
Incomplete factorization preconditioners and their up-
dates with applications - I1,2

1

Università di Roma Tor Vergata

2

Università degli Studi dell’Insubria
Department of Science and High

Technology

Daniele Bertaccini, Fabio Durastante
Moscow – August 24, 2016

Notes of the course: ”Incomplete factorization preconditioners and their
updates with applications”.
Lesson 1. Sparse Matrices, M-Matrices, Preconditioning, Incomplete
LU

An ”A−1” in a formula almost always
means ”solve a linear system” and
almost never means ”compute A−1.”

Golub–Van Loan

This set of lectures is dedicated to the treatment of a class of
algorithms for the calculation of an incomplete factorization of a large
square matrix which in many cases will also be sparse3 or with some

3 A first attempt of definition:

”The matrix may be sparse, ei-
ther with the non-zero elements
concentrated on a narrow band
centered on the diagonal or al-
ternatively they may be dis-
tributed in a less systematic
manner. We shall refer to a ma-
trix as dense if the percentage of
zero elements or its distribution
is such as to make it uneconomic
to take advantage of their pres-
ence.”

[Wilkinson and Reinsch, 1971]

decaying properties. But let us proceed step by step. The presenta-
tion of these topics is derived from the one that will be in Bertaccini
and Durastante [2017].

In all the following considerations our model problem will be the
solution of a system of linear algebraic equation of the form

Ax = b, A ∈ RN×N , x, b ∈ RN , nnz(A) ∈ O(N) N → +∞. (1)

Moreover, we are going to recast part o equation (1) in the following
definition

0 500 1000 1500

0

500

1000

1500

nnz(A)=6050

s
iz

e
(A

)=
1

6
2

4
 x

 1
6

2
4

Pattern of a Sparse Matrix (bcspwr08)

Figure 1: This is the so-called pattern
of a generic sparse matrix A, that is a
picture in which the element ai,j of the
matrix are represented by a dot at coor-
dinate (i, j) if and only if ai,j 6= 0.
Both in MATLAB and OCTAVE this
kind of picture can be obtained by us-
ing the command spy(A).

Definition 1: Sparse Matrix

Given a matrix A ∈ RN×N we say that A is sparse if and only
if the number of element of A that is different from zero, i.e.,
nnz(A), is a Big-Oh of N for N → +∞, i.e., nnz(A) ∈ O(N) for
N → +∞.

Therefore we are going to deal with the solution of systems of alge-
braic linear equations, possibly with sequences of them. We are inter-
ested in solving this problems by means of Krylov Subspace Meth-
ods, a popular class of iterative solvers whose core operation, from
the computational point of view, is represented by the matrix-vector
product. This methods try to build a solution x = A−1b in an adap-
tive way in a particular subspace of RN . We are going to think the
general information on this methods as a prerequisite or, if not, as a
black-box in which we are going to put inside our preconditioners,
that will be the focus of our lessons.

So we are looking for a non singular sparse transformation, rep-
resented by a matrix M, for preprocessing the system in such a way
to have better convergence properties for the iterative methods.

We could perform a left preconditioning scheme:

M−1 Ax = M−1b, (2)

incomplete factorization preconditioners and their updates with applications - i 2

a right preconditioning scheme:{
AM−1u = b,
x = M−1u.

(3)

or a split preconditioning scheme, for which we seek the matrix M in
a factorized form M = M1M2:{

M−1
1 AM−1

2 u = M−1
1 b,

x = M−1
2 u.

(4)

Krylov-subspace iterative methods
are constructed as projection methods
onto an m-dimensional sub-spaces K
of Rn and orthogonal to another m-
dimensional subspace of Rn called L.
The approximate solution x̃ of Ax = b
is generated imposing:

x̃ ∈ x(0) +K,

such that b− Ax̃ ⊥ L,

where x(0) is our starting guess for the
solution. In this way the approximate
solution is defined as:{

x̃ = x(0) + δ, δ ∈ K,
< r(0) − Aδ, w >= 0, ∀w ∈ L.

,

where r(0) is the first residual, r(0) =
b− Ax(0) , and the orthogonality con-
dition is imposed on the new residual
rnew = r(0) − Aδ. Then at each step of
the projection methods another couple
of sub-spaces is generated, using the
data of the precedent steps, and a new
δ is generated.

To give the construction of the meth-
ods of our interest we define the
Krylov subspace of order m gener-
ated by the matrix A ∈ Rn×n and the
residual vector r(0) as Km(A, r(0)):

Span
{

r(0) , Ar(0) , A2r(0) , . . . , Am−1r(0)
}

.

That is taken as the K = Km(A, r(0))
space of the projection method, while
the different choices of the subspace
L, and the way of preconditioning the
system, make the different method.

Building the approximation of x̃
with Km we have that at each step the
built approximation is of the form:

A−1b ≈ x(m) = x(0) + qm−1(A)r(0)

with qm−1(x) ∈ Rm−1[x] polynomials
with real coefficients and degree less
or equal to m− 1.

As a general point of view we could
says that reducing the number of iter-
ation is closely related to altering the
spectral property of the sparse matrix
A ∈ Rn×n of the system.

For a complete discussion on the
subject see [Saad, 2003, Bertaccini
et al., 2013, Bertaccini and Durastante,
2017, Olshanskii and Tyrtshnikov,
2014].

However, what kind of transformation are we looking for? We
want a transformation that is sparse, namely that is represented by
a sparse matrix, that is algorithmically easy to achieve to use for
matrix-vector product and that give us better convergence, in term of
speed and numerical stability. The first problem in this search is that
our requirements are mutually contradictory, so let’s start looking at
them singularly in search of some kind of relaxation or compromise.

Clearly we have to account the time for computing our transfor-
mation and the time needed for the application to the matrix A of our
preconditioner M−1. Observe that the application is not intended as
computing the matrix-matrix product, too expensive to be taken into
account, but is intended as computing the effect of the application
of that product on a generic column vector. Summarizing the above,
we can express the time required to calculate the solution Tslv of the
linear system Ax = b with a preconditioned iterative method as:

Tslv = Tsetup + Nit × Tit, (5)

where Tsetup is the time for computing our transformation, Nit is
the number of iteration of the iterative solver needed to obtain the
solution within the correct tolerance and Tit is the time needed for
each of the iteration.

Now we can express the first issue of our demands, we have to
find a balance between the request of having M similar to A, i.e.
M−1 A ≈ I, and the increasing of the Tsetup and the Tit.

At last we have to discuss in more detail the meaning of the in-
creasing the convergence rate of the iterative system, namely the
decrease of the number of iterations needed to obtain the desired
tolerance.

To have an accurate bound for the residual, i.e. an estimate for
the number of iteration, we have to introduce the concept of (strict)
cluster of eigenvalues.

Figure 2: Plots of the spectrum of the
Discrete 1D Laplacian and of its precon-
ditioned version.

Definition 2: [Tyrtyshnikov, 1997] – Cluster (strict)

A sequence of matrices {An}n≥0, An ∈ Cn×n, has a strict clus-
ter of eigenvalues in p ∈ C if, ∀ε > 0, if the number of eigen-
values of An not in D(p, ε) = {z ∈ C | |z− p| < ε} is limited by
a constant r that does not depend on n. Eigenvalues not in the
strict cluster are called outlier eigenvalues.

incomplete factorization preconditioners and their updates with applications - i 3

If we can certify the presence of a (strict) cluster in the spectrum of
the matrices of our linear systems we can have that the convergence
of our underlying Krylov Method will be improved (excepting some
particular situation regarding highly non normal matrices and some
other particular classes).

The Incomplete LU Factorization

One of the most popular technique for solving linear systems in the
dense case is represented by the Gauss-elimination algorithm. Im-
plementation of this algorithm gives rise to the LU factorization al-
gorithm. The central idea is obtaining a factorization of the matrix
A of the system as the product A = LU, where L and U are a lower
triangular matrix and an upper triangular matrix, respectively. Then
the solution of the system is obtained by backward solving the two
triangular systems.

0 20 40 60 80 100

0

20

40

60

80

100

(a) A matrix

0 20 40 60 80 100

0

20

40

60

80

100

(b) L matrix

0 20 40 60 80 100

0

20

40

60

80

100

(c) U matrix
Figure 3: Full LU Factorization for the
arrow matrix, with first row and col-
umn [4,−1, . . . ,−1] and main diagonal
[4, 2, . . . , 2].

In this section we are going to illustrate some changes of this strat-
egy to obtain sparse factors for sparse matrices. As a matter of fact
computing an exact factorization of the sparse matrix A will lead us
to have factors with an high level of fill in, see for example the pat-
tern of the complete LU factorization in figure (3). This is clearly a
situation we want to avoid due to the general remarks made earlier
about preconditioners effectiveness: augmenting the number of non-
zeros elements makes the calculation of matrix-vector products more
expensive.

What we want, introducing the strategy devised in [Meijerink and
van der Vorst, 1977], is to generate some sparse approximation of the
LU factors of A, trading accuracy for sparsity as:

A = L̃Ũ − R (6)

where we put the unwanted fill-in in the residual matrix R for dis-
carding. But how do we chose what are the elements to discard?
Namely how do we chose the element to put in the R matrix? We
can have two fundamental kind of choices, factorizing in respect to
a fixed pattern P, i.e. we have that the (i, j) entry of the LU prod-
uct is non zero if and only if the (i, j) entry is on the preassigned
pattern P, or factorizing in respect to some other topological condi-
tion. While on the other hand there is the choice of factorizing with
a drop tolerance εTOL that discards all the elements that are below
the tolerance.

To show that this strategy is consistent we need to introduce the
class of the M-matrices4.

4 There exists many equivalent defini-
tions of M-matrices (see [Berman and
Plemmons, 1979]), other the two we
have introduced here we recall also:

Definition 3: M-matrix 3

A matrix A is an M-matrix if
it has all positive diagonal ele-
ments (ai,i > 0) and non-positive
off–diagonal elements (ai,j ≤ 0),
and there exists a diagonal ma-
trix D such that AD is strictly di-
agonally dominant, i.e.:

ai,idi > ∑
j 6=i
|ai,j|dj, i = 1, . . . , n

Definition 4: M-matrix 4

A matrix A is an M-matrix if all
its principal submatrices are in-
verse positive.

Definition 5: M-matrix 5

A matrix A is an M-matrix if it
has a regular splitting, i.e. A =
M−N with M−1 ≥ 0 and N ≥ 0
such that ρ(M−1 N) < 1.

Definition 6: M-matrix 1

A matrix A is an M-matrix if it can be written as:

A = sI − B, s > 0, B ≥ 0

with s > ρ(B).

incomplete factorization preconditioners and their updates with applications - i 4

Definition 7: M-matrix 2

A matrix A ∈ Rn×n is called a non-singular M-matrix if:

1. ai,i > 0 ∀ i = 1, 2, . . . , n;

2. ai,j ≤ 0 ∀ i 6= j, i, j = 1, 2, . . . , n;

3. det(A) 6= 0;

4. A is inverse-positive, i.e. A−1 ≥ 0.

All the construction of the Gauss-
Elimination process relies on a
matrix description of the zeroing
process. If we suppose having
v ∈ Rn with vk 6= 0 we can build
the vector

tT =[0, . . . , 0︸ ︷︷ ︸
k

, tk+1, . . . , tn],

ti =
vi

vk
, i = k + 1, . . . , n,

and define the elementary Gauss
transformation as the unit lower
triangular matrix given by

Mk = In − teT
k .

Therefore given a matrix C ∈
Rn×r applying a Gauss trans-
formations amounts to the outer
product update:

MkC = (In − teT
k)C = C− tCk,:,

that can be computed in a row
by row fashion. Now if we as-
sume that A ∈ Rn×n we can
build {Mk}n−1

k=1 Gauss elementary
transformation such that

A(k−1) = Mk−1 · . . . ·M1 A

is upper triangular in the
columns that goes from 1
through k − 1. This is possible

only if the element a(k−1)
k,k is

nonzero, i.e., if the so called
pivots are different from zero
{a(k)k,k 6= 0}n−1

k=1 . Then the U of
the LU factorization is obtained
by putting U = A(n−1) and
L = M−1

1 · . . . · M−1
n−1 where the

inverse of the elementary Gauss
transformation is obtained easily
as

M−1
k = In + teT

k .

This construction is feasible if
and only if the pivots are non
null, that is equivalent to having
that the determinant of the lead-
ing principal submatrix of A are
non null, i.e., det A(1 : k, 1 : k) 6=
0 ∀k = 1, . . . , n− 1.

Detailed information on the im-
plementation and the possibility
of inserting a permutation (piv-
oting) strategy inside this algo-
rithm can be found in [Golub and
Van Loan, 1996, Chapter 3].

To proceed we need now to prove that the standard algorithm for
computing the LU factorization admits the possibility of inserting a
dropping procedure of the extra-diagonal elements along its stages.
Therefore, following [Fan, 1960], that both the algorithm of Gaussian
Elimination and the dropping of extra-diagonal elements preserves
M-matrices.

Theorem 1

Gaussian elimination preserves the M-matrix property.

We start observing that definition (4) implies that all principal
submatrices of an M-matrix are themselves M-matrices. There-
fore we can restrict ourselves, without loss of generality, to prove
that if L(1) is an elementary Gauss transformation on A, then
A(1) = L(1)A is still an M-matrix. Now, we have that:

L(1) =

1
− a2,1

a1,1
1 0

− a3,2
a1,1

. . .
... 0

. . .
− an,1

a1,1
1

≥ 0.

Moreover, A(1) is invertible as a product of invertible matrices.
The elements of A(1) are given by: a(1)i,j = ai,j −

ai,1
a1,1

a1,j i > 1

a(1)i,i = a1,1 i = 1

and, by the sign properties of the M-matrix A, we have that:

a(1)i,i > 0, and a(1)i,j ≤ 0 for i 6= j.

Let us now consider
(

A(1)
)−1

, to ensure that A is an M-matrix

we need to show that
(

A(1)
)−1
≥ 0. Since the first column of A(1)

Proof

incomplete factorization preconditioners and their updates with applications - i 5

has only one nonzero element a(1)1,1 = a1,1 we have that
(

A(1)
)−1

has only one nonzero element in the first column, which is equal
to 1/a1,1 and thus: (

A(1)
)−1

e1 =
1

a1,1
e1 > 0.

On the other hand we also have:(
A(1)

)−1
ej = A−1

(
L(1)

)−1
ej = A−1ej ≥ 0, j > 1

and therefore we conclude:
(

A(1)
)−1
≥ 0, and so we have proved

that A(1) is an M-matrix in the sense of definition 7.

Lemma (1) implies that in the LU decomposition of A, if A is an
M-matrix, then so is U. Now we need to prove that also dropping
preserves M-matrices.

Theorem 2

Dropping off-diagonal elements preserves the M-matrix prop-
erty.

Using definition (4) we have that dropping ai,j elements for i 6= j
does not alter the property of M-matrix.

Proof

The two precedent lemmas (1,2) imply that an incomplete LU factor-
ization, A = L̃Ũ − R, if A is an M-matrix, then so is Ũ.

Theorem 3

If A is an M-matrix the inverse of the elementary Gauss trasnfor-
mation L(i) is an M-matrix.

Without loss of generality we can restrict ourself to the L(1) matrix,
it differs from the identity matrix just for the element:

l(1)i,1 = − ai,1

a1,1
≥ 0,

by the property of M matrix of A, hence L(1) ≥ 0. The inverse of
L(1) is the L(1) matrix with off-diagonal element changed in sign,
so (L−1)

(1)
i,1 ≤ 0, so the matrix fulfils the definition of M-matrix 7.

Proof

incomplete factorization preconditioners and their updates with applications - i 6

Theorem 4

If A isn an M-matrix, then so is the factor L in the LU factor-
ization: A = LU.

Formalizing the Gauss elimination process as:

L(n)L(n−1) · . . . · L(1)A = U,

is straightforward writing:

L =
(

L(1)
)−1 (

L(2)
)−1
· . . . ·

(
L(n)

)−1
⇒ li,j =

(
L(j)
)−1

i,j

and in this way L satisfies the definition of M-matrix (7).

Proof

Putting all this results together we can formalize the incomplete LU
factorization existence as:

Theorem 5: Incomplete LU

Let A be an M-matrix and P a given nonzero pattern diago-
nal including, then the ak,k in the Gauss factorization algorithm
(1) are ak,k 6= 0 ∀ k, and it produces an incomplete factoriza-
tion A = L̃Ũ − R in which both L̃ and Ũ are nonsingular M-
matrices; this is also a regular splitting.

And so we have obtained our algorithm5 for incomplete LU fac-

5 There exists many variations of this
strategy, namely, for each possible al-
gorithm for computing LU factorization
the incomplete formulation have been
established. The first simple idea can
be choosing P as the sparsity pattern of
the matrix A, in this way we have de-
fined the ILU(0) algorithm. For exam-
ple, a more general version would be
choosing a pattern P imposing only a
certain level of fill-in of the matrix. At
the the beginning of the factorization
we can discern two kind of level of fill:

levi,j =

{
0 ai,j 6= 0, or i = j
∞ otherwise

. (7)

Now we have to propagate the levels
by following the pattern of access of the
elimination algorithm, namely:

levi,j = min{levi,j, levi,k + levk,j +1}.

When we access the ai,j element modi-
fying it as ai,j = ai,j − ai,k · ak,j. Then the
algorithm ILU(p) is obtained simply as
the algorithm ILU(Pp) where Pp is the
sparsity pattern given by:

Pp = {(i, j) | levi,j ≤ p}.

torization:

Algorithm 1: General Incomplete LU Factorization.

Input: Matrix A = (ai,j)i,j=1,...,n, sparsity pattern P.
Output: Matrix A factorized in incomplete LU form.

1 for i = 2, 3, . . . , n do
2 for k = 1, . . . , i− 1 do
3 if (i, k) ∈ P then
4 ai,k ← ai,k/ak,k;
5 for j = k + 1, . . . , n do
6 if (i, j) ∈ P then
7 ai,j ← ai,j − ai,k · ak,j;

Now we are going to concern ourselves with the existence of an
incomplete LU factorization via the using of a dropping strategy. Ref-
erences to this algorithm can be found in [Saad, 2003, 1994, Axelsson
and A., 2001]. The principal idea of the algorithm is replacing an

incomplete factorization preconditioners and their updates with applications - i 7

element with zero if it satisfies a set of dropping criteria related to
the value of the element.

We can apply a dropping-rule row-wise by applying the same rule
to all te elements of the row, as in algorithm (2), in which the vector
w is a working-vector for the elements on the row.

Algorithm 2: Algorithm ILUT, row-wise.

Input: A sparse matrix A ∈ Rn×n.
Output: L, U calculated with dropping.

1 for i = 1, . . . , n do
2 w← ai,:;
3 for k = 1, . . . , i− 1 and wk 6= 0 do
4 wk ← wk/ak,k;
5 Apply a dropping rule (1) to wk;
6 if wk 6= 0 then
7 w← w− wk · uk,:;

8 Apply a dropping rule (2) to row w;
9 for j = 1, . . . , i− 1 do

10 li,j ← wj;

11 for j = i, . . . , n do
12 ui,j ← wj;

13 w← 0;

0 200 400 600 800 1000

0

200

400

600

800

1000

nnz(A)=4054

S ADMITTANCE MATRIX 1138 BUS POWER SYSTEM, D.J.TYLAVSKY, JULY 1985.

0 200 400 600 800 1000

0

200

400

600

800

1000

nnz(L)=4333

Drop Tolerance = 1.00e-02

0 200 400 600 800 1000

0

200

400

600

800

1000

nnz(L)=7616

Drop Tolerance = 1.00e-03

Figure 4: L factors at various drop-
tolerance for the matrix 1138 Bus.

Depending on the choices of the dropping strategies in the al-
gorithm (2) points (1) and (2) we can construct various incomplete
factorization algorithms, and also the ILU(0) algorithm can be rein-
terpreted in this way.

Definition 8: ILUT(p,τ)

We define the ILUT(p,τ) algorithm chosing the following drop-
ping rule:

(1) We define the relative tollerance τi = τ · ai,:, then if ωk < τi

⇒ ωk = 0.

(2) Apply the dropping-rule to the whole vector w, then keep
only the p largest modulus element in the L part of the row
and the p largest modulus element in the U part of the row.

The diagonal elements are never dropped.

The parameter p in the algorithm controls the fill-in of the matrix,
i.e. the memory usage. The idea is similar to the level of fill-in of the
ILU(p) algorithm, however it relies upon the value of the elements
and not upon their position.

Now we want to to prove the existence of this factorization, in a
similar way to what we have done for the ILU(P), to achieve this we
have to do some preliminary work. Firstly we have to define a class

incomplete factorization preconditioners and their updates with applications - i 8

of matrices, similarly to what we have done with the M-matrices:

Definition 9: M̂-matrix

A matrix H ∈ Rn×n is an M̂-matrix if it satisfies the following
condition:

1. hi,i > 0 ∀ 1 ≤ i < n and hn,n ≥ 0;

2. hi,j ≤ 0 ∀ i, j = 1, 2, . . . , n and i 6= j;

3. ∑n
j=i+1 hi,j < 0, ∀ 1 ≤ i < n.

Definition 10: Row Sum

Given an M̂-matrix H ∈ Rn×n we define the row sum of the
i-th row as:

rs(hi,:) =< hi,;, e >=
n

∑
j=1

hi,j.

Definition 11: Dominance

Given an M̂-matrix H ∈ Rn×n we says that the row hi,: is di-
agonally dominant if rs(hi,:) ≥ 0. We say that an M̂-matrix
H ∈ Rn×n is diagonally dominant if all its rows are diagonally
dominant.

To prove the existence of the factorization we are in need to given
a slight different dropping rule, selecting some particular elements
that are not to be dropped in any case, namely:

Definition 12: Drop strategy II

∀ i < n we define:

ai,ji = max
j=i+1,...,n

|ai,j|,

The elements generated in position (i, ji) during the ILUT pro-
cedure (2) are not subject to the dropping rule (8).

We need also to establish the following notation relative to the algo-
rithm (2):

Remark 1. The row vector w resulting from line 4 of the algorithm (2)
will be denoted in the following as u(k+1)

i,:
6. In this way the algorithm at the 6 Note that the elements u(k+1)

i,j = 0 for
j ≤ kgeneric step k = 1, . . . , i− 1 become:

li,k = u(k)
i,k /uk,k, (8)

if |li,k| meets the dropping rule li,k = 0, else:

u(k+1)
i,j = u(k)

i,j − li,k · uk,j − rk
i,j, j = k + 1, . . . , n (9)

incomplete factorization preconditioners and their updates with applications - i 9

where, following the new notation, we have set u1
i,: = ai,: and where r(k)i,j is

the accounting of the dropping strategy, i.e.

r(k)i,j = 0 ⇒ No dropping,

r(k)i,j = u(k)
i,j − li,k · uk,j ⇒ u(k+1)

i,j dropped.

in this way the i-th row of U at the i-th step of the Gaussian elimination is:

ui,: = u(i)
i−1,: (10)

and this satisfies the relation:

ai,: =
i

∑
k=1

lk,j · u
(k)
i,: + ri,:.

where ri,: = (ri,j)j≤k.

Theorem 6: ILUT(p, τ) existence

Given a matrix A ∈ Rn×n such that A is a diagonally dominant
M̂-matrix (11), then the rows u(k)

i,: , k = 0, 1, 2, . . . , i defined by:

u(k+1)
i,j = u(k)

i,j − li,k · uk,j − rk
i,j, j = k + 1, . . . , n;

u(0)
i,: = 0,

u(1)
i,: = ai,:,

satisfy the following relation for k = 1, . . . , l:

u(k)
i,j ≤ 0 j 6= i, (11)

rs(u(k)
i,:) ≥ rs(u(k−1)

i,:) ≥ 0, (12)

u(k)
i,i > 0 when i < n and uk

n,n ≥ 0. (13)

We will prove the risult by induction over k. The result is trivially
true for k = 0. To prove relation (11) we start from:

u(k+1)
i,j = u(k)

i,j − li,k︸︷︷︸
≤0

· uk,j︸︷︷︸
≤0

− rk
i,j︸︷︷︸

=0, or
=u(k)

i,j −li,k ·uk,j

,

Ando so we have u(k+1)
i,j ≤ u(k)

i,j ≤ 0 or, being replaced by 0, we

have u(k+1)
i,j ≤ 0. So (11) is proved.

Now we are going to prove (12) supposing that it holds true for
k. By the precedent argument we have that r(k)i,j = 0 except when

the j-th element in the row is dropped, in which case u(k+1)
i,j = 0,

and r(k)i,j = u(k)
i,j − li,k · uk,j ≤ 0. Therefore we have thath r(k)i,j ≤ 0 al-

ways. Moreover, when an element in position (i, j) is not dropped,

Proof

incomplete factorization preconditioners and their updates with applications - i 10

then:
u(k+1)

i,j := u(k)
i,j − li,k · uk,j ≤ u(k)

i,j ,

and in particular by the dropping rule (12) we have that for i < n,
we will always have for j = ji: uk+1

i,ji
≤ u(k)

i,ji
. Now we can consider

the row sums:

rs(u(k)
i,:) = rs(u(k)

i,:)− li,k · rs(uk,:)− rs(r(k)i,:)

≥ rs(u(k)
i,:)− li,k · rs(uk,:)

≥ rs(u(k)
i,:),

and this establishes (12).
It remains to prove the last relation (13), now by the previous

one (12) we have that for i < n:

u(k+1)
i,i ≥

n

∑
j=k+1

(
−u(k+1)

i,j

)
=

n

∑
j=k+1

∣∣∣u(k+1)
i,j

∣∣∣
≥
∣∣∣u(k+1)

i,ji

∣∣∣ ≥ ∣∣∣u(k)
i,ji

∣∣∣ ≥ . . .

≥
∣∣∣∣ui,j(1)i

∣∣∣∣ = ∣∣ai,ji

∣∣
and by the definition of the dropping rule (12) and the property
of A being an M̂-matrices we have the proof.

In the next lesson we will use what we have built here to build
another preconditioner that has the possibility of being computed
and executed on high performance architectures, in this we will fol-
low the approach in [Bertaccini and Filippone, 2016]. Moreover, for a
survey of other preconditioning technique and some other informa-
tions on the one presented here see also [Benzi and Tuma, 1999].

References

O. Axelsson and Barker V. A. Finite element solution of boundary value problems: theory and computation. Clas-
sics in Applied Mathematics. Society for Industrial Mathematics, illustrated edition edition, 2001. ISBN
9780898714999,0898714990.

M. Benzi and M. Tuma. A comparative study of sparse approximate inverse preconditioners. Appl. Numer. Math., 30

(2):305–340, 1999.

A. Berman and R. J. Plemmons. Nonnegative matrices. The Mathematical Sciences, Classics in Applied Mathematics,, 9,
1979.

D. Bertaccini and F. Durastante. Iterative methods and preconditioning for large and sparse linear systems with applications.
Chapman & Hall, 2017. In Preparation.

D. Bertaccini and S. Filippone. Sparse approximate inverse preconditioners on high
performance GPU platforms. Computers & Mathematics with Applications, 71(3):693–
711, 2016. ISSN 0898-1221. http://dx.doi.org/10.1016/j.camwa.2015.12.008. URL
http://www.sciencedirect.com/science/article/pii/S0898122115005763.

D. Bertaccini, C. Di Fiore, and P. Zellini. Complessità e iterazione numerica. Percorsi, matrici e algoritmi veloci nel calcolo
numerico. Programma di mat. fisica elettronica. Bollati Boringhieri, 2013. ISBN 9788833958644.

Ky Fan. Note on m-matrices. The Quarterly Journal of Mathematics, 11(1):43–49, 1960.

G. H. Golub and C. F. Van Loan. matrix computations, 3rd. Johns Hopkins Univ Press, 1996.

incomplete factorization preconditioners and their updates with applications - i 11

J Meijerink and Henk A van der Vorst. An iterative solution method for linear systems of which the coefficient
matrix is a symmetric M-matrix. Math. comp., 31(137):148–162, 1977.

M. A Olshanskii and E. Tyrtshnikov. Iterative methods for linear systems: theory and applications. SIAM, 2014.

Y. Saad. Ilut: A dual threshold incomplete lu factorization. Numerical linear algebra with applications, 1(4):387–402,
1994. URL http://www-users.cs.umn.edu/ saad/PDF/umsi-92-38.pdf.

Y. Saad. Iterative Methods for Sparse Linear Systems: Second Edition. Society for Industrial and Applied Mathematics,
2003. ISBN 9780898718003.

E Tyrtyshnikov. A Brief Introduction to Numerical Analysis. Birkhauser, 1997.

J. H. Wilkinson and C. Reinsch. Handbook for Automatic Computation Vol. II - Linear Algebra. Springer-verlag, 1971.
URL http://books.google.it/books?id=toZbQwAACAAJ.

	The Incomplete LU Factorization

