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1. What do we need it for. A matrix is introduced as a 2-dimensional table
with rows and columns. A 3-dimensional matrix can be easily imagined as a 3-
dimensional table, in other words a function of 3 indices

aijk = a(i, j, k), 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ q,

with natural ordering of the indices. Main big questions about matrices are the
decompositions, e.g. the skeleton decomposition:

a(i, j) =
r∑

α=1

uα(i)vα(j) ⇔ A =
r∑

α=1

uαv
T
α = UV T ,

U = [u1, . . . , ur], V = [v1, . . . , vr].

If we exclude zero summands, then it expresses the matrix as the sum of matrices of
rank 1. Each nonzero matrix of the form uα(i)vα(j) is called a nonzero skeleton. Sim-
ilarly, a 3-dimensional matrix is called a skeleton if it is of the form uα(i)vα(j)wα(k).
Any decomposition of the form

a(i, j, k) =
r∑

α=1

uα(i)vα(j)wα(k)

is called canonical tensor decomposition of a(i, j, k). A canonical decomposition with
minimal number of nonzero skeletons is called minimal decomposition, the correspond-
ing number of skeletons is called the tensor rank of a(i, j, k). In this course we always
assume that the entries of all multi-dimensional matrices and their decompositions
are complex numbers. Multi-dimensional matrices are often called tensors.

We want to answer the following questions.

1. Is it possible to compute the tensor rank in finitely many arithmetic opera-
tions?

2. Is there a single natural number r = grank(m,n, q) such that the set of 3-
dimensional tensors of size m × n × q and of rank bounded by r is dense in
the space of all tensors of size m× n× q? Such a number r is called generic
rank for tensors of size m× n× q.

3. Let L be any subspace of dimension (n − 1)2 + 1 in the linear space of all
n× n matrices. Does it contain a matrix of rank 1?

The answer to each of the questions is positive. However, what do we need from
algebra to be able to prove this? The corresponding algebraic background turns out
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to be strikingly rich, deep, certainly beautiful but not of the early stage of the study
of mathematics. The purpose of this course is to pave the way to it as easy as possible.
In the end we will be able to have complete rigorous proofs for the above questions.

2. Algebraic dependence and independence (Lecture 1). Field exten-
sions. Adjunction of an element. Primitive elements. Degree of extension. Alge-
braically dependent elements. Algebraically independent elements. Transcendence
degree. Transcendence base. Differentiations on a field. Linear space of differentia-
tions.

EXERCIZES

1. Find all intermediate fields in between of R and C.
2. Calculate the extension degree (dimension) of Q(

√
2+
√

3) over Q.
3. Elements a and b are algebraic over Q. Prove that a+ b and ab

are algebraic over Q.
4. Let p1 < . . . < pn be prime numbers and L = Q(

√
p1, . . . ,

√
pn). Prove

that the extension degree (dimension) of L over Q is equal to 2n.
5. Prove that there exist infinitely many differentiations on the

field R.

3. Ideals and bases (Lecture 2). We consider only commutative rings and
their subrings. A subring I is called an ideal in R if it is closed under multiplications
by an arbitrary element of R, i.e. possesses the absorption property :f ∈ I and g ∈ R
imply fg ∈ I.

Our favorite ring is R = C[x1, . . . , xn]. The set of polynomials

I = 〈f1, . . . , fs〉 := {f1g1 + . . .+ fsgs : g1, . . . , gs ∈ R}

is obviously an ideal. We say that I is generated by f1, . . . , fs and the system f1, . . . , fs
is called a basis of I. Such ideals are referred to as finitely generated.

Theorem 3.1. (Hilbert theorem on bases) Any ideal in C[x1, . . . , xn] is
finitely generated.

An ideal I ( R = C[x1, . . . , xn] is called maximal if any ideal strictly larger than
I must coincide with R.

Corollary 3.2. Any proper ideal in C[x1, . . . , xn] is contained in a maximal
ideal.

Given a polynomial f ∈ R, how can we check that it lies in the ideal I? We
can do this in finitely many operations if we have a special basis of I, the so called
Groebner basis.

In order to introduce the Groebner bases we need to choose and fix an ordering
of monomials in R. Let it be the lex-order :

xα1
1 . . . xαn

n > xβ1
1 . . . xβn

n iff

α1 = β1, . . . , αt−1 = βt−1, αt > βt for some 1 ≤ t ≤ n.
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Then, each polynomial f has the leading term with respect to the lex-order of mono-
mials. A basis f1, . . . , fs of I is called a Groebner basis of I if the leading term of
each polynomial of I is divisible by the leading term of at least one of polynomials
from the basis. The leading term of f will be denoted by LT(f).

To check if f ∈ I, all we need to do is to find the remainder of the division of
f by f1, . . . , fs. The process of division of f by a system of nonzero polynomials is
defined as follows.

Algorithm 3.1. On input: f, f1, . . . , fs. On output: r (the remainder).

1. g := f, r := 0.

2. If g = 0, then quit.

3. M := {j : LT(g)
... LT(fj), 1 ≤ j ≤ s}.

4. If M 6= ∅, then i := min
j∈M

j, g := g − fi LT(g)/LT(fi), go to 2.

5. r := r + LT(g), g := g − LT(g), go to 2.

Theorem 3.3. Assume that f1, . . . , fs is a Groebner basis of the ideal I =
〈f1, . . . , fs〉. Then f ∈ I iff the remainder of the division of f by f1, . . . , fs is equal
to zero.

The existence of the Groebner basis easily follows from Dixon’s result about
monomial ideals. An ideal is called monomial if it is generated by a possibly infinite
set of monomials.

Theorem 3.4. (Dixon lemma) Any monomial ideal has a finite basis consisting
of some of the monomials that generate this ideal.

How to check if a basis of an ideal is its Groebner basis? It is easy to do using the
so called syzygy polynomials: for given polynomials f(x1, . . . , xn) and g(x1, . . . , xn),
this name is reserved for the new polynomial

S(f, g) :=
h

LT(f)
f − h

LT(g)
g,

where h := xγ11 . . . xγn
n is the lowest-degree monomial divisible by both LT(f) and

LT(g). We emphasize that the definition depends upon the order of the monomials.

Theorem 3.5. (Buchberger) A given basis g1, . . . , gs of an ideal is its Groebner
basis iff the remainder in the division of any syzygy polynomial S(gi, gj) by this basis
is equal to zero.

Making more use of the syzygy polynomials, Buchberger suggested an algorithm
that finds a Groebner basis in finitely many operations.

Algorithm 3.2. On input: F = {f1, . . . , fs} (the basis of an ideal). On output:
G = {g1, . . . , gt} (a Groebner basis of this ideal).

1. G := F .

2. H := G
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3. For all polynomials p, q ∈ H compute the remainder r of the division of S(p, q)
by G, if r 6= 0 then H := H

⋃
{r}.

4. If H = G then quit, otherwise go to 2.

Why does this algorithm stop after finitely many steps? Assume that G is strictly
less than H before we set H := G. Then one can prove that the ideal LT(G) of the
leading terms of polynomials from G is strictly less than the corresponding ideal
LT(H). Indeed, if r 6= 0 then r is not divisible by any of the leading terms of
polynomials from G, and hence r /∈ LT(G). As a corollary of the Hilbert theorem
on bases, an infinite chain of strictly increasing polynomial ideals does not exist.
Consequently, at some step we obtain H = G.

EXERCIZES

1. Show that the remainder in the division by a system f1, . . . , fs may
depend of the ordering of the system polynomials.

2. Prove that the remainder in the division by the Groebner basis
does not depend on the ordering of the basis polynomials.

3. A Groebner basis f1, . . . , fs is called reduced if no term of any of
fi is not divisible by the leading term of any of fj with j 6= i
and each of the leading coefficients is equal to 1. Prove that
the reduced Groebner basis exists and is unique up to the
ordering of the basis polynomials.

4. Assume that x > y > z in the lex-order. Find Groebner bases of
the ideals I = 〈x− y, y − z〉 and J = 〈x+ y, x− z〉.

4. Varieties and Nullstellensatz (Lecture 3). Let S be an arbitrary sub-
set of points in Cn. Then I(S) denotes the set of all polynomials f(x1, . . . , xn) ∈
C[x1, . . . , xn] that are zeroed on every point from S. By definition, I(∅) = C[x1, . . . , xn].
It is trivial to prove that I(S) is an ideal.

On the other hand, for any ideal I we define V(I) as the set of all common zeroes
of all polynomials from I. Any set of this form is called an algebraic set or affine
variety or algebraic variety. In this text we will say simply variety. According to the
Hilbert theorem on bases, any variety is the set of all common zeroes of a system of
finitely many polynomial equations.

Theorem 4.1. (Hilbert theorem on zeroes in the weak form) Let I be
an ideal in C[x1, . . . , xn]. Then V(I) 6= ∅ iff I 6= C[x1, . . . , xn], or equivalently, iff
1 6= I.

Corollary 4.2. For any given tensor, its tensor rank can be computed in finitely
many arithmetic operations.

Theorem 4.3. (Nullstellensatz) Let I be an ideal in C[x1, . . . , xn] and V =
V(I). Then f ∈ I(V ) iff fs ∈ I for some natural number s depending on f .

The set of all polynomials f such that fs ∈ I for some natural number s = s(f)
is called the radical of the ideal I and denoted by

√
I. Prove that

√
I is itself an

ideal. An ideal I is called radical if
√
I = I. An equivalent form of the Nullstellensatz

is the assertion that I(V(I)) =
√
I. Prove this. As a corollary, we have the one-to-

one correspondence I ↔ V between radical ideals and varieties, it is provided by the
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equations I = I(V ) and V = V(I).

A variety is called irreducible if it is not a union of two proper varieties. An ideal
I is called prime if the inclusion fg ∈ I implies that f ∈ I or g ∈ I.

Theorem 4.4. Any variety is the union of finitely many irreducible varieties.
The latter varieties are unique provided that none of them is part of another one.

EXERCIZES

1. Prove that the union and intersection of two varieties is
a variety.

2. Show that the sum of two radical ideals is an ideal that is not
necessarily radical.

3. Prove that any prime ideal is radical.
4. Prove that an ideal I is prime iff the corresponding variety

V = V(I) is irreducible.
5. Prove that the radical of an ideal I is the intersection of all

maximal ideals containing I and equal to the intersection of all
prime ideals containing I.

5. Varieties and projections (Lecture 4). A protagonist in the study of 3-
dimensional matrices of size m×n×q is certainly the set of those of them whose rank
is bounded by r. Denote this set by Sr. How does it look like? Anyway, Sr is evidently
the image of a polynomial mapping from CN to Cmnq, where N = (m+n+ q)r. This
simple observation is paramount as it allows one to recognize that Sr is a projection
of some algebraic variety. This variety is to be considered in Cmnq+N and defined by
the equations

yi − fi(x1, . . . , xN ) = 0, 1 ≤ i ≤ mnq,

where f1, . . . , fmnq are polynomials. Set yi = ai ∈ C and xj = bj ∈ C. Then the
point (a1, . . . , amnq, b1, . . . , bN ) satisfies each of the equations iff (a1, . . . , amnq) ∈ Sr.

Consider the rings Kl := C[x1, . . . , xn−l] for different 0 ≤ l ≤ n. For an ideal
I ⊆ K0, by Il = I ∩Kl we denote the subset of those polynomials from I that do not
include xj with j > n− l.

Denote by πil a projection from Cn−i to Cn−l according to the rule

πil : (a1, . . . , an−i)→ (a1, . . . , an−l).

Of course, we assume that i ≤ l. The notation for π0
l can be shortened to πl.

Let V be a variety in Cn. Obviously, the set πl(V ) is contained in Vl = V(Il).

Lemma 5.1. Assume that V is an irreducible variety in Cn. For any proper
subvariety W0 ( V , there exists a proper subvariety W1 ( V1 such that

V1 \W1 ⊆ π1(V \W0).

Theorem 5.2. For an arbitrary variety V ⊆ Cn and any proper subvariety
W0 ( V , there exists a proper subvariety Wl ( Vl such that

Vl \Wl ⊆ πl(V \W0).
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Using the Hilbert theorem on bases, it is then not very difficult to find that

πl(V ) =
⋃

1≤i≤s

Ai \ Bi,

where Ai, Bi are subvarieties in Vl. Sets of such a form are called constructive sets.

For a set S ⊆ Cn, denote by S̄ the smallest variety containing S. Prove that
S̄ = V(I(S)).

Recall that Sl ⊆ Cm×n×q is the set of all 3-dimensional matrices of rank bounded
from above by l and consider the chain

S̄1 ( S̄2 ( . . . ( S̄r = S̄r+1.

Prove that S̄r coincides with the space of all tensors of size m× n× q.

Theorem 5.3. If W is a proper subvariety of an irreducible variety V , then the
set V \W is dense in V in the standard topology.

Corollary 5.4. Let r be minimal such that S̄r = S̄r+1. Then r = grank(m,n, q).

EXERCIZES

1. Prove that S1 ⊆ Cm×n×q is a variety.
2. Prove that S2 is not a variety, provided that m,n, q ≥ 2.
3. Prove that each variety S̄l is irreducible.
4. Prove that grank(2, 2, 2) = 2.
5. Prove that the maximal possible value of tensor rank for

3-dimensional matrices from C2×2×2 is equal to 3.

6. Dimension of varieties (Lecture 5). Since a variety is defined implic-
itly as solutions to a finite system of polynomial equations, it seems very perti-
nent to remember the classical implicit function theorem. Suppose that a mapping
f : (x1, . . . , xn)→ (y1, . . . , ym) is defined by polynomial equations

y1 = f1(x1, . . . , xn),
. . .

ym = fm(x1, . . . , xn).

A point a = (a1, . . . , an) is called regular if the rank of Jacoby matrix

Jf =
[
∂fi
∂xj

]
m×n

is constant in a domain around a. By a domain, in this text we assume an open
polydisc, i.e. a set of all points x = (x1, . . . , xn) of the form

D = {|x1 − a1| < ε1} × . . .× {|xn − an| < εn}

with some positive radii ε1, . . . , εn.
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If f(a) = 0 and the point a is regular with r = rank Jf (a) and the first r columns
are linearly independent, then the implicit function theorem states that there exists a
domain D around a in which the set V = {x : f(x) = 0} is a graph of some analytic
function

φ : (xr+1, . . . , xn)→ (x1, . . . , xr).

One may consider this function to be defined at each point of

D ∩ {x1 = a1, . . . , xr = ar}.

Lemma 6.1. Any point of a variety is a limit of its regular points with the same
value of rank.

In this approach, one should still remark that we deal, as a matter of fact, with
regular points for a system of polynomials that define a variety rather than variety
itself, and the regularity may (and does!) depend on the choice of this system. This
is by no means satisfactory. However, it can be proved that if a point is regular with
respect to one system of polynomials then it remains regular for any larger system
defining the same variety. We can consider the Jacoby matrix (with infinite number
of rows) for a set of all polynomials from the ideal I = I(V ). Then, a point of V is
called regular if the rank of this matrix is constant in a domain around this point.

The dimension of variety at a point is defined as n minus minimal value of rank
for all sequences of regular points converging to this point. The dimension of variety
is the maximal dimension of its points.

The key algebraic object for the study of dimension is a coordinate ring. It is
juxtaposed to any irreducible variety V . The coordinate ring R for V is defined as the
quotient ring R = C[X1, . . . , Xn]/I (also known by the names factor ring and residue-
class ring). Here we follow a custom of many texts on algebraic geometry where the
independent variables associated with the coordinates are denoted by capital letters.
The reason is that the lowercase letters xi may be reserved for the classes [Xi] = Xi+I
of polynomials equal modulo I. Another useful point of view is that the elements of R
are polynomial functions restricted to the points of V . Note that different polynomials
may be equal as functions considered only on V , the difference of such polynomials
evidently belongs to I.

As we know, the ideal I = I(V ) of an irreducible variety V is prime. Irreducibility
of V is important for the assertion that R is an integral domain, i.e. R is free from
divisors of zero. Consequently, R can be embedded into the field of rational functions
modulo I. Denote this field by R̃.

Theorem 6.2. If V is an irreducible variety with the coordinate ring R, then
there is a proper subvariety W ( V such that every point in V \W is regular with the
rank equal to the transcendence degree of the field R̃ over C.

To taste the flavor and style of characteristic proofs we present next a proof
of one of the previously formulated theorems. It is useful and instructive for the
reader to check each of the steps and be assured that each particular claim is entirely
understandable.

Proof of Theorem 5.3. From the contrary, if V \W is not dense in V , then
there is a domain D with the property D ∩W = D ∩ V . Let a ∈ D ∩W be a regular
point with the rank r. We do not lose generality assuming that D ∩W is a graph of
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an analytic function from X1, . . . , Xd, where d = n − r. The transcendence degree,
denote it by t, is then less than or equal to d. Otherwise, the points of V cannot lie on
a graph of a function of X1, . . . , Xd in a vicinity of a, because there should be infinitely
many points of V above the points (b1, . . . , bd) near (a1, . . . , ad). If t < d then there
could be only finitely many points of V above the most of points (b1, . . . , bt), which
is not our case.

Consequently, t = d and the elements

x1 = [X1], . . . , xd = [Xd]

are algebraically independent over C. Then, each element of the coordinate ring R
is algebraic over the field K := C(x1, . . . , xd). Consider a polynomial f that is equal
to zero on W . Since W 6= V , we can choose this polynomial to be nonzero at least
at one point of V . Thus, [f ] 6= 0. As any element of R, [f ] is algebraic over K and,
therefore, is a root of its minimal polynomial over K:

p0 + p1f + . . .+ psf
s ∈ I = I(V ),

where p0, . . . , ps are polynomials in X1, . . . , Xd and p0 6= 0 due to minimality. How-
ever, p0(b1, . . . , bd) = 0 for all points (b1, . . . , bd) in a domain around the point
(a1, . . . , ad). Hence, p0 must be zero polynomial and we conclude that f ∈ I(V ).
Thus, any f ∈ I(W ) belongs to I(V ). Consequently, W = V , that is, W cannot be a
proper subvariety of V 2

Theorem 6.3. Assume that varieties V and W are irreducible and V ∩D = W∩D
in a domain D. Then V = W .

Theorem 6.4. Let W be a proper subvariety of an irreducible variety V . Then
dimW < dimV .

Theorem 6.5. Suppose that varieties V and W have at least one common point.
Then

dim(V ∩W ) ≥ dimV + dimW − n.

EXERCIZES

1. For any varieties A and B, prove that A×B is a variety of
dimension dimA+ dimB.

2. Prove that any variety defined by a single equation f = 0 for
a nonzero polynomial f is irreducible iff the polynomial f is
irreducible. Prove that the dimension of this variety is equal
to n− 1.

3. Prove that S1 ⊆ Cm×n×q is a variety of dimension m+ n+ q − 2.
4. Prove that the set of n×n matrices with rank bounded by r is an

irreducible variety of dimension 2r(n− r).
5. Let V be an irreducible variety defined by an ideal

I = I(V ) ⊆ C[X1, . . . , Xn],

and assume that a ∈ Cn is a regular point of V with the rank r
and the columns d+ 1, . . . , n of the Jacoby matrix for I at a are
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linearly independent, where d = n− r. Prove that the elements

[X1] = X1 + I, . . . , [Xd] = Xd + I

of the coordinate ring C[X1, . . . , Xn]/I are algebraically
independent over C.

6. Prove that any variety of dimension n− 1 in Cn can be defined
by a single polynomial equation.

7. Prove that a variety consists of finitely many points iff its
dimension is equal to zero.

8. Using Theorem 6.5, prove that the answer to Question 3 from
the introduction is positive.
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