, 2018

• Given a sparse matrix $A \in \mathbb{R}^{n \times n}$ (let us suppose that any matrix-vector product $A\mathbf{x}$ can be computed in kn FLOPS) carefully estimate the number of FLOPS sufficient to compute

 $(U^T A U)_{ii}$ $i = 1, \dots, n$ (diagonal elements of the matrix $U^T A U$) (1)

being U an orthogonal matrix product of m Householder matrices, i.e.,

$$U = (I - \mathbf{w}_m \mathbf{w}_m^T) \cdots (I - \mathbf{w}_1 \mathbf{w}_1^T)$$

with $\|\mathbf{w}_i\|_2^2 = 2$.

• How many FLOPS are sufficient to compute $\mathcal{L}_A := \arg \min_{X \in \mathcal{L}} ||A - X||_F$, being $\mathcal{L} = sd U$?