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Bayesian methods research group

Founded in 2007. Currently consists of 8 students, 5 PhD
students, 1 researcher and 1 associate professor.
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What is machine learning?

ML tries to find regularities within the data

Data is a set of objects (users, images, signals, RNAs, chemical com-
pounds, credit histories, etc.)

Each object is described by a set of observed variables X and a set of
hidden (latent) variables T

It is assumed that the values of hidden variables are hard to get and we
have only limited number of objects with known hidden variables, so-called
training set

The goal is to find the way of predicting the hidden variables for a new

object given the values of observed variables
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Example: Credit scoring

Objects: clients in bank

Observed variables: gender, age, income, family status, eduction, credit
history, etc.

Hidden variables: credit limit, to give or not to give credit.

Training set: history of our credit operations from past




Areas of application

With the spread of information technologies ML has been used in more and
more domains

e Computer vision

e Speech recognition

e (Credit scoring

e Mineral deposits search
e DBioinformatics

e Web-search

e Sells forecasts

e Behaviour analysis

e Social networks

e ctc.



Stages

90s. Support vector machines. Linear methods for constructing non-linear
decision rules

90-00s. Bayesian framework. Encodes prior knowledge about the concrete
problem into the model

00s. Probabilistic graphical models. Construct complex models using sim-
ple Bayesian models as building blocks

00-10s Deep revolution. 2% reincarnation of neural networks. This time a
successful one

10s. Big Data. ...

20s. Artificial intelligence?..

Today we have a boosting development of ML techniques due to the un-
precedented amounts of available data and computational resourses



Overfitting effect

e Imagine we are given a trainig set (Xy,., 13-) = {(z;,t;) }'_, and a param-
eterized set of possible prediction algorithms {f(z,0) | 8 € ©}

e We select

n

0* = arg mian(tz’, f(mza 9))9

0cO

1=1

and use f(x,0*) for predicting the value of hidden variable for object x

e Seems reasonable?..
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Occam’s razor

In 14th century William Occam fomulated his famous principle: among
all explainations of the event you need to seek for the simplest one

Occam razor has become the methodological basis of modern scientific
method

We use this principle informally in everyday’s life

PROBLEM: Computer can’t distiguish between simple and complex ex-
plainations of training set




What is simple?

From psychology: ”"Complex explaination” = ”Unexpected explaination”
From information theory: ”Unexpected” = ”Less probable”
Shannon theorem provides an explicit way of formalizing our surprize in

terms of a distribution
The more complex the dependency is the less probable it should be

We may now use probabilistic language to formalize Occam razor!




Bayes theorem

In probabilistic setting we try to recover p(t|z, ) wrt
training set

Maximum likelihood estimation

9*: TT‘XT79 — t’L 199
arg max p(Tir| Xir., 0) argmgle[lp( i, 0)

tends to overfit

We may encode the complexity of dependence in terms of prior distribution

p(0)

Famous Bayes theorem (1763) provides a correct way of transforming our
knowledge from prior to posterior form

p(Tyr| Xr, 0)p(0)

QX’T'JTT —
PO Tir) = T X, 0)p(8)d0

See "Harry Potter and the Methods of Rationality”, Chapter 20



Bayesian world

In Bayesian world everything is random!

Likelihood X Prior

Posterior =

New interpretation of randomness: ”Objective uncertainty” — ”Subjec-

tive ignorance”

In Bayesian modeling we estimate p(7', 0| .X) instead of p(T'|X, )

Rather than getting point estimate
for 6 we obtain posterior p(0| Xy, Ty, )
that can be used as a prior

in next model

Thus we can construct complex
models from simpler ones
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Example: logistic regression

Training set: (Xi,., Ty,) = {(x;,t;)}™,, where z; € R%, t; € {0,1}

Discriminative model

p(T,0|X) = Hp (t3]x;,0)

Likelihood term is defined as follows

p(t,;lil’:i,g) —

Prior usually penalizes large weights, e.g.

p(@) ™~ N(Ov )\_1)7

where A > 0 is regularization coefficient

1 + exp(—t;




Exponential family of distributions

Plays important role in Bayesian (and not only!) regularization and learn-
ing

Functional rather than parametric family

1

p(z|0) = mf(x) exp(60” u(z))

Key observation: log-linear model

Factorization criteria: if

p(x]0) = f1(x)f2(0) f3(u(x),0)
then (and only then) u(x) are sufficient statistics of p(x|0)

Sufficient statistics conatin all information that is nessesary for estimating

0



Examples

e The most of "table distributions” are from exponential family: Gaussian,
Gamma, Beta, Chi-squared, Wishart, Von Mises, all discrete, etc.

e Sometimes is it not easy to see that a distribution can be reduced to the

form p(x]6) = h=1(0) f () exp(6Tu(x))

e Consider 1-dimensional Gaussian distribution

N (u 02) = L exp —M = L exp (—O 50 2z + a_Quac —0 50_2u2)
j V2o 202 2mo ' .

Denoting §; = —0.5072 and 05 = 0?1 we get

—26,4
2T

exp (9391_1) exp (913:2 -+ 9255)

2

e Hence u (z) = = and ug(x) = x* are sufficient statistics. Parameters 6

are called natural parameters



Normalization constant

e Function h(f) ensures that p(z|f) is normalized. i.e.
— [ 1) exp(@"uw))is

e Explicit knowledge of h(#) is very useful

Oh(
(’;LQ = 50, /f(a: exp (07 u( d:c—/f —exp (0T u(x))dx =

[ @@ exp(@™ @) = 10) [ 5o

)f( z)u;(x) exp(0” u(z))dr = h(0)Eu;(z)

e Equivalently
Olog h(0)

90,

= Eu;(z)

e Similarly o 1;%;”(9) = Du,(x)




Example: Dirichlet distribution

Distribution over simplex {x € R? | z; > 0, Z?zl =1}

Good for setting priors on discrete probabilities

Density function

Sufficient statistics u;(x) = log x;

{ak} — |

We may compute Elog x; by differentiating
normalization constant




Interdependencies between objects

Up to now we assumed that hidden variables for each object depend only
on the observed variables of that object

p(T,0|X) = Hp (ti|xq, 0)

But what happens if objects are interdependent?

We need to model the joint distribution p(7',60|X) directly even for very
large n

Excellent way for smarter regularization

This is often the case in practice
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Multiple videotracking
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Social network analysis
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Decoding of noisy messages
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Multi-agent modeling
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Deep learning
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Discrete joint distributions

Modern probabilistic models deal with the joint distributions of thou-
sands/millions of discrete and continuous variables

Assume we’d like to model the distribution of 30 x 30 binary image

We'd need to set 299° ~ 10%7° probabilities - one for each possible config-
uration

The number of atoms in the universe is just about 10%°!

-

5 .'- e 7
« .l{.‘"‘ V‘,’ g

e - W
it 9% "a.t.-,l‘n p
“ T

&
l‘.:




Graphical models

e One way to work with such distributions is to make use of conditional
independence properties (if any) and split it to factors

p(T) = % H wc(Tc) = %exp (Z Cbc(Tc)) )

ceC ceC
where T, are small intersecting subsets of T’

e This is known as Markov random field (MRF) that is a particular case of
graphical model

e The most important problems are to find

Z = Z H wc(Tc)

T ceC

and

Thvp = arg mjz}xp(T)

both are NP-hard problems



Graphs in graphical models

e Markov random field can be set by graph whose maximal cliques define
factorization of the joint distribution

e Variables correspond to nodes, edges correspond to direct dependencies

e If thereis no edge between ¢; and ¢; then these variables are conditionally
independent given all other variables

p(ti, t;| T\ ;) = p(t:i|T\; ;)p(t5|T\; ;)




Example: image denoising

e Consider noised binary image X, z; € {—1, 1} and its denoised version T,
t; € {—1, 1}

e Define the energy of MRF as follows:

—logp(X,T)=E(X,T)+ Const = — Z O1x;t; — Z Oat;t; + Const,
eV (i,7)€€

where 61,605 > 0
e MAP estimate of T given X is

T = arg maxp(T|X) = arg mm E(X,T)

o QIX

e
S




Tensor perspective

Each discrete distribution p(7'), t; € {1,...,K} can be treated as n-
dimensional tensor A of length K

p(l'=7)=p(t1 =7T1,...,tn =) = Al11,..., 7]

We could use one of tensor decomposition techniques for keeping and
processing the distributions

Tensor train (TT) format (Oseledetsll) provides a new framework for
working with probabilistic models

Ay, .o mh] = Gl - oo - G,

where G;[1;] € R"i-1%"s



Tomorrow

The application of TT to energy decomposition
New algorithm for partition function estimation

TT decomposition for global potentials

Let us see how tensor train runs in a Markov random field :)
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