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This document contains some exercises that have to be solved by the students needing to pass the
exam. The solutions, collected in a zipped file, have to contain a pdf file with comments, answers,
results and figures (a kind of report), the functions and scripts written by the students and used for
obtaining the solutions.

The students may produce the solutions in group (not more that three students) and have to
send them (by mail to michela.redivozaglia@unipd.it) not after October 7, 2018.

1. Exercises on Aitken’s ∆2 process.

(a) Given a sequence (Sn) of real (or complex) numbers slowly converging, one can transform
it, without modifying its terms, into a new sequence which, under some assumptions,
converges faster to the same limit. One of the most well known sequence transformation
is Aitken’s ∆2 process. It can be written in several ways.

Consider the fixed point sequence (Sn) constructed by

Sn+1 = exp(−Sn), n = 0, 1, . . . , S0 = 0.

It converges to S = 0.5671432904097839 · · · = exp(−S) (the sign of S in the slides of
Lecture 1 is wrong).

We apply Aitken’s process to it using the two formulas (∆ denote the usual forward
difference operator)

T 1
n = Sn −

(∆Sn)
2

∆2Sn

stable form

T 2
n =

SnSn+2 − S2
n+1

∆2Sn

unstable form.

Take n = 0, . . . , 50, compute the sequences (Sn), (T
1

n
) and (T2

n
) and plot the curves of

the absolute errors with respect to the value S ≃ 0.5671432904097839, for obtaining a
figure similar to
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with (Sn) (plain line), (T 1
n) stable (dash–dotted line) and (T 2

n) unstable (dotted line).

(b) Now, consider the following formulas, all mathematically equivalent the previous ones,
and for the same sequence detect if on this example they are stable or not (produce the
corresponding figures).

T 3
n = Sn+1 −

∆Sn∆Sn+1

∆2Sn

T 4
n =

Sn∆Sn+1 − Sn+1∆Sn

∆2Sn

T 5
n = Sn+2 −

(∆Sn+1)
2

∆2Sn

T 6
n =

Sn+1 −
∆Sn+1

∆Sn

Sn

1−
∆Sn+1

∆Sn

T 7
n = Sn+1 +

1

1/∆Sn+1 − 1/∆Sn

(c) Optional. Not easy to do! Find a scalar sequence where at least one other formula
(T 2

n apart) is unstable.

(d) The effects of the arithmetic of the computers. We saw that

T 2
n =

SnSn+2 − S2
n+1

Sn+2 − 2Sn+1 + Sn

is in most cases unstable. Try on the example of item (a) the following slight modification
of that formula (the only change is the order of the terms of the denominator) and produce
a figure comparing the errors

T 8
n =

SnSn+2 − S2
n+1

Sn+2 + Sn − 2Sn+1

The curves coincide? Why?

2. Exercises on the scalar ε-algorithm.

(a) The rule of the scalar ε-algorithm, implementing the Shank’s transformation, are















ε
(n)
−1 = 0, n = 0, 1, . . . ,

ε
(n)
0 = Sn, n = 0, 1, . . . ,

ε
(n)
k+1 = ε

(n+1)
k−1 + (ε

(n+1)
k − ε

(n)
k )−1, k, n = 0, 1, . . .

(1)

and we have
ε
(n)
2k = ek(Sn).

The ε’s are put in the two–dimensional array (we set n = 0), called the ε-array.

If we want to compute the quantity ε
(n)
2k , 2k + 1 terms of the original sequence are needed.



For instance, if we fix 2k = 4 (the column −1 is omitted in the figure), we have

column 0 column 1 column 2 column 3 column 4
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0 = S5 ε
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...
...

...
...

...
...

Implement the ε–algorithm by columns, storing the whole two-dimensional array. The first
row of the array will contain the first descending diagonal and so on.

We know that if we consider a formal power series

f(t) = c0 + c1t+ c2t
2 + · · ·

the Padé approximant of such series, usually denoted by [p/q]f(t), is linked to the ε–algorithm.
In fact, applying the ε–algorithm to the partial sums (Sn) of f , then

ek(Sn) = ε
(n)
2k = [n + k/k]f(t).

We consider the series
f(t) = t− t2/2 + t3/3− t4/4 + · · ·

which converge to ln(1 + t) for |t| ≤ 1, t 6= −1.

For t = 1, we have ln 2 = 0.6931471805599453 . . .

Apply the ε–algorithm to the sequence of the partial sums S0, S1, S2, . . . , S21 and compute
ε
(0)
2 = [1/1]f(1), ε

(0)
4 = [2/2]f(1), . . . , ε

(0)
20 = [10/10]f(1).

Produce a figure of the absolute errors. The result has to be similar to
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3. Not easy to do! Implementing the ε–algorithm by diagonals, with the moving lozenge
technique of Wynn. It consists in storing the last ascending diagonal of the ε–array (in this

diagonal the sum of the lower and the upper indexes is constant), that is, for example, ε
(m)
0 =

Sm, ε
(m−1)
1 , . . . , ε(0)m , and to add, one by one (that is ε

(m+1)
0 = Sm+1), the terms of the sequence

to be transformed. Then, a new ascending diagonal is built step-by-step, by moving up the
lozenge, and the new diagonal gradually replaces the old one. In this way, the algorithm needs
to store only one vector and three auxiliary variables (see the notes distributed, and the original
paper of Wynn).

Apply the new implementation to the same example given before and recover the results.

4. Optional. Compare the numerical results obtained by using the EPSfun Matlab toolbox
(function VEAW) freely available in netlib (package na44 of numeralgo). In the demo directory
there is a script file that can help the students in this work. The function is general (that is it
can be used also for vectors) but it works also for scalar sequences.


