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Notation

Tensor — multidimensional array (function of its indices)
A(m):A(le"'aXn)v Xi € {17---7di}
Terminology:
@ n — dimensionality;

@ x; — indices.
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A tensor A is said to be represented in the TT-format if
A(xt, ..., xn) = G x1] G5 [xa] - - G [xa],
where GA[x;] is a matrix of size r;_1(A) x ri(A), ro(A) = r,(A) = 1.
Terminology:
° G,A — TT-cores;
o ri(A) — TT-ranks;
o r(A) = i_rraaxnr,-(A) — maximal TT-rank.

Yy

The TT-format uses O (ndr?(A)) memory to store O (d") elements
(d = __r?ax d,)

=1,...,n
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Operations on tensors in the TT-format

Operation Output rank
C=c-A r(C) =r(A)
C=A+c r(C) =r(A)+1
C=A+B r(C) < r(A)+r(B)
C=AGB  r(C)<r(A)(B)
c=Mb r(c) < r(M)r(b)
C =round(A,¢) r(C) <r(A)
sumA

Al -
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TT-rounding

Suppose that you have a TT-decomposition A(zx) = G [x1] - -+ GR[xn]
with non-optimal TT-ranks.

The TT-rounding procedure (Oseledets 2011)

~

A =round(A,e), >0
finds a tensor A:
O [[A-A[r <c|AlF;
@ its TT-ranks are minimal among all tensors B:

IA=Blr < 7==lAlF.

Here [|Al| = > A%(xq1, ...y Xp).

X15++9Xn
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Finding a T T-representation of a tensor

@ There are analytical formulae for some special cases;
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Finding a T T-representation of a tensor

@ There are analytical formulae for some special cases;

@ TT-SVD: finds an exact T T-representation for a tensor but suitable
only for low dimensionality n;

@ AMEn-cross: builds a TT-approximation of a tensor by using only a
small fraction of its elements; suitable for high dimensionality n but
doesn't have strong theoretical guarantees.
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© Motivation example
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Semantic segmentation

Xtrain <

Training

> Ttrain

Testing
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Probabilistic approach

@ Define a probabilistic model on the set of all possible labellings.
o Let p(T|X, W) measure the probability of the labelling T given the
image X and the parameters of the model W.
@ The goal is to find the labelling T* that maximizes p(T|X, W):
T = arg;nax p(T|X, W).

This is called the maximum a posteriori (MAP) inference.

o We will use Markov random fields (MRFs) to define the probabilistic
model p(T|X, W).
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MAP-inference

The MAP-inference problem now corresponds to the following problem:

maxp(T|X W) = max —o 7 Z(X W) | H!I/C(TC;X, w).
eC

Further we demonstrate how one can address such a problem using
the Tensor-Train (TT) framework.

We will assume that

@ the parameters of the model W are already chosen;

@ we are performing the MAP-inference for the concrete image X.
So, to simplify notation, we won't epricitIy write X, W any more:

max p(T) = max — HLP(T
T CGC
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MAP-inference & energy minimization

The MAP-inference problem

15 ’
max P(z) = max — é_l_[l Wy(x")
is equivalent to the following problem:

min Z[— In @, (x")].
(=1
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MAP-inference & energy minimization

The MAP-inference problem

max P(z) = max — H Wy(x
é_
is equivalent to the following problem:

: L
min Z[— In®,(z")].
(=1
Terminology:
o The terms Oy(x’) = — InWy(x*) are called MRF potentials.
o Their sum E(x) = Y ©(x’) is called MRF energy.
/=1

So, the MAP-inference is equivalent to energy minimization:

mlnE = man@g
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Maximum likelihood estimation:
W* = argvryax P(Ttrain|Xtrain7 W)

m
arerJlax Z(Xtrainyw) g é( train,» “Mrains )

m
= arg max <Z |0g !pé(Ttrain; Xtrains W) - |Og Z(Xtraina W))
w =1
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Optimization

We need to solve the following optimization task:

mMa/X (Z_Zl |0g lI’Z( Tiraini Xtrain, W) - |Og Z(Xtraina W))

m
Z(Xtraina W) = Z H WZ(T; Xtrain, W)
T (=1

To use optimization methods we need to compute the value and the
gradient of the objective function.

It is easy to compute the gradient of the log-partition function if we know
the marginal distributions!:

P(tj)=>_ P(T)

T\ t;

!S. Nowozin and C. Lampert (2010). “Structured Learning and Prediction in
Computer Vision”. In: Foundations and Trends in Computer Graphics and Vision
6.3-4, pp. 185-365.
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Problems of interest

Assume that we fixed the parameters W and the training data Xirain,
7—train-

We will focus on three problems (hereinafter we use  to denote the
variables of the model):

@ MAP-inference: min, E(x)
o The partition function estimation: Z = 3" P(x);
@ The marginal distributions estimation: P(x;) = %Zw\x,- P(x).
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© Results
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Tensor approach

@ The energy E(x) can be considered as an n-dimensional tensor:
E(z) = E(xi,...,Xn).
@ Then energy minimization corresponds to finding the minimal element
in the tensor E(x).

o If the energy E(x) were represented in the TT-format, we could use a
special algorithm from the TT-framework to find the minimal element.

@ How to convert the energy tensor into the TT-format?
AMEn-algorithm?
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Tensor approach

@ The energy E(x) can be considered as an n-dimensional tensor:
E(z) = E(xi,...,Xn).
@ Then energy minimization corresponds to finding the minimal element
in the tensor E(x).

o If the energy E(x) were represented in the TT-format, we could use a
special algorithm from the TT-framework to find the minimal element.

@ How to convert the energy tensor into the TT-format?
AMEn-algorithm? Possible, but there is also a much better way!
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The idea of the algorithm

@ Let's try to take into account the structure of the energy tensor E.
m
Recall: E(z) = Y. ©y(z").
=1

o Each potential @y(x’) can be considered as an n-dimensional
tensor @,(x) if we add inessential variables & \ x* for non-existing
dimensions: @,(z) = Oy(x").

@ The energy E(x) can be expressed as a sum of the tensors @y(x):
E(z) =) Ox).
(=1

o If the tensors @, were represented in the TT-format, we could exploit
the summation operation on tensors in the TT-format to build the
TT-representation for the tensor E.

@ How to find the TT-decomposition for each tensor @,?
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Converting potentials into the TT-Format

o As opposed to the energy E(x), each potential @,(z’) depends only
on part of the all variables and is usually of low dimensionality.

o To compute the TT-decomposition of the tensor @,(x*), we can use
the TT-SVD algorithm.

o All that remains is to add the inessential variables = \ ' to @(x*)
so as to make it n-dimensional.
@ These inessential variables can be added constructively:
o Let x = (Xl,XQ,X3,X4,X5), .’13[ = (X1,X2,X4).
e Suppose that after TT-SVD we have:
O(x1, x2,xa) = G1[x1] Go[x2] Ga[xa].
o To introduce x3, x5, we need to define the missing cores Gs[xz], Gs[xs].
e Define them as identity matrices:
Oy(x1, X2, X3, Xa, x5) = G1[x1] Ga[x2] \// Ga[xa] I .
EG3[X3] EG5[X5]
e The maximal TT-rank hasn't increased!
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The algorithm & its theoretical guarantees

© Compute the TT-decomposition for each individual potential @g(me).
@ Add the inessential variables to each @,(z’) to obtain @(x).
© Use the TT-summation to build E(x): E(x) = >/ Oyx).
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The algorithm & its theoretical guarantees

© Compute the TT-decomposition for each individual potential @g(we).
@ Add the inessential variables to each @,(z’) to obtain @(x).
© Use the TT-summation to build E(x): E(x) = >/ Oyx).

Theorem

The maximal TT-rank of the tensor E constructed by the algorithm is
polynomially bounded:

((E) < dem,
where

@ d is the number of values that each variable can take;
@ m is the total number of potentials;

o p is the maximal order of a potential (i.e. the maximal |x*|).

Consider d =2, p =2. Then r(E) < 2m (linear dependence on m).
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The TT-format for probability tensor

We can find the TT-representation of P
m
P=0%.
=1

However, the TT-ranks of P are exponential.
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The TT-format for probability tensor

We can find the TT-representation of P
m
P=0%.
(=1
However, the TT-ranks of P are exponential.

1000 4

J -e-pP

800 = —e— round(P, 107%) ’
- - - -E ’

600 — round(E, lO'R)

400 <

2004

maximal TT-rank

number of variables
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The algorithm motivation

o The TT-ranks of P grow exponentially;

@ We must approximate the partition function Z without explicitly
building the TT- representation of P.
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The partition function estimation

Recall the definition of the partition function: Z = 3 P().
x

Let us transform P(x).

Kronecker product property:
a-b=a®b, acR beR.
Applying this property we get

Pe) = [] () = @wlx) = & (6lbal -+ Gllal)
/=1 1

=125 =
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The partition function estimation

Recall the definition of the partition function: Z = 3 P().
x

Let us transform P(x).

Kronecker product property:
a-b=a®b, acR beR.
Applying this property we get
P(z) = [[ Z(z) = Q@ @ul(=) = Q (Gl Ghlxal)
=1 =1 =1
€R
Mixed product property:
AC® BD =(A® B)(C® D).
Hence:

I3(:13) = (Gll[xl] X ® Gl’”[xl]) (G,:}[xn] X ® G,’,"[x,,]) )

A. Novikov et al. Partition function through the TT-Format



The partition function estimation cont'd

P(2) = (Gla]® - ® GP'ka]) -+ (Grlxal @+ @ Gl ) -
Denote: A,‘[X,'] = Gll[X,] X ® Glm[X,]
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The partition function estimation cont'd

P(2) = (Gla]® - ® GP'ka]) -+ (Grlxal @+ @ Gl ) -
Denote: A,‘[X,'] = Gll[X,] X ® Glm[X,]
Finally,

Z= Z P(z)= > Ai[x]...As[x]

X1y-++5Xn

= (Z Al[x1]> <ZA,,[X,,]> =By B,

where B; = 329 _; Ai[xi].
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The algorithm

Z=B B,

The algorithm:

: Find TT-cores Gf, cen Gﬁ for ¥,
2: Initialize fp41:=1
3: for i := n downto 1 do

4. Construct TT-matrix A;[x] := @1 GF[xi]
5: B; = izl A,‘[X,']
6
7
8

[ary

fi :==round(B;fit1,¢)
: gnd for
7= fl
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Marginal distributions

Our approach can be generalized to compute the marginal distributions:

pi(xi) = > P(x) =" Aipa]... Anlx,] =

X1yeeesXi—1,Xi415---,Xn z\x;
= Bl Ce B,',l A,‘[Xi] Bi+1 s an
where

d
B,' = Z A,‘[X,'].
xi=1

We can explicitly normalize the obtained distribution

bi(x;)

pi(xi) = ————
25:1 pi(x)
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@ Experimental evaluation
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MAP-inference

The TT-method for the MAP-inference:
@ Convert the energy into the TT-format;

@ Find the minimal element in the energy tensor.

We compare the TT-method with the popular TRW-S algorithm on several
real-world image segmentation problems from the OpenGM database.

Problem Variables Labels TRW-S TT  Time (sec)
gmé 320 3 45.03  43.11 637
gm29 212 3 56.81 56.21 224
gm66 198 3 75.19 74.92 172
gm105 237 3 67.81 67.71 230
gm32 100 7 150.50  289.29 257
gm70 122 7 121.78  163.60 399
gm85 143 7 168.30 228.40 1912
gm192 99 7 11451 174.78 180
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Partition function

Ising model:

n
P(z) = H exp (—71_h,-x,-) H exp (—_}_c,-jx,-xj)
i=1 (i,j)e&
where x; € {—1,1}.
Notation:
o Temperature T,
@ Unary coefficients h;j;
e Pairwise coefficients cj;.
We use 4-connected grid of size 10 x 10.
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Theoretical guaranties

—e— exact value
10 TT estimate
[ confidence region
N
B0
o
10°
} T — T T — T
10" 10°

10'
temperature T

Confidence bounds on the computation of the partition
function Z (¢ = 1).
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Methods we compare with:

@ Belief Propagation (BP, Kschischang, Frey, and Loeliger 2001
Kschischang et al., 2001);

Tree Expectation Propagation (TREEEP, Minka and Qi 2004 Minka
& Qi, 2004);

Mean Field method (MF, Wainwright and Jordan 2008 Wainwright &
Jordan, 2008);

Annealed importance sampling method (AlS, Neal 2001 Neal, 2001);
Gibbs sampling (Gibbs, Wainwright and Jordan 2008 Wainwright &
Jordan, 2008).
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Comparison

— 1T
—a— BP

—v— MF

—e— TREEEP
—A— AIS

llog Z — log Z|

temperature T

Comparison on Ising model (all pairwise weights are equal ¢; = 1) against
state-of-the-art algorithms.
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Marginal distributions

error in marginals

10 4

0.5 1 1.5 2 2.5 3
strength of pairwise weights f

Ising models, T =1, ¢;j ~ U[-f,f].

—TT
—=a— BP
—v— MF
—=e— TREEEP
—&— Gibbs

A. Novikov et al.

Partition function through the TT-Format



© High Order Potentials
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High Order Potentials

@ Sometimes it is convenient to use potentials of high order, i.e. those
which depend on many variables. E.g., the potential

O)(x) = lzn: xi < a

indicator function
which depends on all the variables, could be used to specify some

preference on the minimal value of the area of foreground in the
problem of segmenting an image into background /foreground.

)

@ We can’t use the TT-SVD algorithm any more to convert such
potentials into the TT-format!

@ However, for some of these potentials we can explicitly construct the
TT-representation, i.e. we can derive analytical formulae for the
corresponding T T-cores.

@ Such TT-representations will be of low TT-rank!
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Sparse Potential

o Consider a so-called sparse potential:
Ouxiy, - .. %,) =[xy = B1] ... [, = Bw].
It always equals zero with the exception of only one configuration.
@ Such a potential admits a T T-representation
@g(X,'l, ‘e ,X,'W) == G,'1 [Xfl] “. G,'W [X,'W]
with the following TT-cores:
Gi,[xi,]=1[xi, =58, v=1,...,w.
@ In this case each TT-core is simply a number (1-by-1 matrix) for
every concrete value of x;,. Hence, the maximal TT-rank equals 1.

@ A more general sparse potential which differs from zero on s > 1
configurations can be obtained as a sum of several potentials of the
above type. Thus, the TT-rank of a general sparse potential is
bounded above by s.
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Area Potential

o Consider the potential

O(x) = [in < a] ;
i=1
where x; € {0,1} and a € Z.

@ This potential can be analytically represented in the TT-format with
the maximal TT-rank equal to a + 1:

G;[X,'] = (Sa)xi, (i = 2, oo, n— 1),

a+1
Gixa]=[0...01...1], Gu[xa] = (S2)"[0...01]7,
X1 a
where S, = [ 8 la ]
N————
(a+1)x(a+1)
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Area Potential cont'd

a+1 a+1
Key property of S;: [0...01...1]S5,=[0...01...1].
k k+1

Consider, e.g., that a = 3. In this case

@ [1111]S, =[0111] (the sum of all rows);
e [0111]S, =[0011] (the sum of rows 2, 3, 4);
@ and so on.

Then
@g(m) = G1 [X1]G2[X2] G3[X3] . G,,[X,,]
a+1
=1[0...01...1](S.)2(S.)% ... (S)[0...01]T

A. Novikov et al. Partition function through the TT-Format



@ Conclusion
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Conclusion

Our main contributions are:

@ We have proposed an algorithm that converts MRF energy into the
TT-format exactly.

@ We have derived an upper bound on the TT-ranks of the energy
tensor constructed by the proposed algorithm.

@ We have proposed an algorithm for estimating the partition function
and the marginal distributions. The key feature of the algorithm is
that it does not explicitly construct the T T-representation of the
unnormalized joint distribution.

@ We have bounded the errors of the partition function estimation.
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@ Analytical formulae of TT-representations for other types of high
order potentials.

@ Better theoretical guaranties for the partition function estimation.

@ Better algorithm for finding the minimal element in a tensor
represented in the TT-format.
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