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1 Basic definitions

1.1 Nonnegative matrices and graphs

A (directed) graph is a pair G = (V,E) where V is a finite set of nodes (or vertices) and E ⊆ V ×V
is a set of (oriented) edges. In pictures, nodes can be visualized as points and edges as arrows or
lines joining them. Hereafter, I generally assume V = {1, . . . , n} and write i→ j to indicate that
(i, j) ∈ E. Edges of the form (i, i) are called loops.

A graph G = (V,E) can be completely described by its adjacency matrix, which is the n × n
matrix A such that Aij = 1 if j → i and Aij = 0 otherwise.1 The notation A = AG indicates that
A is the adjacency matrix of G.

G :
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 AG =


0 0 0 0
1 0 0 0
1 1 1 0
0 1 0 0

 .

Conversely, for any given matrix A ∈ Rn×n the graph associated to A is the graph GA = (V,E)
such that V = {1, . . . , n} and j → i⇐⇒ Aij 6= 0. Thus, if the entries of A belong to the set {0, 1}
then A is the adjacency matrix of GA.

A =


∗ 0 0 ∗
0 0 0 ∗
∗ 0 0 0
0 ∗ 0 0

  GA :
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A graph is undirected (or non-oriented) when i→ j ⇐⇒ j → i, that is, when its adjacency matrix
is symmetric. In that case, edges are depicted as lines instead of arrows, and the notation i ∼ j
replaces both i→ j and j → i.

Let A = AG and let v ∈ Rn. If we consider vi as a score placed on node i then it is useful to
look at the matrix-vector product w = Av as propagating the scores along the edges of G. In fact,
direct inspection shows that the numbers wi are obtained by propagating the vi’s along the edges
of the graph and summing up the contributions arriving at each node:

wi =

n∑
j=1

Aijvj =
∑
j:j→i

vj .

Definition 1.1. A walk of length k ≥ 1 in G is any sequence of nodes i0, i1, . . . , ik such that
ij−1 → ij (or ij−1 ∼ ij in the undirected case) for j = 1, . . . , k. We say that the walk i0, i1, . . . , ik
starts at i0 and terminates at ik.

∗Dept. Mathematics, Computer Science and Physics, University of Udine, Italy. Email: dario.fasino@uniud.it.
The author’s work has been partially supported by Istituto Nazionale di Alta Matematica (INdAM, Italy).

1 Various authors define the adjacency matrix as Aij = 1 if i → j and 0 otherwise. I prefer the other definition
for simplicity of subsequent notations.
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2 An introduction to Perron–Frobenius theory 2

An useful result is included here below; the simple proof proceeds by induction and is omitted
for brevity.

Lemma 1.2. Let A = AG. For any k ∈ N and i, j = 1, . . . , n the value of (Ak)ij is equal to the
number of different walks of length k starting at j and terminating at i.

Remark 1.3. Many applications require the treatment of weighted graphs. These are graphs where
every edge (i, j) ∈ E is associated to a real (usually positive) number, say wij. For example, wij
may indicate the strenght of the tie or the length of a physical link existing between nodes i and j
in a network found in the real world. In this case the adjacency matrix is defined as Aij = wji if
j → i and Aij = 0 otherwise. In this document graphs are not weighted. By the way, virtually all
results presented here apply also to weighted graphs, with due (almost obvious) modifications.

Other useful notations are the following:

• An all-zeros matrix is denoted by O. An all-ones vector is denoted by 1. The i-th canonical
vector is denoted by ei and I denotes an identity matrix.

• Inequality operators like ≥ or > are extended to matrices and vectors in the entrywise sense;
for example, A ≥ O means that all elements of A are nonnegative. Analogously, the absolute
value is extended to vectors entrywise: If v = (v1, . . . , vn)T then |v| = (|v1|, . . . , |vn|)T .

• The spectral radius of a square matrix A is denoted by ρ(A):

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

1.2 Irreducible matrices and strongly connected graphs

Definition 1.4. The matrix A ∈ Rn×n is reducible if there is a permutation matrix P such that
the matrix B = PAPT is in (lower) block triangular form:

B = PAPT =

(
B11 B12

O B22

)
,

where the diagonal blocks B11, B22 are square matrices. An irreducible matrix is a matrix that is
not reducible.

Exercise 1.5. Prove this: A is irreducible ⇐⇒ AT is irreducible.

Definition 1.6. A graph is strongly connected if any two nodes are connected by a walk.

The two preceding definitions are connected by the following important result:

Theorem 1.7. A matrix A ∈ Rn×n is irreducible if and only if GA is strongly connected.

Proof. Suppose that A is reducible. Apart of a permutation (which corresponds to a renum-
bering of the nodes of GA) we can assume that A is already in reduced block triangular form:

A =

(
A11 A12

O A22

)
, A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 , (1)

with n1+n2 = n. Hence, in GA there are no edges connecting nodes 1, . . . , n1 to nodes n1+1, . . . , n.
As a consequence, there are no walks going from nodes n1 + 1, . . . , n to nodes 1, . . . , n1, and the
graph is not strongly connected.

Conversely, if GA is not strongly connected then there are two distinct nodes, say i and j, such
that there is no walk from i to j. Let I be the set of all nodes that can be reached by a walk
starting from i, and let J be its complementary set. Without loss of generality, we can suppose
that I = {1, . . . , n1} and J = {n1 + 1, . . . , n}. It is not difficult to realize that A has the form (1),
hence it is reducible.

2 An introduction to Perron–Frobenius theory

At the beginning of 20th century, Oskar Perron investigated spectral properties of matrices having
all positive entries. Shortly after, Ferdinand G. Frobenius extended most of Perron’s results to
some matrices with nonnegative entries. Today we call Perron–Frobenius theory a wealth of results
on spectral properties of nonnegative matrices and operators, originated by those studies.2

2 Besides C. Meyer’s book [12], a good reference for Perron–Frobenius theory is the book by R. S. Varga, Matrix
Iterative Analysis (1962).
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Quoting from [12, p. 662]: “The Perron–Frobenius theory is elegant. It is a testament to the
fact that beautiful mathematics eventually tends to be useful, and useful mathematics eventually
tends to be beautiful.”

2.1 Perron’s theorem

Theorem 2.1. Let A ∈ Rn×n, A > O. Then, (1) A has a positive eigenvalue equal to ρ(A). (2)
To ρ(A) it is associated an eigenvector x > 0. (3) ρ(A) is a simple eigenvalue of A, that is, it
corresponds to a single Jordan block of order 1. (4) ρ(A) is a dominant eigenvalue of A, that is,
if µ is any other eigenvalue of A then |µ| < ρ(A).

Proof. In this proof,3 the following simple fact will be used repeatedly.

Lemma 2.2. If A > O then for any vector y ≥ 0 with y 6= 0 we have Ay > 0. In particular, for
any real vector z, there exists a real number ε > 0 such that Ay > εz.

For any nonzero vector v ≥ 0 let

Λv = {ε > 0 : Av ≥ εv}

and set Λ = ∪v	0Λv. It is easy to see that Λ 6= ∅ (for example, Aii ∈ Λei) and that it is bounded.
Let λ = sup Λ. We will show that there exists a vector x > 0 such that Ax = λx. First, by the
definition of λ, we can pick a sequence {λ(j)} converging to λ. By the definition of Λ we also have
vectors x(j) ≥ 0 such that Ax(j) ≥ λ(j)x(j). Without loss of generality, we can choose x(j) with
‖x(j)‖ = 1. Using a compactness argument, after possibly passing to a subsequence we can also
assume that x(j) converges to a vector x. By the way x is obtained we have x ≥ 0, Ax ≥ λx, and
‖x‖ = 1.

To show that Ax = λx, proceed by contradiction. Assume that Ax 6= λx and let y = Ax− λx.
Thus y 6= 0 by assumption, and since y = limj→∞Ax(j)−λ(j)x(j), we also have y ≥ 0. Let z = Ax.
By Lemma 2.2 there is ε > 0 so that Ay ≥ εz. Moreover,

Az = A(Ax) = Ay + λAx ≥ (λ1 + ε)z,

hence λ+ ε ∈ Λz, contradicting the fact that λ = sup Λ. So Ax = λx. In addition, Lemma 2.2 also
implies that λx = Ax > 0 and therefore x > 0.

Now we show that λ = ρ(A). If µ is an eigenvalue (which in general is a complex number) of
A with an eigenvector v, then by triangle inequality we have A|v| ≥ |Av| = |µ||v|, hence |µ| ∈ Λ|v|.
Since λ = sup Λ we obtain λ ≥ |µ|, hence λ = ρ(A).

To prove claim (3) we use the following lemma whose proof relies on the Jordan normal form
of A and is not included.4

Lemma 2.3. Let Ax = λx. Then, λ is not simple if and only if there exists y 6= 0 such that
yTA = λyT and yTx = 0.

If λ is not simple then by Lemma 2.3 there exists a vector 0 6= y ∈ Rn such that yTA = ρ(A)yT

and yTx = 0. Since x > 0, y must have both positive and negative entries. Let z be the vector
defined as

zj =

{
yj if yj > 0

0 else.

It is not difficult to see that λzT ≤ zTA with strict inequality in at least one entry. Owing to the
inequality x > 0 we deduce

λzTx < zTAx = λzTx,

a contradiction.
To prove that ρ(A) is dominant let ε > 0 be such that B = A − εI > 0. Note that µ is an

eigenvalue of A iff µ−ε is an eigenvalue of B. In particular, ρ(B) = ρ(A)−ε. Now, if |µ−ε| ≤ ρ(B)
then the identity |µ| = ρ(A) is fulfilled iff µ = ρ(A). So if µ 6= ρ(A) then |µ| < ρ(A), that is, ρ(A)
is dominant.

3 This proof of Perron’s theorem is borrowed from L. Ni, A Perron-type theorem on the principal eigenvalue of
nonsymmetric elliptic operators. Amer. Math. Monthly, 121 (2014), 903–908.

4 To prove Lemma 2.3 it is sufficient to consider the case when A is diagonal or it consists of a single nontrivial
Jordan block. A complete proof can be established on the basis of the discussion of these two fundamental cases.
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2.2 Extension to irreducible nonnegative matrices

Theorem 2.1 cannot be immediately extended to nonnegative matrices, as shown by simple coun-
terexamples.

Exercise 2.4. For any of the following matrices, what claim of Perron’s theorem is not fulfilled?(
0 1
0 0

)
,

(
1 1
0 1

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)
.

If A ≥ O then we can only say that there exists a vector x ≥ 0 such that Ax = ρ(A)x with
ρ(A) ≥ 0 (use a continuity argument). However, if we add the irreducibility hypothesis then we
can say much more.

Theorem 2.5 (Perron–Frobenius). Let A ∈ Rn×n be an irreducible, nonnegative matrix. Then,
all claims in Theorem 2.1 hold true except the last one.

Proof. (sketch) First of all, observe that if A ≥ O is irreducible then ρ(A) > 0. In fact,
if ρ(A) = 0 then A is nilpotent, that is, there exists a positive integer m such that Am = O.
In particular, Ame1 = 0. According to the “score propagation” interpretation of matrix-vector
products with powers of A, we conclude that all walks in GA starting from node 1 sooner or later
arrive to nodes without outgoing edges. But, owing to Theorem 1.7, GA is strongly connected, a
contradiction.

For any 0 < α < 1/ρ(A) the matrix I−αA is invertible and B = (I−αA)−1 > O. Moreover, A
and B have the same eigenvectors, and λ is an eigenvalue of A iff µ = 1/(1− αλ) is an eigenvalue
of B. From this, one can deduce that also claims (2) and (3) of Theorem 2.1 hold true.

It is usual to call ρ(A) the Perron eigenvalue of A. Any associated positive eigenvector is a
Perron eigenvector. The forthcoming lemma shows easily computable lower and upper bounds for
the Perron eigenvalue of a nonnegative irreducible matrix.

Lemma 2.6. Let A ≥ O be irreducible. Suppose that for some vector w ≥ 0 and scalars 0 ≤ α < β
we have αw ≤ Aw ≤ βw, with strict inequalities in at least one entry. Then α < ρ(A) < β.

Proof. Since AT is nonnegative and irreducible (why?), there exists a vector y > 0 such that
yTA = ρ(A)yT . We have yTw > 0 and moreover,

αyTw < yTAw < βyTw,

and the claim follows from the identity yTAw = ρ(A)yTw.

The Perron eigenvalue of a nonnegative, irreducible matrix is a monotonic function of its entries,
as shown in the following result.

Theorem 2.7. If A and B are two nonnegative, irreducible matrices with O ≤ A ≤ B and A 6= B
then ρ(A) < ρ(B).

Proof. Let z be a Perron eigenvector of B. We have Az � Bz = ρ(B)z, and the claim follows
from Lemma 2.6.

2.3 Primitive matrices

Definition 2.8. A matrix A ≥ O is primitive if there exists a positive integer k such that Ak > O.

Note that a positive matrix is primitive (set k = 1). Moreover, a primitive matrix is necessarily
irreducible (since the powers of a block triangular matrix are in the same block triangular form)
but the converse is not true (the matrix A =

(
0 1
1 0

)
is a counterexample). The following result says

that the Perron eigenvalue of a primitive matrix A ≥ O is dominant; all other eigenvalues are
smaller in modulus.

Theorem 2.9. If A ≥ O is primitive then ρ(A) is a dominant eigenvalue, that is, if λ is any
eigenvalue of A different from ρ(A) then |λ| < ρ(A).
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Proof. By contradiction, let λ be an eigenvalue of A such that λ 6= ρ(A) and |λ| = ρ(A). Let
k be an integer such that Ak > O. Then both λk and ρ(A)k are eigenvalues of Ak. However
|λ|k = ρ(A)k thus violating Theorem 2.1.

Remark 2.10. Theorem 2.1 allows us to conclude that if we apply the power method (with nor-
malization) to a nonnegative, primitive matrix starting from a positive vector then the method will
converge to a Perron vector:

x(0) > 0, x(k+1) = Ax(k)/‖Ax(k)‖ =⇒ lim
k→∞

x(k) = x, Ax = ρ(A)x.

This fact is not true for a generic irreducible A ≥ O. For example, examine the behaviour of
the power method applied to the matrix A =

(
0 1
1 0

)
which is nonnegative and irreducible but not

primitive.

2.4 Bounding perturbations on Perron vectors

The forthcoming theorem, borrowed from [5], provides a bound on the relative change in a Perron
eigenvector when some matrix rows are changed. The result states that when a few rows of a
nonnegative irreducible matrix are modified then the relative changes in the corresponding elements
of the Perron vector bound the relative changes in the other elements.

Theorem 2.11. Let A, Â be irreducible, nonegative matrices, let Ax = ρx and Âx̂ = ρ̂x̂ be the
corresponding Perron eigenpairs. Suppose that Â is obtained by changing a few entries of A. Let
I be the index set of unchanged rows:

I = {i : Ai,: = Âi,:}.

Hence,

∀i ∈ I, ρ

ρ̂
min
j=1...n

x̂j
xj
≤ x̂i
xi
≤ ρ

ρ̂
max
j=1...n

x̂j
xj
.

In particular, if ρ̂ > ρ then maxi∈I
x̂i

xi
< maxj /∈I

x̂j

xj
while if ρ̂ < ρ then mini∈I

x̂i

xi
< minj /∈I

x̂j

xj
.

Proof. Firstly, note that by hypotheses we have x, x̂ > 0. For any i ∈ I we have

x̂i
xi

=
ρ̂x̂i
ρ̂xi

=
1

ρ̂xi

∑
j

Âij x̂j

=
1

ρ̂xi

∑
j

Aijxj
x̂j
xj

≤ 1

ρ̂xi

(
max
j

x̂j
xj

)
ρxi =

ρ

ρ̂

(
max
j

x̂j
xj

)
.

The opposite inequality is obtained analogously. Furthermore, if ρ/ρ̂ < 1 then maxi∈I
x̂i

xi
<

maxj
x̂j

xj
, whence maxj

x̂j

xj
= maxj /∈I

x̂j

xj
, and analogously for the other inequality when ρ/ρ̂ > 1.

Exercise 2.12. Prove the following result:5 Let v be a nonnegative vector, let B = A+ eiv
T . If

x, y are positive Perron vectors of A and B, respectively, then yi/xi > yj/xj for j 6= i.

2.5 Applications: A simple epidemic model

If the graph G represents a computer network, or a social network, and A = AG , then the number
ρ(A) plays an important role in modelling (computer or biologic, respectively) virus propagation
in G. The smaller ρ(A) the better the robustness of the network against the spread of viruses.
Hereafter, I present a simple virus propagation model which has been discussed e.g., in [4, §2.7]
and [3].6

5 Found in L. Elsner, C. Johnson, M. Neumann; Czech. Math. J. 32 (1982), 99–109.
6 A nonlinear, more sophisticated model of virus propagation in computer networks has been developed in: Van

Mieghem P., Omic J., Kooij R., Virus spread in networks, IEEE/ACM Transactions on Networking 17 (2009), 1–14,
with the same conclusion concerning ρ(A).
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Consider a virus spreading on G; at each time step, a contagious node may infect its neighbors
with probability δ (virus birth rate). At the same time, an infected node may also be cured with
probability β (virus curing rate). If the number pi(t) measures the amount of infection of node i
at time t, then the model is

pi(t) = (1− β)pi(t− 1) + δ
∑
j:j→i

pj(t− 1),

where p(t) = (p1(t), . . . , pn(t))T and p(0) is the initial state of infection. With simple passages, the
model can be rewritten in matrix notation as

p(t) = Mp(t− 1), M = (1− δ)I + βA.

Hence, if the initial vector p(0) is known then the preceding equation allows to simulate the
evolution of the epidemics for t = 1, 2 . . . In fact, the simulation reduces to the iterations of the
power method for the matrix M . As a consequence, we have the following cases:

• If ρ(M) > 1 then the epidemic will affect the whole network, independently on the initial
state of the network.

• If ρ(M) = 1 then the network will approach a stationary state that may depend on the initial
state.

• If ρ(M) < 1 then the epidemic will fade out, independently on the initial state.

Hence, the asymptotic behaviour of the epidemic is governed by ρ(M), and the entries of the Perron
eigenvector of M indicate the long-term infection level of each node. However, ρ(M) depends on
ρ(A), as shown hereafter.

Theorem 2.13. ρ(A) = (ρ(M)− 1 + δ)/β.

Proof. Let x be a Perron vector of M , Mx = ρ(M)x. Then,

ρ(M)x = ((1− δ)I + βA)x = (1− δ)x+ βAx.

Then Ax = λx with λ = (ρ(M) − 1 + δ)/β. Since x ≥ 0, λ must be the Perron eigenvalue of A,
that is, ρ(A) = λ, and the claim is proved.

In conclusion, ρ(M) < 1 if and only if ρ(A) < δ/β. Hence, the spectral radius ρ(A) plays an
important role in modelling virus propagation. The critical threshold that separates global network
infection from global network health is determined by ρ(A). The epidemic will fade out if and only
if the ratio δ/β is larger than the threshold. This fact leads also to the conclusion that, if we want
to contrast the epidemic by immunizing some of the nodes, then the best policy is to immunize
those nodes whose removal from the network yields the largest decrease in the spectral radius of
the adjacency matrix [3].

2.6 More exercises and problems

1. Let A ≥ O be irreducible. Prove this: If (λI−A)−1 exists and is nonnegative then λ > ρ(A).

Hint: Note that (λI−A)−1 must be irreducible. Let (µ, x) be a Perron eigenpair of (λI−A)−1.
Deduce Ax = (λ− 1/µ)x and prove that x is a Perron vector of A.

2. A graph G = (V,E) is called bipartite if V = V1 ∪V2, V1 ∩V2 = ∅, and every edge belongs to
either V1 × V2 or V2 × V1. In other words, a graph is bipartite if and only if its nodes can be
colored black or white in such a way that no edge connects two nodes with the same color.
For example, the graph on page 1 is not bipartite while the following one is:

G :

1

2
3

4
ww

��
77
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 AG =


0 0 0 0
0 0 0 1
1 1 0 0
1 1 0 0

 .

Let G be a strongly connected bipartite graph.
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(a) Prove that AG is not primitive.

(b) Assume that G is undirected. Find all eigenpairs (λ, x) of AG with |λ| = ρ(AG).

Hint: Assume V1 = {1, . . . ,m} and V2 = {m+ 1, . . . , n}. What is the block structure of Ak?

3. Let O ≤ A � B and let B be irreducible. Prove that ρ(A) < ρ(B).

3 A brief introduction to the analysis of complex networks

Complex networks is a common name for various real networks which are usually presented by
graphs with a large number of nodes: Internet graphs, collaboration graphs, e-mail graphs, social
networks, transport networks, and many other. Roughly speaking, a complex network is a graph
found in the real world. The term network analysis refers to a wealth of mathematical techniques
aiming at describing the structure, function, and evolution of complex networks.

• One of the main tasks in network analysis is the localization of nodes that, in some sense,
are the “most important” in a given graph. The main tool to quantify the relevance of nodes
in a graph is through the computation of suitably defined centrality indices. Many centrality
indices have been invented during time. Each one of them refers to a particular definition of
“importance” or “relevance” that is most useful in a given context.

• Graphs and networks can be considered as a whole, rather than as sets of connected nodes. A
graph invariant (or topological index) is a single number associated to a graph which quantifies
some macroscopic feature or topological property of that graph.

• Graph partitioning is the problem of dividing the vertices of a graph into a given number of
disjoint subsets such that the total weight of edges between such sets is minimized. The best
known example of a graph partitioning problem is the problem of dividing a graph into two
subsets of comparable size, such that the number of edges between them is minimized.

• Community detection differs from graph partitioning in that the number and size of the
subsets into which the network is divided are generally not apriori specified. Moreover, the
set of edges between different subsets is not necessarily “small”. Instead it is assumed that
the graph is intrinsically structured into communities or groups of vertices which are more
or less evidently delimited, the aim being to reveal the presence and the consistency of such
groups.

3.1 Main notations and definitions

Two graphs G = (V,E) and G′ = (V,E′) are called isomorphic if there exists a permutation
matrix P such that AG′ = PAGP

T . Hence, two graphs are isomorphic if and only if one of them
can be obtained from the other by simply renumbering the nodes. Furthermore, if there exists a
permutation matrix P 6= I such that AG = PAGP

T then G has a nontrivial automorphism.

Example 3.1. The two graphs here below are isomorphic:

G1 :
1

2 3
�� �� G2 :

3

1 2
�� ��

Moreover, G1 owns a nontrivial isomorphism with itself (that is, an automorphism) since the roles
of nodes 2 and 3 can be interchanged.

Let A = AG . The in-degree and the out-degree of node i are respectively the numbers

din
i =

n∑
j=1

Aij , dout
i =

n∑
j=1

Aji.

They represent the number (or overall weight, in the weighted case) of edges that arrive to or
depart from node i, respectively. If G is not oriented the two numbers are the same and their
common value is the degree di.
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Let V = {1, . . . , n} and let Γn be the set of all graphs whose node set is V . A graph invariant
(or topological index) is any function f : Γn 7→ R which is invariant under graph isomorphisms: If
AG′ = PAGP

T then f(G) = f(G′). Thus if two graphs are isomorphic then they have the same
graph invariants.

A centrality index is any function c : Γn 7→ Rn such that if AG′ = PAGP
T then Pc(G) = c(G′).

Thus if two graphs are isomorphic then corresponding nodes have the same centrality indices.
The degree vectors din = A1 and dout = AT1 are the most simple centrality indices. Clearly,

1T din = 1T dout, and the sum is equal to the total edge weight of G, which is a graph invariant called
volume. Many interesting graph invariants and centrality indices are based on spectral properties
of AG and variations thereof.

Remark 3.2. Let G ∈ Γn and let A = AG. Suppose that there exists a permutation matrix P 6= I
such that A = PAPT (that is, G owns a nontrivial automorphism). Hence, if c is a centrality
index computed on G then c = Pc. In particular, if Pei = ej then ci = cj, that is, nodes that are
related by graph automorphisms get the same centrality indices. It is interesting to note that if G
is strongly connected then this condition is fulfilled by the Perron vector of A, since ρ(A) is simple:
If A is irreducible, Ax = ρ(A)x and A = PAPT for some permutation matrix then Px = x.

Example 3.3. A star graph with n nodes is the undirected graph whose adjacency matrix is

A =


0 1 · · · 1
1 0 · · · 0
...

...
...

1 0 · · · 0

 .

Note that rank(A) = 2 and the trace is zero, so A has only two nonzero eigenvalues and the spectrum
of A is {−ρ, 0, ρ}. Moreover, A is irreducible. Using graph automorphisms we can assume that the
Perron vector of A has the form x = (α, 1, . . . , 1)T . In this way it is possible to reduce the problem
Ax = ρx to the solution of two scalar equations in two unknowns. The solution is x = (ρ, 1, . . . , 1)T

with ρ =
√
n− 1.

4 Spectral centralities

The purpose of this section is to describe some of the most important centrality indices, whose
definition is largely based on tools and concepts borrowed from linear algebra. The common
feature shared by virtually all these indices is that they are Perron eigenvectors of suitably defined
nonnegative matrices.

4.1 The Bonacich index

Let G be a directed graph and let A = AG . In mid ’90s, the american sociologist Phillip Bonacich
proposed to use the Perron vector of A as a centrality index for social networks [1]. The original idea
is that a node is important if it is linked by other important nodes. This sort of circular definition
can be formalized rigorously by assuming that the centrality value of node i is proportional to the
sum of centrality values of all nodes j such that j → i:

λbi =
∑
j:j→i

bj =

n∑
j=1

Aijbj .

Hence, the vector b = (b1, . . . , bn)T fulflills the eigenvalue equation Ab = λb. Among the possible
solutions of the previous equation, the Bonacich index7 is the one which corresponds to the Perron
eigenpair of A. In fact, if G is strongly connected then the Bonacich index obtains immediately a
number of useful properties from Perron–Frobenius theory:

• It is uniquely defined, apart of a scaling factor, and its entries are positive (every node gets
a nonzero score).

7 This attribution is not standard in network analysis. In fact, the Perron vector of AG is usually called the
eigenvector centrality of G in modern literature. By the way, its use as a centrality index for social network analysis
has been popularized by P. Bonacich.
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• If A is primitive then it can be computed by means of the power method.

• If we add a new edge p → q to G then the node whose Bonacich index receives the largest
relative increase is q (by Theorem 2.11), consistently to the intuition that its relevance is
increasing most.

4.2 PageRank

One of the best known centrality indices for arbitrary graphs is PageRank, whose fortune started
from its introduction in the Google search engine [11]. The recent account by D. Gleich [9] includes
an impressive list of more than 20 PageRank-related centrality indices currently used within dif-
ferent domains including bibliometry, social networks, literature, biology. . . The original formula
by S. Brin and L. Page [2] defines the PageRank vector π = (π1, . . . , πn)T of a graph G as the
solution of the following linear system:

πi = (1− α) + α
∑
j:j→i

πj
dout
j

,

where α ∈ (0, 1) is a fixed constant called the damping factor, originally set to α = 0.85. In matrix
form,

(I − αM)π = (1− α)1, (2)

where M ≥ O is the so-called link matrix which is defined as

Mij =

{
Aij/d

out
j if dout

j > 0

0 otherwise

and A = AG . For simplicity of exposition, hereafter I assume that all nodes in G have at least one
outgoing edge, that is, dout > 0. In this case, the sum of all entries in any column of M is 1 (check
this). Unfortunately, M is seldom irreducible. Nevertheless, we can say something about ρ(M):

Lemma 4.1. ρ(M) = 1.

Proof. Since M ≥ O, there exists x ≥ 0 such that Mx = ρ(M)x. Moreover, we can rewrite∑
iMij = 1 as MT1 = 1. Hence, 1Tx = 1TMx = ρ(M)1Tx, and the proof is complete, by

observing that 1Tx > 0.

As a consequence, we obtain that I − αM is nonsingular, so that π is well defined from (2).
Indeed, by Lemma 4.1 all eigenvalues of I − αM are contained in the circle {z ∈ C : |1− z| ≤ α},
which excludes 0 since α < 1 by hypothesis. The surprise here is that there exists a matrix Γ > O
(which is called Google matrix) such that π is a Perron eigenvector of Γ.

Theorem 4.2. Let Γ ∈ Rn×n be the positive matrix defined as

Γ = αM +
1− α
n

11T .

for 0 < α < 1. Then, ρ(Γ) = 1 and the vector π defined in (2) is a Perron eigenvector. Moreover,
if λ 6= 1 is another eigenvalue of Γ then |λ| ≤ α.

Proof. Observe that Γ > O by construction. Simple computations show that ΓT1 = 1, so that
ρ(Γ) = 1 is the Perron eigenvalue. Let x be a Perron eigenvector of Γ normalized so that 1Tx = n.
Then,

x = Γx = αMx+
1− α
n

11Tx = αMx+ (1− α)1.

Rearranging terms, (I − αM)x = (1 − α)1, which is (2). Finally, if Γv = λv with λ 6= 1 then we
must have 1T v = 1TΓv = λ1T v = 0, whence either λ = 0 or 1T v = 0. In the latter case,

λv = Γv = αMv +
1− α
n

11T v = αMv.

Consequently, |λ| ≤ ρ(αM) = α.
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4.3 Hubs and Authorities

Almost in the same year S. Brin and L. Page invented PageRank, J. Kleinberg introduced another
algorithm to evaluate the relevance of documents in a large hypertext, such as the Internet [10, 11].
This algorithm (HITS, Hypertext Induced Topic Search) quantifies the importance of nodes in a
graph according to two centrality indices: the hub score and the authority score.

Very informally, the hub score of a node is a measure of how good it is as “access point” or
“portal”, while the authority score is a measure of how good a node is as “informative document”.
Kleinberg’s original idea is that a node is a good hub if it points to good authorities; and a node
is a good authority if it is pointed by good hubs. This “mutual reinforcement” concept has been
formalized by the following equations. Let hi and ai be the hub score and authority score of node
i, respectively. Then,

λhi =
∑
j:i→j

aj λai =
∑
j:j→i

hj , i = 1 . . . , n, (3)

where λ is a proportionality constant, to be defined. In matrix notations, λh = ATa and λa = Ah.
The two equations can be uncoupled as follows:

λ2h = ATAh, λ2a = AATa.

Let Mhub = ATA and Mauth = AAT be the hub matrix and the authority matrix, respectively.
These two matrices are symmetric, nonnegative, positive semidefinite, and have exactly the same
eigenvalues (why?). In particular, ρ(Mhub) = ρ(Mauth). The preferred solution to (3) corresponds
to Perron eigenvectors, with λ =

√
ρ(Mhub).

Example 4.3. Let’s compute HITS scores for the following graph:

1

2
3

4



��
77

WW

The adjacency and hub matrix are

A =


0 0 0 0
1 0 0 0
1 1 0 0
0 1 0 0

 , Mhub = ATA =


2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 .

The eigenvalues of Mhub are 3, 1, 0, 0. An eigenvector associated to ρ(Mhub) = 3 is h = (1, 1, 0, 0)T .
We can compute authority scores from the formula λa = Ah. We obtain a = (0, 1, 2, 1)T /

√
3. We

conclude that nodes 1 and 2 are good hubs, nodes 3 and 4 are not (indeed, they have no outgoing
links). The best authority node is 3, which is pointed by both best hubs. Node 1 is not an authority,
because it has no ingoing links.

Exercise 4.4. Suppose that in a given graph G there are two nodes, say i and j such that for
every k ∈ V it holds k → i⇒ k → j. Prove that ai ≤ aj .

The HITS algorithm as proposed in [10] is essentially the power method with normalization
applied to Mhub (or, equivalently, to Mauth) starting from the initial vector 1. Unfortunately, Mhub

and Mauth are usually not irreducible, even if the original graph is strongly connected. Hence, the
largest eigenvalue of these matrices may be not simple, and this fact implies that HITS scores may
be not uniquely defined (apart of the scaling factor), since the convergence of the power method
can be affected by the choice of the starting vector.

Example 4.5. Consider the following graph and its hub matrix,

1

2 3

4

�� ��

�� ��
 Mhub =


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 .

The eigenvalues of Mhub are 2, 2, 0, 0. Any vector of the form h = (α β β 0)T is an eigenvector
corresponding to ρ(Mhub) = 2. If we apply the power method to Mhub starting from (1 1 1 1)T we
obtain h ∝ (1 1 1 0)T , while if the starting vector is (1 0 0 0)T then we obtain h ∝ (1 0 0 0)T .
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Various modifications of the basic HITS algorithm have been devised in order to make hub-
authority scores well defined under rather general hypotheses, see e.g., [6]. One of these tricks is
described in the following exercise:

Exercise 4.6. Let Â = A + εI where ε > 0 (note: this modification corresponds to adding a

loop with weight ε to every node in the graph) and let M̂hub = ÂT Â. Prove that if G is not

disconnected8 then M̂hub is irreducible.

Hint: M̂hub = ε(A+AT ) + other nonnegative matrices.

4.4 More exercises and problems

1. [The Q-indices] Let G = (V,E) be an undirected, connected graph. Consider the following
centrality indices (called Q-indices) for both nodes and edges: To any i ∈ V and (i, j) ∈ E
associate nonnegative variables qi and eij respectively, by means of these equations:

λqi =
∑
j:i∼j

eij , eij = qi + qj ,

where λ is a constant to be determined. According to these equations, the importance of an
edge depends on the importance of its nodes, and the importance of a node is proportional
to the sum of importance of its edges. Discuss existence, uniqueness, and positivity of the
solution to the previous equations.

Hint: Rearranging equations, the vector q = (q1, . . . , qn)T can be written as the Perron vector
of a nonnegative matrix.

5 Nodal domains

In what follows, the graph G = (V,E) is assumed to be undirected (that is, AG is symmetric).
Moreover, the subgraph induced by S ⊆ V is the graph G(S) whose adjacency matrix is [A]i,j∈S .

Let 0 6= v ∈ Rn and consider the set S = {i : vi ≥ 0}. The subgraph G(S) may result in a
collection of subgraphs which are disconnected one from the other. These components are called
nodal domains of v. For example, for the following graph G and vector v,

G :

1

2
3

4 v =


1
−2
0

0.1

  G(S) :

1

3
4

the set S = {i : vi ≥ 0} induces the nodal domains G({1, 3}) and G({4}).
Nodal domains of eigenvectors of various graph-related matrices (not only adjacency but also

Laplacian and modularity matrices) are useful tools to provide approximate solutions of graph
partitioning and community detection problems. In fact, various problems that require to partition
a complex network into cohesive regions, or to locate “clusters” or “communities”, require the
solution of combinatorial optimization problems whose computational cost grows exponentially
fast in n. By means of relaxation techniques, solutions of these problems can be approximated
efficiently by nodal domains of eigenvectors of suitably defined matrices, see e.g., [13] or [14] for a
survey.

Let A = AG . A Perron vector v has positive entries, so that v has only one nodal domain which
is G itself. Obviously, we cannot say the same for other eigenvectors (why?). The goal of this
section is to show an interesting result by Fiedler [8] concerning the nodal domains of eigenvectors
associated to non-dominant eigenvalues of A. Before going further, I recall a basic fact in matrix
theory, see e.g., [15, §5.7]:

Lemma 5.1. Let M ∈ Rp×p be a symmetric matrix, and let N ∈ Rq×q be one of its principal
submatrices. Let λ1(M) ≥ λ2(M) ≥ . . . ≥ λp(M) and λ1(N) ≥ λ2(N) ≥ . . . ≥ λq(N) denote the
eigenvalues of M and N counted with their multiplicity, respectively. Then, λi(M) ≥ λi(N) for
i = 1, . . . , q.

8 A graph is disconnected if its vertex set can be partitioned into two subsets, V = V1 ∪ V2 and V1 ∩ V2 = ∅, so
that no edge belongs to (V1 × V2) ∪ (V2 × V1).
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Theorem 5.2. Let A ≥ O be irreducible and symmetric. Let ρ(A) = λ1 > λ2 ≥ . . . ≥ λn be its
eigenvalues, let v be an eigenvector associated to λ2, and let S = {i ∈ V : v ≥ 0}. Then G(S) is
connected.

Proof. Proceed by contradiction. Assume that S = S1 ∪ S2 with S1 ∩ S2 = ∅, both G(S1) and
G(S2) are connected but there is no edge joining V1 with V2. By a suitable permutation of rows
and columns, we can assume that v = (v1, v2, v3)T where v1 ≥ 0 and v2 ≥ 0 are the entries with
indices in S1 and S2, respectively, and v3 < 0 are the entries with indices in S̄. Accordingly, the
structure of A is

A =

A11 O A13

O A22 A23

∗ ∗ ∗


where A11 and A22 are irreducible and both A13 and A23 are nonzero (because A is irreducible).
Then, the equation Av = λ2v yields

A11v1 +A13v3 = λ2v1

A22v2 +A23v3 = λ2v2.

Let y1 and y2 be Perron eigenvectors of A11 and A22, respectively: Aiiyi = ρ(Aii)yi. Remind that
Aii = ATii. Then,

yTi Aiivi︸ ︷︷ ︸
=ρ(Aii)yTi vi

+ yTi Ai3v3︸ ︷︷ ︸
<0

= λ2y
T
i vi, i = 1, 2.

Since yTi vi > 0 we get ρ(Aii) > λ2 for i = 1, 2. Hence, the submatrix
(
A11 O
O A22

)
has at least 2

eigenvalues that are > λ2, thus contradicting Lemma 5.1.

Remarks:

• By applying Theorem 5.2 to −v in place of v, you can deduce easily that also the set {i :
vi ≤ 0} induces a connected subgraph.

• The argument of the proof of Theorem 5.2 can be extended naturally to eigenvalues λi with
i ≥ 2. The result is that, if Av = λiv and S = {i : vi ≥ 0} then G(S) is composed by no
more than i− 1 connected components, see e.g., [8].

5.1 Applications: Spectral graph bisection

A graph partitioning problem requires to partition the nodes of a given graph G = (V,E) into
pairwise disjoint sets (also called clusters) so that the number of edges running across different
sets is minimized, in some sense. Hereafter, the following notations will be used in correspondence
with an arbitrary set S ⊆ V :

• Denote by |S| its cardinality (that is, the number of its elements), by S̄ its complement (that
is, S̄ = V \ S) and by 1S its characteristic vector, that is (1S)i = 1 if i ∈ S and 0 otherwise.

• Let volS =
∑
i∈S di be the volume of S (recall that di is the degree of node i). Note:

volS = dT1S and d = A1.

• Let ein(S) = 1TSA1S and eout(S) = 1TSA1S̄ = volS − ein(S). Note: eout(S) is the number of
edges joining S with S̄ while ein(S) is twice the number of edges whose endpoints are both
in S (but loops are counted only once).

Let’s consider the special graph partitioning problem where we want to split V into two subsets
S and S̄, with S ∪ S̄ = V and S ∩ S̄ = ∅. The pair {S, S̄} is a cut in G. For any S ⊆ V consider
the number

H(S) = eout(S)/|S|,

which is sometimes called the conductance of S. A set with high conductance has a relatively large
amount of edges connecting it to its complement, with respect to the number of nodes. Conversely,
a set having low conductance is a set that can be easily separated from the rest of the graph, by
removing a quite small number of edges. In the framework of graph partitoning preblems, a useful
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merit function of the graph cut {S, S̄} (which is easily generalized to more than two sets) is the
following:

h(S, S̄) = H(S) +H(S̄) = . . . =
n

|S||S̄|
eout(S),

since eout(S) = eout(S̄). One of the main graph partitioning problems consists in computing

hG = min
S⊆V

h(S, S̄) (4)

which is an important graph invariant. Indeed, a set S attaining the minimum splits the graphs
into two parts that are comparable in size and are connected by relatively few edges. The task of
finding that set S is very hard (it’s an NP-complete problem). To help its solution, there exists an
heuristic technique known as spectral bisection, which is based on nodal domains and often goes
very close to the exact solution.

5.1.1 The Laplacian matrix

Let D = Diag(d1, . . . , dn). The matrix L = D−A is called Laplacian matrix of G. This is one of the
most useful matrices associated to a graph. The study of its spectral properties and applications
has been pioneered by M. Fiedler, see e.g., [7]. For every v ∈ Rn we have

vTLv =
∑
i∼j

(vi − vj)2.

Thus, L is positive semidefinite; the vector 1 is in the kernel of L, that is L1 = 0; and the dimension
of ker(L) is 1 if and only if G is connected.9 For any given S ⊆ V we have

1TSL1S = 1TSD1S − 1TSA1S = volS − ein(S) = eout(S).

Define v ∈ Rn as v = 1S − (|S|/n)1, that is

vi =

{
|S̄|/n i ∈ S
−|S|/n i /∈ S.

You can easily verify the following identitites:

1T v = 0, vT v =
|S||S̄|
n

, vTLv = eout(S), h(S, S̄) =
vTLv

vT v
. (5)

We obtain a nontrivial lower bound for the number hG defined in (4):

Theorem 5.3. Let G be connected, and let 0 = λ1 < λ2 ≤ . . . λn be the eigenvalues of L. Then,
λ2 ≤ hG.

Proof. Owing to the variational characterization of the eigenvalues of a symmetric matrix (see
e.g., [15, §5.6]) we have exactly

λ2 = min
v:1T v=0

vTLv

vT v
.

Moreover, by (5), λ2 ≤ h(S, S̄) for all S.

Hence, the eigenvalue λ2, which is named the algebraic connectivity of G after [7], tells us how
easy is to split the graph into two (roughly balanced) pieces. Indeed, if λ2 ≈ 0 then G can be easily
disconnected by removing a few edges (in particular, if λ2 = 0 then G is already disconnected)
while if λ2 is large then also hG must be large.

9 More precisely, the dimension of ker(L) is equal to the number of connected components of G.
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5.1.2 Spectral bisection via the Fiedler vector

The nodal domains of an eigenvector associated to λ2 often provide good approximations to the
cut {S, S̄} which minimizes h(S, S̄). Their connectedness is considered in the following result:

Theorem 5.4. Let G be a connected, undirected graph. Let 0 = λ1 < λ2 ≤ . . . ≤ λn be the
eigenvalues of the Laplacian matrix L, let f be an eigenvector associated to λ2 and let S = {i :
fi ≥ 0}. Then G(S) is connected.

Proof. By choosing a sufficiently large positive constant α, the matrix M = αI−L = αI−D+A
is nonnegative and irreducible. Moreover, any eigenvector of M is also an eigenvector of L, and
conversely. Indeed, Mv = µv ⇐⇒ Lv = (α− µ)v. Hence, the eigenvalues of M are the numbers
α > α− λ2 ≥ . . . ≥ λn. The claim follows immediately from Theorem 5.2.

The vector f appearing in the preceding theorem is usually referred to as a Fiedler vector. By
replacing f with −f , it is also possible to prove that the subgraph induced by {i : fi ≤ 0} is
connected.
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[4] D. Cvetković, S. Simić. Graph spectra in Computer Science. Lin. Algebra Appl., 434 (2011),
1545–1562.

[5] E. Dietzenbacher. Perturbations of matrices: a theorem on the Perron vector and its applica-
tions to input-output models. J. of Economics, 48 (1988), 389–412.

[6] A. Farahat, T. Lofaro, J. Miller, G. C. Rae, L. A. Ward. Authority rankings from HITS,
PageRank, and SALSA: existence, uniqueness, and effect of initialization. SIAM J. Sci. Comput.
27 (2006), 1181–1201.

[7] M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 23 (1973), 298–305.

[8] M. Fiedler. A property of nonnegative symetric matrices and its application to graph theory.
Czech. Math. J., 25 (1975), 619–633.

[9] D. F. Gleich. PageRank beyond the web. SIAM Rev., 57 (2015), 321–363.

[10] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46
(1999), 604–632.

[11] A. N. Langville, C. D. Meyer. A survey of eigenvector methods for Web information retrieval.
SIAM Rev., 47(2005), 135–161.

[12] C. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

[13] M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices.
Phys. Rev. E, 74 (2006) 036104.

[14] M. Nascimento, A. de Carvalho. Spectral methods for graph clustering — A survey. European
Journal of Operational Research, 211 (2011), 221–231.

[15] E. E. Tyrtyshnikov. A Brief Introduction to Numerical Analysis. Birkhäuser, 1997.

Last update: August 14, 2018


