
Improving computations by using low complexity matrix algebras

FIRST LECTURE, Friday August 29, 2014 (Moscow, LMSU)

Bernoulli polynomials and numbers

Set B0(x) = 1, and let Bn(x) the degree n polynomial uniquely defined by the following two conditions

Bn(x + 1) − Bn(x) = nxn−1,

∫ 1

0

Bn(x) dx = 0

(the proof of the fact that Bn is uniquely defined is left to the reader, it could be a further exercise).
First observe that any Bn is monic, in fact, if Bn(x) = anxn + an−1x

n−1 + . . . then

Bn(x + 1) − Bn(x) = (an(x + 1)n + an−1(x + 1)n−1 + . . .) − (anxn + an−1x
n−1 + . . .)

= [an(xn + nxn−1 + . . .) + an−1(x
n−1 + (n − 1)xn−2 + . . .) + . . .] − (anxn + an−1x

n−1 + . . .)

= annxn−1 + (·)xn−2 + . . .

and thus the condition Bn(x + 1) − Bn(x) = nxn−1 implies ann = n, i.e. an = 1.
Let us compute B1(x) and B2(x).
B1(x) is of the form B1(x) = x + β, thus B1(x + 1) − B1(x) = (x + 1 + β) − (x + β) = 1, i.e. the first

condition is satisfied ∀β. Moreover,
∫ 1

0 (x + β) dx = [x2/2 + βx]10 = 1
2 + β must be zero, so B1(x) = x − 1

2 .
B2(x) is of the form B2(x) = x2+αx+β, thus B2(x+1)−B2(x) = ((x+1)2+α(x+1)+β)−(x2+αx+β) =

2x+1+α, and the first condition is satisfied if α = −1. Moreover,
∫ 1

0
(x2−x+β) dx = [x3/3−x2/2+βx]10 =

1/3 − 1/2 + β must be zero, so B2(x) = x2 − x + 1/6.

The numbers {B2j(0)}+∞
j=0 are known as Bernoulli numbers. We can say that B0(0) = 1, B2(0) = 1/6.

Euler guessed the following “explicit” formula for the generic Bernoulli number:

B2j(0) = (−1)j+1 2(2j)!

(2π)2j
ζ(2j), ζ(s) =

+∞
∑

k=1

1

ks
.

The value in 0 of degree odd Bernoulli polynomials is less interesting. In fact, B1(0) = − 1
2 , and B2j+1(0) = 0,

j = 1, 2, . . . (see below).

Recall that
∑n

x=1 xj is n for j = 0, is n(n + 1)/2 if j = 1, is (n(n + 1)/2)2 if j = 3, and for j = 2 and j
generic? Note that

n
∑

x=1

xj =
n

∑

x=1

1

j + 1
(Bj+1(x + 1) − Bj+1(x)) =

1

j + 1
[Bj+1(n + 1) − Bj+1(1)].

It follows that ϕj(n) :=
∑n

x=1 xj can be explicitely written in terms of the values of Bj+1 in n + 1 and 1.
For example, in order to write

∑n
x=1 x2 it is sufficient to know the values of the third Bernoulli polynomial

B3 in n + 1 and 1.
Let us deduce B3 by a way different from that used to deduce B1 and B2.

Exercise (IMP). Prove that

Bn(1 − x) = (−1)nBn(x), B′
n+1(x) = (n + 1)Bn(x).

(hint: note that also the polynomials (−1)nBn(1 − x) and 1
n+1B′

n+1(x) satisfy the conditions that uniquely
define Bn(x)).



The first of the equalities in the exercise implies that the Bernoulli polynomials are, with respect to
x = 1

2 , symmetric if n is even and antisymmetric if n is odd. In particular, we have Bn(1) = (−1)nBn(0),
n = 0, 1, 2, . . .. But we also know that Bn(1) = Bn(0), n = 0, 2, 3, 4, . . . (by the first condition defining
Bernoulli polynomials). Thus,

Bn(1) = Bn(0) = 0, n odd , n 6= 1.

The same equality in the Exercise (IMP) also implies Bn(1
2 ) = (−1)nBn(1

2 ), from which we deduce that

Bn(
1

2
) = 0, n odd.

It follows that

B1(x) = x − 1

2
, B3(x) = x(x − 1

2
)(x − 1), B2j+1(x) = x(x − 1

2
)(x − 1)q2j−2(x), j = 2, 3, . . . ,

where q2j−2 is monic of degree 2j − 2. Now that we know B3 we can say that

n
∑

x=1

x2 =
1

3
[B3(n + 1) − B3(1)] =

1

3
(n + 1)(n + 1 − 1

2
)(n + 1 − 1) =

1

6
n(n + 1)(2n + 1)

Exercise. Prove that B2j+1(x) (j ≥ 1) is zero in [0, 1] if and only if x = 0, 1
2 , 1.

The second equality in Exercise (IMP) let us observe that the zeros of Bn are all the stationary points
for Bn+1, and viceversa. So, for example, in [0, 1] the only stationary points of the even degree Bernoulli
polynomials Bn are x = 0, 1

2 , 1 (for n = 2 only x = 1
2 ). Moreover, the second equality yields the following

integral formula for Bn(x)

Bn(x) = Bn(0) + n

∫ x

0

Bn−1(t) dt.

Finally, note that, by the Euler formula, the Bernoulli numbers B2j(0) are rational numbers, and
|B2j(0)| → +∞ if j → +∞.

Exercise. Prove that in [0, 1] if j → +∞, then B2j(x)/B2j(0) → cos(2πx).

Exercise. Prove that for x ∈ [0, 1] one has |B2j(x)| ≤ |B2j(0)|, ∀ j. (It would be sufficient to prove that
|B2j(

1
2 )| ≤ |B2j(0)|, why?)

Bernoulli numbers are involved in the well known Euler-Mclaurin summation formula:

m, n ∈ Z, m < n,

n
∑

r=m

f(r) =
1

2
(f(m) + f(n)) +

∫ n

m

f(x) dx +

k
∑

j=1

B2j(0)

(2j)!
[f (2j−1)(n) − f (2j−1)(m)] + uk+1,

uk+1 =
1

(2k + 1)!

∫ n

m

f (2k+1)(x)B2k+1(x) dx

where Bn(x) is the periodic extension on R of Bn(x)|[0,1).

Proof. The starting point is to integrate by parts
∫ k+1

k f ′(x)B1(x) dx. The main steps of the proof are in the
Appendix to the first lecture. �

The euler-Mclaurin formula can be used to compute approximations of ζ(s), s > 1, for example of the yet
mysterious number ζ(3) =

∑+∞
k=1 1/k3 (set f(r) = 1/r3 and let n go to infinite), or it can be used to obtain a

formula for the error of the trapezoidal rule in approximating
∫ b

a g(x) dx (set f(t) = g(a + th), h = (b− a)/n,



m = 0; recall that the trapezoidal rule is Ih = h[ g(a)
2 + g(b)

2 +
∑n−1

i=1 g(a + ih)]). For some more details, see
the Appendix to the first lecture.

Bernoulli numbers solve a lower triangular semi-infinite linear system

Now let us show that Bernoulli numbers solve a semi-infinite lower triangular linear system. It is known that

text

et − 1
=

+∞
∑

n=0

Bn(x)

n!
tn,

t

et − 1
=

+∞
∑

n=0

Bn(0)

n!
tn = −1

2
t +

+∞
∑

k=0

B2k(0)

(2k)!
t2k.

Multiply the latter identity by et − 1, expand et in terms of powers of t, and set to zero the coefficients of tj

of the right hand side, j = 2, 3, 4, . . .:

t =
(

− 1

2
t +

+∞
∑

k=0

B2k(0)

(2k)!
t2k

)(

+∞
∑

r=0

tr+1

(r + 1)!

)

,

t = −1

2

+∞
∑

j=2

tj

(j − 1)!
+

+∞
∑

k,r=0

B2k(0)t2k+r+1

(2k)!(r + 1)!
,

t = −1

2

+∞
∑

j=2

tj

(j − 1)!
+

+∞
∑

j=1

[(j−1)/2]
∑

k=0

B2k(0)tj

(2k)!(j − 2k)!
,

−1

2

1

(j − 1)!
+

[(j−1)/2]
∑

k=0

B2k(0)

(2k)!(j − 2k)!
= 0, j = 2, 3, 4, 5, . . . .

Thus

−1

2
j +

[ j−1
2 ]

∑

k=0

( j

2k

)

B2k(0) = 0, j = 2, 3, 4, 5, . . . .

In particular, for j = 2, 4, 6, 8, . . ., we obtain the equations:

Wb =





















(

2

0

)

(

4

0

) (

4

2

)

(

6

0

) (

6

2

) (

6

4

)

(

8

0

) (

8

2

) (

8

4

) (

8

6

)

· · · · ·

































B0(0)
B2(0)
B4(0)
B6(0)

·
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1
2
3
4
·













,

i.e. the lower triangular linear system we were looking for.
So, we can for instance easily compute the first Bernoulli numbers:

1,
1

6
, − 1

30
,

1

42
, − 1

30
,

5

66
, − 691

2730
,

7

6
, B16(0) = −3617

510
.

In the next lecture it will be shown that the coefficient matrix W of the above linear system turns out
to have an analytic representation. In order to prove this fact, it is enough to observe that W is a suitable



submatrix of the Tartaglia-Pascal matrix which can be represented as a power series: X =
∑+∞

k=0
1
k! Y k,

where

Y = Z · diag
(

i : i = 1, 2, 3, . . .
)

, Z =









0
1 0

1 ·
·









.

The analytic representation of W will let us introduce a lower triangular Toeplitz linear system solved by
Bernoulli numbers.

A FINAL REMARK on the first lecture.
In [Ramanujan, 1919] Ramanujan writes explicitly 11 sparse equations solved by the absolute values of

the 11 Bernoulli numbers B2(0), B4(0), . . ., B22(0). They are the first of an infinite set of sparse equations
solved by the absolute values of all the Bernoulli numbers. The Ramanujan equations, written together and
directly in terms of the B2i := B2i(0), i = 1, 2, . . . , 11, form the linear system displayed here below:









































1
0 1
0 0 1
1
3 0 0 1
0 5

2 0 0 1
0 0 11 0 0 1
1
5 0 0 143

4 0 0 1
0 4 0 0 286

3 0 0 1
0 0 204

5 0 0 221 0 0 1
1
7 0 0 1938

7 0 0 3230
7 0 0 1

0 11
2 0 0 7106

5 0 0 3553
4 0 0 1

· · · · · · · · · · · ·
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B18

B20

B22

·
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1
6

− 1
30
1
42
1
45

− 1
132
4

455
1

120
− 1

306
3

665
1

231
− 1

552
·









































.

For example, by using the last but three of Ramanujan equations, from the Bernoulli numbers B2(0), . . . , B16(0)
listed previously, the following further Bernoulli numbers can be easily obtained:

B18(0) =
43867

798
, B20(0) = −174611

330
, B22(0) =

854513

138
.

Exercise. Let R be the coefficient matrix of the above Ramanujan linear system. Prove that there exists a
diagonal matrix D such that RD = DR̃ where R̃ is lower triangular Toeplitz and sparse (for a more precise
statement of this exercise see the Appendix to the first lecture).

APPENDIX TO THE FIRST LECTURE

On the Euler-Mclaurin formula:

Proof. First observe that

∫ k+1

k

f ′(x)B1(x) dx =
1

2
(f(k) + f(k + 1)) −

∫ k+1

k

f(x) dx.

Then sum on k from m to n − 1, call u1 the integral
∫ n

m f ′(x)B1(x) dx, and set

uj =
1

(2j − 1)!

∫ n

m

f (2j−1)(x)B2j−1(x) dx.

Find a formula for uj in terms of uj+1 and apply it for j = 1, 2, . . . , k. . . .



Remark. If f (2k+2) does not change sign in [m, n], then

|uk+1| ≤ 2
|B2k+2(0)|
(2k + 2)!

|f (2k+1)(n) − f (2k+1)(m)|.

This result allows to bound the error in the approximations of ζ(s) calculated via the Euler-Mclaurin formula.

Remark. Set I =
∫ b

a
g(x) dx, h = b−a

n , Ih = h[ g(a)
2 +

∑n−1
i=1 g(a + ih) + g(b)

2 ]. An expression of R in the
equality I = Ih + R can be found by using Euler-Mclaurin formula for m = 0 and f(t) = g(a + th). Note
that R = c1h

2 + c2h
4 + c3h

6 + . . . and this justifies the efficiency of the number

Ĩh =
22Ih − I2h

22 − 1

as an approximation of I (I − Ĩh = O(h4)).

• ζ(3) =
∑+∞

r=1
1
r3 is an irrational number (proved in 1973). It is not known if it is algebraic or trascenden-

tal. Show that the Euler-Mclaurin formula can be used to obtain approximations of ζ(3) as good as possible
(hint: choose m > 1 and let n go to infinite).

• The Eulero-Mascaroni constant is

γ = lim
n→+∞

(

n
∑

k=1

1

k
− loge n).

Find approximations as good as possible of γ by using the Euler-Mclaurin formula.

• Find a diagonal matrix D and a lower triangular Toeplitz matrix R̃ of the following type

R̃ =

+∞
∑

k=0

(·)kZ3k, Z =









0
1 0

1 0
· ·









,

such that RD = DR̃, where R is the matrix whose 11× 11 upper-left part has been shown at the end of the
first lecture (find (·)k explicitely for all k).

SECOND LECTURE, Monday September 1, 2014 (Moscow, INM RAS)

Normalized Bernoulli numbers solve a lower triangular semi-infinite Toeplitz linear system

Note that

Za2,a3,a4,... =













0
a2 0

a3 0
a4 ·

· ·













,

Z2
a2,a3,a4,... =

















0
0 0

a2a3 0 0
a3a4 0 ·

a4a5 · ·
· ·

















,



Z3
a2,a3,a4,... =





















0
0 0
0 0 0

a2a3a4 0 0 ·
a3a4a5 0 · ·

a4a5a6 · ·
· ·





















,

Zk
a2,a3,a4,... =





















0
· 0
0 · 0

a2a3 · a1+k 0 · ·
a3a4 · a2+k 0 · ·

a4a5 · a3+k · ·
· ·





















.

Thus

[Zk
a2,a3,a4,...]ij =

{

aj+1aj+2 · aj+k if i = k + j per j = 1, 2, 3, . . .
0 otherwise

Set
φ = Z2,12,30,56,... = Z · diag

(

(2i − 1)2i : i = 1, 2, 3, . . .
)

or, equivalently, φ = Za2,a3,a4,... where ar = (2r − 3)(2r − 2). Then

[φk]ij = (2j − 1)(2j)(2j + 1)(2j + 2) · · · (2j + 2k − 3)(2j + 2k − 2) =
(2j + 2k − 2)!

(2j − 2)!
.

Now observe that

W = (∗), (∗) = diag (2, 12, 30, 56, . . .) ·
+∞
∑

k=0

1

(2k + 2)!
φk

[in fact,

[(∗)]ij =
(2i)!

(2i − 2)!

(

+∞
∑

k=0

1

(2k + 2)!
φk

)

ij
=

(2i)!

(2i − 2)!

1

(2i − 2j + 2)!
[φi−j ]ij =

(2i)!

(2i − 2)!

1

(2i − 2j + 2)!

(2i − 2)!

(2j − 2)!
=

(

2i

2j − 2

)

.

]. Thus the lower triangular system solved by Bernoulli numbers can be rewritten as follows:

+∞
∑

k=0

2

(2k + 2)!
φkb = qe, b =













B0(0)
B2(0)
B4(0)
B6(0)

·













, qe =













1
1/3
1/5
1/7
·













. (∗∗)

Set D = diag (d1, d2, d3, . . .), di 6= 0. By investigating the nonzero entries of the matrix DφD−1, it is easy
to observe that it can be forced to be equal to a matrix of the form xZ; just choose dk = xk−1d1/(2k − 2)!,
k = 1, 2, 3, . . . (d1 can be chosen equal to 1). So, if

D = diag
(

1,
x

2!
,

x2

4!
, · ,

xn−1

(2n − 2)!
, ·

)

,

then we have the equality DφD−1 = xZ.



Now, since DφkD−1 = (DφD−1)k = xkZk, it is easy to show the equivalence of (**) with the following
lower traingular Toeplitz linear system:

[

+∞
∑

k=0

2xk

(2k + 2)!
Zk]Db = Dqe,

Exercise. By investigating the powers of the matrix Z, verify that the matrix [·] is lower triangular Toeplitz.

The set of all ε-circulant matrices and, in particular, the set of all lower triangular Toeplitz

matrices, form a low complexity matrix algebra

Consider the following two n × n matrices:

Πε =













0 1 0 · 0
· 0 1 · ·
· · · · 0
0 · · 0 1
ε 0 · · 0













, ε ∈ C, J =









1
·

1
1









.

We want to study the algebra generated by Πε, i.e. Cε = {p(Πε) : p = polynomials}. By writing the powers
I, Πε, Π

2
ε, . . . , Π

n−1
ε , one easily realizes that

Cε(z) =
n

∑

k=1

akΠk−1
ε =













a1 a2 a3 · an

εan a1 a2 · ·
· εan a1 · a3

εa3 · · · a2

εa2 εa3 · εan a1













(note that Πn
ε = εI).

ASSUME ε 6= 0 (the matrix algebra of all n × n ε-circulant matrices)

Eigenvalues of Πε:

det(λI − Πε) = det













λ −1
0 λ −1
· · · ·
0 · −1
−ε 0 · 0 λ













= λλn−1 + (−1)n+1(−ε)(−1)n−1 = λn − ε

(the determinant has been computed with respect to the first column). Thus, the eigenvalues of Πε are the
roots of the algebraic equation λn − ε = 0.

Eigenvectors of Πε:
If λ is such that λn = ε, then









0 1
· 0 ·
0 · 1
ε 0 · 0

















1
λ
·

λn−1









=









λ
·

λn−1

ε









= λ









1
λ
·

λn−1









.

Let λ0, λ1, . . . , λn−1 denote the eigenvalues of Πε (note that they are distinct!). Then

ΠεX =









0 1
· 0 ·
0 · 1
ε 0 · 0

















1 · · 1
λ0 · · λn−1

· · · ·
λn−1

0 · · λn−1
n−1









=









1 · · 1
λ0 · · λn−1

· · · ·
λn−1

0 · · λn−1
n−1

















λ0

λ1

·
λn−1









= XΛ.



Note that the matrix X is invertible since its columns are eigenvectors of Πε corresponding to distinct
eigenvalues of Πε (or since it is a vandermonde matrix). Thus, from the above equality, we obtain the
following spectral representations, of Πε:

Πε = XΛX−1

and of Cε(a), a ∈ Cn:

Cε(a) =
n

∑

k=1

akΠk−1
ε = X

(

n
∑

k=1

akΛk−1
)

X−1 = X diag (
n

∑

k=1

akλk−1
i , i = 0, 1, . . . , n − 1)X−1 = Xd(XTa)X−1.

Remark. One can easily verify that effectively the first row of Xd(XTa)X−1 is aT : eT
1 (Xd(XTa)X−1) =

(aT X)d(XTe1)X
−1 = aT .

Remark. Set ε = ρεe
iθε , θε ∈ [0, 2π) (ρε > 0). Then note that [X ]r,k = λr

k = (·)rωrk
n , 0 ≤ r, k ≤ n − 1, that

is,

X =









1
(·)

·
(·)n−1

















1 1 · 1
1 ωn · ωn−1

n

· · · ·
1 ωn−1

n · ω
(n−1)(n−1)
n









where ωn = ei 2π
n (ωn

n = 1, ωi
n 6= 1 if 0 < i < n) and (·) = |ρ

1
n
ε |ei

θε
n , so that λk = (·)ωk

n, k = 0, 1, . . . , n − 1.
Now let F be the n × n Fourier matrix F = 1√

n
(ωij

n )n−1
i,j=0. Note that F is unitary, FHF = I (this is an

exercise!) and that
X =

√
nDF, Dii = (·)i−1, i = 1, . . . , n.

Thus

XXH = nDFFHDH = n









1
|(·)|2

·
|(·)|2(n−1)









i.e. the rows of X are orthogonal. If |ε| = 1, then |(·)| = 1 and XXH = nI, i.e. also the columns of X are
orthogonal and the matrix 1√

n
X = DF , Dkk = eiθε(k−1)/n, k = 1, . . . , n, is unitary (because D is unitary).

In other words, we have shown that if |ε| = 1 then the ε-circulant matrices are simultaneously diagonalized
by a unitary transform, i.e. by U = 1√

n
X = DF . Actually, the condition |ε| = 1 is also necessary for Cε

being diagonalized by a unitary transform. To prove this simply observe that Πε is a normal matrix if and
only if |ε| = 1 (prove this!). Recall that A ∈ Cn×n is normal (AAH = AHA) if and only if there exists U
unitary such that UHAU is diagonal.

In conclusion,
ε ∈ C ⇒ Cε(a) = DFd(

√
nFDa)FHD−1,

|ε| = 1 ⇒ Cε(a) = DFd(
√

nFDa)FHD = Ud(
√

nUTa)UH , U = DF unitary.

From the above spectral representations of the matrices from Cε it follows that Cε is a space of low complexity,
in the sense that

1) any matrix-vector product Cε(a)v,
2) the solution of any linear system Cε(a)x = b and
3) the computation of the eigenvalues of any Cε(a)

are all operations that can be done with O(n log2 n) arithmetic operations. This is true for any value of
ε 6= 0. (Check these assertions!)



Remark. Note however that the problem of the eigenvalues of matrices from Cε is optimally conditioned
if and only if |ε| = 1. This assertion is a consequence of the Bauer-Fike theorem which states that for any
eigenvalue λ̃ of Cε(a) + ∆, there is an eigenvalue λ of Cε(a) such that

|λ̃ − λ| ≤ µ‖∆‖2, µ = inf
M :M−1Cε(a)M=diag

µ2(M),

and of the fact that µ is equal to 1 if and only if |ε| = 1 (see the Exercise here below).

Exercise. Let M be a n×n matrix. Prove that µ2(M) = ‖M‖2‖M−1‖2 = 1 if and only if M = cU for some
matrix U unitary and c ∈ C.

THIRD LECTURE, Tuesday September 2, 2014 (Moscow, INM RAS)

Exercise. Find a value of x for which the entry (Db)n of the solution of the linear system [
∑+∞

k=0 2xk/(2k +
2)!Zk]Db = Dqe for n → +∞ remains bounded.

From yesterday, we have

Cε(a) =

n
∑

k=1

akΠk−1
ε = DFd(

√
nFDa)FHD−1 = DFd(

√
nFDa)(DF )H

where the last identity holds if and only if |ε| = 1 (Dkk = (·)k−1, k = 1, . . . , n, (·) = |ρ
1
n
ε |ei

θε
n , Fij = 1√

n
ωij

n ,

0 ≤ i, j ≤ n − 1, ωn = ei 2π
n , ε = ρεe

iθε).

For ε = 1: D = I ⇒ C1(a) = Fd(
√

nFa)FH .
For ε = −1: C−1(a) = DFd(

√
nFDa)(DF )H , D = diag ((ei π

n )k−1, k = 1, . . . , n).

1) Cε(a)v: two or three FFT, thus O(n log2 n) arithmetic operations
2) Cε(a)z = f : z = DFd(

√
nFDa)−1FHD−1f , as above

3) eigenvalues of Cε(a): one FFT, as above

ASSUME ε = 0 (the matrix algebra of all n × n upper triangular matrices)

Now we will prove that the operations in 1), 2), 3) can be done with O(n log2 n) arithmetic operations
also in the case ε = 0. Note that no representation of C0(a) of the type Md(v)M−1 can hold since, for
example, Π0 is not diagonalizable.

Set

L(a) = C0(a)T =









a0

a1 a0

· a1 a0

an−1 · a1 a0









3) The eigenvalues of L(a): 0 computations
1) L(a)v: O(n log2 n) arithmetic operations (see the exercise here below)

Exercise. Prove that any Toeplitz matrix T = (ti−j)
n
i,j=1 can be written as C1(u) + C−1(w), for suitable

u,w ∈ Cn.

2) L(a)z = f : L(a) is not diagonalizable since even L(e2) is not diagonalizable! However, the cost of
solving a lower triangular Toeplitz system is O(n log2 n) arithmetic operations. In the following of the present
lecture we shall prove this fact.

L(a)z = f , N, a ∈ CN, a =





a0

a1

·



 semi-infinite vector.



L(a) =
∑+∞

k=0 akZk, Z =









0
1 0

1 0
· ·









The space {L(a) : a ∈ Cn} is closed under matrix multiplication and commutative. Moreover, it is closed
under inversion since {L(a) : a ∈ C

n} = {A : AZ = ZA} (so AZ = ZA ⇒ A−1Z = ZA−1).

LEMMA 1. a,b ∈ CN: L(a)b = c ⇔ L(a)L(b) = L(c)

Proof. ⇐: check the first column. ⇒: note that L(a)L(b) is a lower triangular Toeplitz matrix and that
its first column is L(a)b. �

LEMMA 2. Set E =













1 0
0 0
0 1 0
0 0 0
· · ·













, Ev = [v0 0 v1 0 v2 0 · · · ]T . Then EsL(u)v = L(Esu)Esv, s ∈ N.

Proof. For s = 0 trivial. If we prove the thesis for s = 1, EL(u)v = L(Eu)Ev, then, by multiplying on
the left by E we obtain the thesis for all other s. But the fact that EL(u)v = L(Eu)Ev follows from an
easy check:

EL(u)v = E









u0

u1 u0

u2 u1 u0

· · · ·

















v0

v1

v2

·









=





















u0v0

0
u1v0 + u0v1

0
u2v0 + u1v1 + u0v2

0
·





















,

L(Eu)Ev =

















u0

0 u0

u1 0 u0

0 u1 0 u0

u2 0 u1 0 u0

· · · · · ·

































v0

0
v1

0
v2

·

















=





















u0v0

0
u1v0 + u0v1

0
u2v0 + u1v1 + u0v2

0
·





















.

�

L(a)z = f , a ∈ C
N, f ∈ C

N

STEP 1. Find â ∈ CN such that L(a)â = Ea(1) for some a(1) ∈ CN. Then, by Lemma 1 and commutativity,

L(â)L(a) = L(a)L(â) = L(Ea(1)).

Multiply the system on the left by L(â):

L(â)L(a)z = L(â)f , L(Ea(1))z = L(â)f . (∗)
Note that

L(Ea(1)) =



















a
(1)
0

0 a
(1)
0

a
(1)
1 0 ·
0 a

(1)
1 ·

a
(1)
2 0 ·
· · ·



















.



STEP 2. Find â(1) ∈ CN such that L(a(1))â(1) = Ea(2) for some a(2) ∈ CN. Then, by Lemma 2
L(Ea(1))Eâ(1) = EL(a(1))â(1) = E2a(2), and, by Lemma 1 and commutativity,

L(Eâ(1))L(Ea(1)) = L(Ea(1))L(Eâ(1)) = L(E2a(2)).

Multiply the system (*) on the left by L(Eâ(1)):

L(Eâ(1))L(Ea(1))z = L(Eâ(1))L(â)f , L(E2a(2))z = L(Eâ(1))L(â)f . (∗∗)

Note that

L(E2a(2)) =























a
(2)
0

0 a
(2)
0

0 0 ·
0 0 ·

a
(2)
1 0 ·
0 a

(2)
1 ·

· · ·























.

STEP 3. Find â(2) ∈ CN such that L(a(2))â(2) = Ea(3) for some a(3) ∈ CN. Then, by Lemma 2
L(E2a(2))E2â(2) = E2L(a(2))â(2) = E3a(3), and, by Lemma 1 and commutativity,

L(E2â(2))L(E2a(2)) = L(E2a(2))L(E2â(2)) = L(E3a(3)).

Multiply the system (**) on the left by L(E2â(2)):

L(E2â(2))L(E2a(2))z = L(E2â(2))L(Eâ(1))L(â)f , L(E3a(3))z = L(E2â(2))L(Eâ(1))L(â)f .

Note that

L(E3a(3)) =







































a
(3)
0

0 a
(3)
0

0 0 ·
0 0 ·
0 0 ·
0 0 ·
0 0 ·
0 0 ·

a
(3)
1 0 ·
0 a

(3)
1 ·

· · ·







































.

Assume now that the lower triangular Toeplitz system we have to solve is made up with 8 equations. Then
we stop the process here, and we note that, by commutativity,

L(E3a(3))z = L(â)L(Eâ(1))L(E2â(2))f .

Assume moreover that f = E2v for some vector v ∈ CN (important: note that this assumption is satisfied
by f = e1). Then, by Lemma 2,

L(E3a(3))z = L(â)L(Eâ(1))L(E2â(2))E2v = L(â)L(Eâ(1))E2L(â(2))v = L(â)EL(â(1))EL(â(2))v,

and this equality between semi-infinite vectors imply the following equality between 8-dimensional vectors:

a
(3)
0 {z}8 = {L(â)}8,8{E}8,8{L(â(1))}8,8{E}8,8{L(â(2))}8,8{v}8 = {L(â)}8,8{E}8,4{L(â(1))}4,4{E}4,2{L(â(2))}2,2{v}2



[The last four columns of E8,8 are null; the last two columns of E4,4 are null].
The latter result let us state that the first column of the inverse of a 8×8 lower triangular Toeplitz matrix

can be computed by performing two matrix-vector products where the matrices are lower triangular Toeplitz
4 × 4 and 8 × 8, respectively (set v = e1). In the general case in which n = 2s the lower triangular Toeplitz
matrices that have to be multiplied by vectors are respectively of order 4× 4, 8× 8, . . ., 2s × 2s. So, we have
the following

Result: If O(j2j) is the cost of computing the product of a 2j × 2j lower triangular Toeplitz matrix by
a vector, then the cost of the computation of the first column of the inverse of a 2s × 2s lower triangular
Toeplitz matrix by the above described algorithm is:

∑s
j=2 O(j2j) = O(s2s) = O(n log2 n).

Finally, once {z̃}2s = {L(a)}−1
2s,2s{e1}2s is known, in order to solve the system {L(a)}2s,2s{z}2s = {f}2s ,

note that
{z}2s = {L(a)}−1

2s,2s{f}2s = {L(z̃)}2s,2s{f}2s ,

and that {L(z̃)}2s,2s{f}2s can be computed with O(s2s) = O(n log2 n) arithmetic operations (via the repre-
sentation of {L(z̃)}2s,2s as the sum of a circulant and of a (−1)-circulant matrix).

Important remark (for the proof of the above result). How to find â such that L(a)â = Ea(1) for some
a(1) ∈ CN? No computation is required to obtain such a vector â, in fact













1
a1 1
a2 a1 1
a3 a2 a1 1
· · · · ·

























1
−a1

a2

−a3

·













=

















1
0

2a2 − a2
1

0
6= 0
·

















(RES)

FINAL REMARK.

Find â such that L(a)â = Ea(1) is equivalent to find â such that L(â)L(a) = L(Ea(1)) (by Lemma 1 and
by commutativity), i.e. to find âk such that

(

+∞
∑

k=0

âkZk)(

+∞
∑

k=0

akZk) = (

+∞
∑

k=0

a
(1)
k Z2k).

More in general, how to find âk such that

(

+∞
∑

k=0

âkZk)(

+∞
∑

k=0

akZk) = (

+∞
∑

k=0

a
(1)
k Zrk),

or, equivalently, given a polynomial a(z) how to find a polynomial â(z) such that â(z)a(z) = a(1)(zr) for
some polynomial a(1) ? An answer is in the following

Exercise. Prove that â(z) = a(zt)a(zt2) · · · a(ztr−1) where tr = 1, tj 6= 1, 0 < j < r, is such that
â(z)a(z) = a(1)(zr).

For example, for r = 2 we have â(z) = a(−z), and we retrieve the result observed in (RES).

Exercise (not for evaluation). If Ev = [v0 0 0 v1 0 0 v2 0 · · · ]T , then analogous Lemmas 1 and 2 hold, and
analogous algorithm ok for n = 3s of complexity O(s3s) can be conceived . . .

FOURTH LECTURE, Monday September 8, 2014 (Rome)

Hessenberg algebras and displacement matrix formulas



Exercise 1. Prove the following assertion:
If B is n × n real symmetric positive definite, and y, s ∈ R

n are such that yT s > 0, then

A = B +
1

yT s
yyT − 1

sT Bs
BssT B

is real symmetric positive definite.

Exercise 2. Prove that eigenvectors x and y corresponding to distinct eigenvalues λ and µ of a hermitian
(or unitary) matrix A (Ax = λx, Ay = µy) are such that xHy = 0.

Exercise 3. Find values of α and β such that
∑n

i=1 sin2 ijπ
n+1 = αn + β (for all j = 1, 2, . . . , n).

Hessenberg algebras.

X =













r11 b1

r21 r22 b2

· · · ·
· · bn−1

rn1 · · rnn













, bi 6= 0, ∀ i. (Hess)

Note that the following matrices

J1 = X0 = I, J2 =
1

b1
(X − r11I), J3 =

1

b2
(J2X − r21I − r22J2), . . . ,

Jn =
1

bn−1
(Jn−1X − rn−1,1I − rn−1,2J2 . . . − rn−1,n−1Jn−1)

are polynomials in X (of degree 0, 1, . . ., n− 1) and have as first row, respectively, eT
1 , eT

2 , eT
3 , . . ., eT

n . Then
consider the set HX of all polymomials in X . Note that its dimension is less than or equal to n, since by
Cayley-Hamilton theorem Xn must be a linear combination of the previous powers of X . But there are n
matrices in HX which are linearly independent, the Jk. So, the dimension of HX is n,

HX = {p(X) : p = polynomials} = Span {J1, J2, . . . , Jn} = {A ∈ C
n×n : AX = XA},

and any matrix of HX is uniquely determined by its first row, i.e., given any vector a in Cn it is well defined
the matrix of HX with first row aT :

HX(a) =

n
∑

k=1

akJk, eT
1 HX(a) = aT .

Of course, the space HX is closed under matrix multiplication (HX is a matrix algebra), and is commutative.
In particular, we have that JkJs = JsJk (for all k, s), and thus

eT
i HX(a) = eT

i

n
∑

k=1

akJk =
n

∑

k=1

ake
T
k Ji = aT Ji, ∀ i

and, multiplying the previous identity by the scalar vi and summing on i = 1, . . . , n, we obtain the equality

vT HX(a) = aT HX(v), a,v ∈ C
n.

Note that if a matrix HX(a) in HX is invertible, then its inverse must be a polynomial in X , i.e. it must exist
a vector z ∈ Cn such that HX(a)−1 = HX(z) (see below). From the equality HX(z)HX(a) = I it follows
that z can be determined by solving the linear system zT HX(a) = eT

1 .



The space of ε-circulant matrices (for any value of ε) is of course an example of Hessenberg algebra. We
will study also another important example of Hessenberg algebra, the τ matrix algebra.

Now we want to state an example of general displacement formula, which involves Hessenberg algebras,
i.e. given any matrix A we represent it as a sum of products of types MiNi where Mi and Ni are matrices
of two general Hessenberg algebras HX and HX′ . The number of addenda in such sum is α + 1 where α is
the rank of AX − XA. Such formula for A can be extremely useful if α does not depend on the order n of
the matrix A.

Lemma. Let A be n × n with complex entries. If AX − XA =
∑α

m=1 xmyT
m (xm,ym ∈ C

n), then
∑α

m=1 xT
mp(X)Tym = 0, for any polynomial p.

Proof.

α
∑

m=1

xT
mp(XT )ym =

α
∑

m=1

n
∑

i,j=1

(xm)i(p(XT ))ij(ym)j =
n

∑

i,j=1

(

α
∑

m=1

(xm)i(ym)j

)

(p(XT ))ij

=
n

∑

i,j=1

(AX − XA)ij(p(XT ))ij =
n

∑

i,j=1

∑

k

AikXkj(p(XT ))ij −
n

∑

i,j=1

∑

k

XikAkj(p(XT ))ij

=

n
∑

i,k=1

Aik

∑

j

(p(XT ))ij(X
T )jk−

n
∑

k,j=1

Akj

∑

i

(XT )ki(p(XT ))ij =

n
∑

i,k=1

Aik(p(XT )XT )ik−
n

∑

k,j=1

Akj(X
T p(XT ))kj = 0.

�

The displacement formula obtained in the following theorem involves persymmetric Hessenberg algebras.
Such formula and the fact that rank(AX − XA) = 2 for A Toeplitz and for X = Πε will be used to obtain
an efficient representation of the inverse of a Toeplitz matrix, due to Ammar and Gader.

Theorem. Let the lower Hessenberg matrix X be persymmetric, i.e. symmetric with respect to the anti-
diagonal (XT = JXJ), and define X ′ ∈ Cn×n and β ∈ C by the following identity

X = X ′ + (rn1 − β)eneT
1 .

Let A be n × n with complex entries. If AX − XA =
∑α

m=1 xmyT
m (xm,ym ∈ Cn), then

(rn1 − β)A = −
α

∑

m=1

HX(x̂m)HX′(ym) + (rn1 − β)HX(JAen)

(for v ∈ Cn the symbol v̂ means Jv).

Exercise (not for evaluation). Prove that if instead X has a Toeplitz structure, then, under the same
assumption AX − XA =

∑α
m=1 xmyT

m, we have bA = −∑α
m=1 L(Zxm)HX(ym) + bHX(AT e1) where b = bi

and L(z) = C0(z)
T (for X = ZT such result yields the famous Gohberg-Semencul formula).

Proof. Set (∗) = −∑α
m=1 HX(x̂m)HX′(ym). Then

(∗)X−X(∗) = −
α

∑

m=1

HX(x̂m)
[

HX′(ym)X−XHX′(ym)
]

= −(rn1−β)

α
∑

m=1

HX(x̂m)
[

HX′(ym)eneT
1 −eneT

1 HX′(ym)
]

= −(rn1 − β)

α
∑

m=1

HX(x̂m)[ŷmeT
1 − enyT

m] = (rn1 − β)

α
∑

m=1

xmyT
m = (rn1 − β)(AX − XA).



Thus, (rn1 − β)A − (∗) must commute with X , i.e. must be a polynomial in X :

(rn1 − β)A − (∗) = HX(z), z ∈ C
n.

By imposing that the last column of the left matrix and the last column of the right matrix, in the previous
equality, are equal, one obtains that the vector z is defined by the identity Jz = (rn1 − β)Aen.

Note that in the proof we have used twice the fact that
∑α

m=1 HX(x̂m)ŷm is the null vector, in fact

eT
i (

α
∑

m=1

HX(x̂m)ŷm) =
α

∑

m=1

x̂T
mJiŷm =

α
∑

m=1

xT
mJT

i ym

(Ji = HX(ei)) and the last quantity is zero by the Lemma since Ji is a polynomial in X . �

We have seen that any matrix A = Cε(z) in the space Cε is of low complexity, in the sense that the
computation of A times a vector, the computation of the eigenvalues of A, and the computation of z such
that Az = b are all operations that can be performed with no more that O(n log2 n) arithmetic operations.

Is the same true if A has the Toeplitz structure, i.e. A = T where T = (ti−j)
n
i,j=1 ? We already know that

the computation of T times a vector can be done with O(n log2 n) arithmetic operations, since any Toeplitz
matrix can be expressed as the sum of a circulant and of a (−1)-circulant matrix. For what concerns the
computation of the eigenvalues of T , I can say only that, under suitable assumptions on the sequence tk,
k ∈ Z, there are results that indicate areas in C (defined in terms of the symbol function of tk) enclosing
such eigenvalues. We shall claim a result of this type. So, it remains to consider the problem of solving
a Toeplitz linear system Tx = b. We shall prove a simple representation for the inverse of T of the type
T−1 = C1C−1 + C′

1C
′
−1, involving two circulant and two (−1)-circulant matrices. Such representation allows

us to claim that if we do not count the operations involving only the entries of T (such operations can be
done in a preprocessing phase), then Tx = b can be solved with O(n log2 n) arithmetic operations.

Note that, for any Toeplitz matrix T = (ti−j)
n
i,j=1, we have

TΠε − ΠεT =









εt−n+1 − t1 0 · 0
· · · ·

εt−1 − tn−1 0 · 0
εt0 − εt0 tn−1 − εt−1 · t1 − εt−n+1









(check the case n = 3 first), or, shortly,

TΠε − ΠεT = ueT
1 − Je1u

T J, u = εTen − ΠεTe1.

The Ammar-Gader representation of the inverse of a Toeplitz matrix
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Assume now T invertible. Then ΠεT
−1 − T−1Πε = T−1ueT

1 T−1 − T−1Je1u
T JT−1, i.e.

T−1Πε − ΠεT
−1 = Jp(T−1u)T J − (T−1u)pT , p = (eT

1 T−1)T = JT−1en.

Remark: T−1u = εen − T−1









t1
·

tn−1

εt0









. Set δ(σ) = T−1









t1
·

tn−1

σ









and q = (T T )−1









εt0
tn−1

·
t1









= Jδ(εt0).

Then JT−1u = εe1 − q.
Now observe that Πε = Πβ + (ε − β)eneT

1 , thus we can apply the displacement theorem for X = Πε and
X ′ = Πβ , and obtain

(ε − β)T−1 = −Cε(p)Cβ(JT−1u) + Cε(JT−1u)Cβ(p) + (ε − β)Cε(p),



and, by the Remark,
(ε − β)T−1 = Cε(p)[−βI + Cβ(q)] + [εI − Cε(q)]Cβ(p).

[ Further remark. Note that the vector δ(σ) can always be expressed in terms of at most three columns of
T−1, and one of these columns is always T−1en (see [Di Fiore, Zellini, 1995]). For example, in the particular
case in which s11 := (T−1)11 6= 0 we have

δ(σ) = δ
(

− [0 tn−1 · t1]T
−1e1

s11
+

[

σ − (− [0 tn−1 · t1]T
−1e1

s11
)
])

= δ
(

− [0 tn−1 · t1]T
−1e1

s11

)

+
[

σ − (− [0 tn−1 · t1]T
−1e1

s11
)
]

T−1en

= − 1

s11
ZT T−1e1 +

[

σ − (− [0 tn−1 · t1]T
−1e1

s11
)
]

T−1en,

i.e. the vector δ(σ) is known if the first and the last columns of T−1 are known.

Exercise (not for evaluation). Prove that T
(

− 1
s11

ZT T−1e1

)

=









t1
·

tn−1

− [0 tn−1 · t1]T
−1e1

s11









.

]

The choices ε = 1 and β = −1 in the above formula for (ε − β)T−1 lead to the following well known
Ammar-Gader formula, announced above:

2T−1 = C1(p)C−1(q + e1) + C1(e1 − q)C−1(p), T (Jp) = en, T (Jq) =









t1
·

tn−1

t0









. (AmGa)

So, a procedure to solve a linear system Tx = b is the following:

1) compute p and q (for example, if T is real symmetric positive definite, then the cost of this step is
O(n log2 n) arithmetic operations (see Ammar and Gragg));

2) observe that, by (AmGa) and by the spectral representations of circulant and (−1)-circulant matrices,

2T−1 = nF
[

d(Fp)FHDFd(FD(q + e1)) + d(F (e1 − q))FHDFd(FDp)
]

FHD, (+)

and compute the vectors Fp, Fq, FDp, FDq;
3) compute T−1b via (+) with six FFT.

The operations in 1) and 2) involve only entries of the coefficient matrix of the system. Thus, if we do not
count such operations (which can be done in a preprocessing phase), then O(n log2 n) arithmetic operations
are sufficient to solve Tx = b.

Whenever AΠε−ΠεA is of constant rank with respect to n (f.i. in the case A is a low rank perturbation of
a Toeplitz matrix), the matrix A is called Toeplitz-like; it is clear that also for Toeplitz-like matrices efficient
formulas for A−1 can be stated, because also A−1 has constant rank with respect to n.

Two points on the previous lecture:

1) A Theorem that should be known. For any matrix X ∈ Cn×n, the set {A ∈ Cn×n : A = p(X) p =
polynomials} is equal to the set {A ∈ Cn×n : AX = XA} if and only if the minimum and the characteristic



polynomials of X coincide. In general, of course, {A ∈ Cn×n : A = p(X) p = polynomials} ⊂ {A ∈ Cn×n :
AX = XA}, and moreover

dim{A ∈ C
n×n : A = p(X) p = polynomials} ≤ n ≤ dim{A ∈ C

n×n : AX = XA}.

Proof. Use Jordan canonical form of X . �

2) If Y n × n is invertible and pY is the characteristic polynomial of Y , then 0 = pY (Y ) = Y n −
tr (Y )Y n−1 + . . . + gY + (−1)n det(Y )I, Y (Y n−1 − tr (Y )Y n−2 + . . . + gI) = (−1)n+1 det(Y )I, thus

Y [(−1)n+1 1

det(Y )
(Y n−1 − tr (Y )Y n−2 + . . . + gI) = I,

so the inverse of a matrix Y is a finite polynomial in Y .

Extension to Toeplitz-plus-Hankel-like matrices via the τ matrix algebra and displacement

formulas involving τ

Consider a generic n × n Toeplitz-plus-Hankel matrix T + H , (T + H)ij = ti−j + hi+j−2, 1 ≤ i, j ≤ n.
Note that

Exercise. X =













0 1
1 0 1

1 · ·
· 0 1

1 0













⇒ [(T + H)X − X(T + H)]ij = 0, 2 ≤ i, j ≤ n − 2,

i.e. the matrix (T + H)X − X(T + H) has rank 4. Thus it would be auspicable to state a displacement
formula, that on the basis of an assumption of the type AX − XA =

∑α
m=1 xmyT

m, represents A as the sum
of α + 1 matrix products MiNi involving matrices which are polynomials in X ; such formula would allow
us to obtain an efficient representation of the inverse of any Toeplitz-plus-Hankel matrix and thus, thinking
to the procedure explained in the Toeplitz case, an efficient procedure for solving Toepitz plus Hankel linear
systems.

First let us study the set τ of all polynomials in X . A basis for τ is easily obtained by setting

J1 = I, J2 = X, Ji+1 = JiX − Ji−1, i = 2, . . . , n,

in fact the Ji are degree i−1 polynomials linearly independent, since eT
1 Ji = eT

i , i = 1, 2, . . . , n (use induction
on i to prove this). Moreover, τ cannot have dimension greater than n (by Cayley-Hamilton theorem applied
to X), so τ coincides with the Span of {J1, . . . , Jn}, and, given any vector a ∈ Cn, it is well defined the
matrix of τ whose first row is aT :

τ(a) =
n

∑

k=1

akJk.

The eigenvalues of X are the scalars 2 cos jπ
n+1 , j = 1, . . . , n, in fact, the following vector identities hold













0 1
1 0 1

1 · ·
· 0 1

1 0





















...

sin ijπ
n+1
...









= 2 cos
jπ

n + 1









...

sin ijπ
n+1
...









, j = 1, . . . , n.

The eigenvectors yj , (yj)i = sin ijπ
n+1 i = 1, . . . , n, are orthogonal (yH

j yk = 0 if j 6= k) since they are
eigenvectors corresponding to distinct eigenvalues of a hermitian matrix. So, if Y = [y1 y2 · · · yn] and



Λ = diag (2 cos jπ
n+1 , j = 1, . . . , n), then

XY = Y Λ, X = Y ΛY −1, Y HY =
n + 1

2
I, S =

√

2

n + 1
Y, SH = ST = S, S2 = I, X = SΛS.

Thus τ(a) =
∑n

k=1 akpk−1(X) = S
(

∑n
k=1 akpk−1(Λ)

)

S = Sd(Sa)d(Se1)
−1S.

The last identity must hold since also the matrix Sd(Sa)d(Se1)
−1S is a τ matrix and such that eT

1 Sd(Sa)d(Se1)
−1S =

aT , so it must coincide with τ(a).
The fact that A times a vector, the eigenvalues of A, the solution of Ax = b are all things that can be

computed with O(n log2 n) arithmetic operations when A ∈ τ follows from the identity

i(I − F 2
2(n+1))F2(n+1) =









0 0T 0 0T

0 S 0 −SJ
0 0T 0 0T

0 −JS 0 JSJ









, F 2 =













1
1

1
·

1













,

which links the n × n sine matrix with the 2(n + 1) × 2(n + 1) Fourier matrix.

Exercise. Prove the latter identity involving sine and Fourier discrete transforms.

Exercise. Prove the following Theorem on a displacement formula involving symmetric Hessenberg algebras:
Theorem. Let X be the lower Hessenberg matrix in (Hess). Assume X symmetric. Define X ′ by the following
identity

X =













r11 b1 0 · · · · · 0
b1

0
·
0

X ′













.

Let A be n × n with complex entries. If AX − XA =
∑α

m=1 xmyT
m (xm,ym ∈ Cn), then

A =

α
∑

m=1









0 0 · · · · · · 0
0
·
0

HX′(I2
nxm)









HX(ym) + HX(AT e1), I2
nxm =





(xm)2
·

(xm)n



 .

As a consequence, write a displacement formula involving only matrices from the algebra τ , but of different
dimensions (choose X as the tridiagonal 0, 1 matrix which generates τ). Finally, show that one can determine
from the latter formula an efficient representation of the inverse of a Toeplitz plus Hankel matrix.

The best approximation of A in L = Span {J1, J2, . . . , Jm}
Let A ∈ Cn×n, and L = Span {J1, J2, . . . , Jm}, with Jk linearly independent. Then it is well defined the

matrix LA in L such that
‖LA − A‖F = min

X∈L
‖X − A‖F ,

and the matrix LA is also characterized by the orthogonality condition (X,LA − A)F = 0, X ∈ L. In fact,
Cn×n is a Hilbert space with respect to the inner product (X, Y )F =

∑n
i,j=1 xijyij , the norm induced from

(·, ·)F is the Frobenius norm, and L is a closed subspace of Cn×n, thus, by the Hilbert projection theorem,
it is well defined the projection in L of any A ∈ Cn×n.

We call LA the best (least squares) approximation of A in L.



Here below there are some simple results that follow immediately from the definition of LA:

- If A is real (A = A), then LA is real if and only if L ⊂ L .

Proof. Assume L ⊂ L: ‖LA − A‖F = ‖LA − A‖F = ‖LA − A‖F ⇒ LA = LA (since LA ∈ L).

For example, for L = Cε one has L ⊂ L if and only if ε ∈ R: Cε is closed under conjugation (Cε ⊂ Cε) if
and only if ε ∈ R.

In fact, for n = 2 we have

J2 =

[

0 1
ε 0

]

, J2 =

[

0 1
ε 0

]

and it is clear that in order to have J2 ∈ Cε, i.e. J2 linear combination of J1, J2, the only possibility is that
J2 = J2, and that this can happen if and only if ε ∈ R. Nothing changes if n is generic.

- If A is hermitian (AH = A), then LA is hermitian if and only if LH ⊂ L.

Proof. Assume LH ⊂ L: ‖LA − A‖F = ‖LH
A − AH‖F = ‖LH

A − A‖F ⇒ LH
A = LA (since LH

A ∈ L).

For example, for L = Cε one has LH ⊂ L if and only if |ε| = 1: Cε is closed under conjugate transposition
(CH

ε ⊂ Cε) if and only if |ε| = 1.
In fact, for n = 3 we have

J1 = I, J2 =





0 1 0
0 0 1
ε 0 0



 , (J2)
H =





0 0 ε
1 0 0
0 1 0



 , J3 =





0 0 1
ε 0 0
0 ε 0



 ,

and it is clear that in order to have JH
2 ∈ Cε, i.e. JH

2 linear combination of J1, J2, J3, the only possibility is
that JH

2 = εJ3, and that this can happen if and only if |ε| = 1. Nothing changes if n is generic.

- If A is real symmetric (AH = A = A), then LA is real symmetric if and only if L ⊂ L and LH ⊂ L.

For example, for L = Cε one has L ⊂ L and LH ⊂ L if and only if ε = ±1: Cε is closed under conjugation
and under conjugate transposition (Cε ⊂ Cε and CH

ε ⊂ Cε) if and only if ε = ±1.

Set

A =

[

0 1
1 0

]

, L = Cε.

Prove that LH
A 6= LA (LH

A /∈ L) if |ε| 6= 1.
Prove that LA 6= LA (LA ∈ C2×2\R2×2) if ε ∈ C\R.

Solving: Consider the real symmetric matrix A =

[

0 1
1 0

]

. The values of α, β for which

‖A − Cε(

[

α
β

]

)‖F =

∥

∥

∥

∥

[

−α 1 − β
1 − βε −α

]
∥

∥

∥

∥

F

= 2|α|2 + |1 − β|2 + |1 − βε|2

is minimum are α = 0 and β some point on the segment connecting 1 to 1/ε. Thus (Cε)A = β

[

0 1
ε 0

]

. . . .

(It is not necessary to compute exactly LA to solve this exercise).

Exercise. Let U be a n × n unitary matrix, and consider the set of matrices L = {Ud(z)UH : z ∈ Cn}
(examples of such sets L are τ and Cε, |ε| = 1). The set L is a closed subspace of C

n×n, closed under matrix
multiplication and commutative. Investigate under what conditions on U , the inclusions L ⊂ L and LH ⊂ L
hold, separately or together.

Partial solution: L ⊂ L if U real, or if U = UPd(x), P permutation, d(x) unitary. . . .

SIXTH LECTURE, Wednesday September 10, 2014 (Rome)



Question: characterize all spaces L = {J1, J2, . . . , Jm} ⊂ Cn×n (Jj linearly independent) for which

A hermitian positive definite implies LA hermitian positive definite. (hpd)

Possible way of investigation: Introduce an operator hpd such that hpd(A) = A if and only if A is hermitian
positive definite. Once such operator is introduced may be the characterization would be hpd(L) ⊂ L
(analogously to the conditions L ⊂ L and LH ⊂ L that we have stated above).

The implication (hpd) is true if L is the set of all matrices diagonalized by a unitary matrix (see below).
More general classes of n-dimensional spaces L for which (hpd) is true are introduced in [Di Fiore, Zellini,
2001]. In particular, (hpd) turns out to be true also if L is a group algebra, i.e. L = {A ∈ Cn×n : aij =
aki,kj , i, j, k ∈ G}, where G = {1, 2, . . . , n} is a group.

A representation of LA. The orthogonality condition characterizing LA =
∑m

k=1 αkJk can be rewritten
as follows

0 = (Js, A −
m

∑

k=1

αkJk)F = (Js, A)F −
m

∑

k=1

αk(Js, Jk)F , s = 1, 2, . . . , m.

So, the vector α of the coefficients of LA must be such that

Bα = c, Bs,k = (Js, Jk)F , cs = (Js, A)F , 1 ≤ s, k ≤ m,

i.e. LA =
∑m

k=1(B
−1c)kJk. Note that the Gram matrix B is hermitian positive definite. In [Di Fiore, Zellini,

2001] it is shown that for a class of n-dimensional spaces L the matrix B is itself a matrix of L.

Exercise. Find the first row of the matrix (Cε)T , ε ∈ R, where T = (ti−j)
n
i,j=1, i.e. z ∈ C

n such that
(Cε)T = Cε(z), and note that it can be computed in O(n) arithmetic operations.

In the case L = {Ud(z)UH : z ∈ Cn}, U unitary n× n, we have a further representation for LA. In fact,

‖Ud(z)UH − A‖F = ‖d(z) − UHAU‖F

is clearly minimum if zi = (UHAU)ii. So, LA = U diag ((UHAU)ii)U
H .

Exercise. If L = {Ud(z)UH : z ∈ Cn} with U unitary, then LA is hermitian or hermitian positive definite
whenever A is hermitian or hermitian positive definite.

As an example, let us calculate LyyT , y ∈ Cn. We have

LyyT = U diag ((UHyyT U)ii)U
H = U diag ((UHy)i(U

Ty)i)U
H .

In particular, if y ∈ Rn, then LyyT = Ud(|UHy|2)UH , where for a vector v ∈ Cn by the symbol |v|2 we
mean the vector [|v1|2 |v2|2 · · · |vn|2]T .

Exercise. Let X be the n×n 0, 1 tridiagonal matrix that generates the algebra τ , and assume n even. Show
that there exists z such that zT X = eT

1 , and thus X is invertible and X−1 = τ(z). Write the matrix τ(z)
for n = 6 by exploiting the fact that the entries aij of any τ matrix A satisfy the cross-sum rule with zero
border conditions, i.e.

ai,j−1 + ai,j+1 = ai+1,j + ai−1,j , a0,j = an+1,j = ai,0 = ai,n+1 = 0, 1 ≤ i, j ≤ n

(this cross-sum rule follows from the equalities [AX ]ij = [XA]ij).

Low complexity matrix algebras L and LA in iterative methods for solving real symmetric

positive definite Toeplitz linear systems



Let T = (t|i−j|)
n
i,j=1 be a real symmetric positive definite Toeplitz matrix.

Exercise. Well known examples of such matrices are the two corresponding, respectively, to the choices
t0 = 2, t1 = −1, tk = 0, k > 1, and tk = pk with p ∈ R such that |p| < 1. Why they are positive definite?

Assume we have to solve a linear system of type Tx = b, b ∈ Rn. First note that finding T−1b is
equivalent to finding the minimum of the following function from Rn to R:

f(x) =
1

2
xT Tx− xTb,

in fact ∇f(x) = Tx − b and ∇2f(x) = T , thus f has only one stationary point, T−1b, which is a global
minimum since f is strictly convex in R

n (the Hessian is strictly definite positive everywhere).
Let xk ∈ Rn be an approximation of T−1b. In order to see if it is a good approximation, one can

evaluate a norm of the residual rk = b − Txk, which turns out to be equal to −∇f(xk). If it is not a good
approximation of T−1b, how to generate a better approximation?

First introduce a descent search direction in xk for f , i.e. a vector dk such that dT
k ∇f(xk) < 0 (recall

that ∇f(xk) is the direction of max increasing of f in a neighborhood of xk and is orthogonal to the level
ipersurface {x ∈ Rn : f(x) = f(xk)} (which is a neighborhood of T−1b in the energy metric ‖u− v‖T . . .).

Then find λk > 0 such that f(xk + λkdk) = minλ∈R f(xk + λdk) and set xk+1 = xk + λkdk. Note that
such λk is uniquely defined, it is the abscissa of the vertex of the convex parabola f(xk + λdk)

Exercise. Find the explicit formula of such λk.

A suitable choice at each step k of the descent search direction dk, allows to generate a sequence {xk} of
approximations of T−1b convergent to T−1b.

The CG method

a) In particular, in the CG (Conjugate Gradient) method at each step dk is defined as follows:

dk = −∇f(xk) + βdk−1, β such that dT
k Tdk−1 = 0

(d0 = −∇f(x0)). It can be shown that if this choice of dk is applied, for k = 0, 1, 2, . . ., then in no more than
n steps one obtains T−1b, i.e. there exists s ≤ n such that xs = T−1b. This result can be easily understood
geometrically in the case n = 2.

Actually, a stronger result holds:

Let m be the number of distinct eigenvalues of T . Then there exists s ≤ m such that xs = T−1b.

b) Each step of the CG method require the computation of a matrix-vector product where the matrix
is T (besides some scalar products whose cost is O(n)). We know that such computation can be done with
O(n log2 n) arithmetic operations.

c) When the eigenvalues of the coefficient matrix are “clustered” the rate of convergence is much greater,
in the sense that we obtain a good approximation of T−1b after a relatively small number of iterations.

For example, it can be shown the following bound for the error after k step of CG method applied to
Tx = b:

‖xk − T−1b‖T ≤ c(k)2(

√

1+ε
1−ε − 1

√

1+ε
1−ε + 1

)k−rε‖x0 − T−1b‖T , k ≥ rε,

where ε is arbitrary in (0,1), rε is the number of the eigenvalues of T which are not in [1− ε, 1 + ε], c(k) = 1
if no eigenvalue of T is less than 1− ε, and c(k) > 1 and grows with k if some eigenvalues of T are near zero.

The above bound says that even in case µ2(T ) = maxλi(T )/ min λi(T ) is great, the CG method can
produce a good approximation of T−1b after a small number of iterations if most of the eigenvalues of T are



in [1 − ε, 1 + ε] for a small ε. And if this distribution of the eigenvalues, good for the rate of convergence of
CG, does not hold for T , we can try to introduce a real symmetric positive definite linear system T̃y = b̃

equivalent to Tx = b, but where T̃ has a better distribution of eigenvalues, and apply CG to this second
system. This is equivalent to minimize the function f̃(y) = 1

2yT̃y − yT b̃.
d) Let L be a subspace of Cn×n such that LT , the projection of T on L, is real symmetric positive definite

(for example L = C±1, τ or L = {Ud(z)UH : z ∈ Cn} with U real unitary, or L =a group matrix algebra,. . . ).
Then LT = EET , for some E non singular, and we can consider the linear system

T̃y = (E−1TE−T )(ET x) = E−1b = b̃

equivalent to Tx = b, but with a coefficient matrix which is similar to L−1
T T (prove it!), and thus has its

same eigenvalues. Now, for some classes of real symmetric positive definite Toeplitz matrices T there are
suitable spaces L for which the eigenvalues of L−1

T T cluster around 1, briefly σ(L−1
T T ) ≈ 1. Here below we

claim a theorem with a result of this type.

Theorem. Let {tk}+∞
k=0, tk ∈ R, be such that

∑+∞
k=0 |tk| < +∞. Set t(θ) =

∑

k∈Z
t|k|e

ikθ = t0+2
∑+∞

k=1 tk cos(kθ),

tm = min t(θ), and tM = max t(θ). Finally, set T (n) = (t|i−j|)
n
i,j=1,

Then σ(T (n)) ⊂ [tm, tM ] for all n.
Let L = C±1 or L = τ . If tm > 0 (note that in this case the T (n) and the LT (n) are all real symmetric

positive definite matrices), then σ(L−1
T (n)T

(n)) ≈ 1, or, more precisely, ∀ ε > 0, there exist νε, kε ∈ N such

that for all n > νε in [1 − ε, 1 + ε]c there are at most kε eigenvalues of L−1
T (n)T

(n).

Exercise. Prove the result σ(T (n)) ⊂ [tm, tM ] stated in the above theorem.

In [Di Fiore, Zellini, 2001] it is shown that the clustering result stated in the theorem can be extended
to matrix algebras L = {Ud(z)UH : z ∈ Cn} where U are Hartley-type transforms. Recall here only the
Hartley transform: Uij = 1√

n
(cos 2ijπ

n + sin 2ijπ
n )n−1

i,j=0.

As a consequence of the result stated in the theorem, by applying the CG method to the system
(E−1TE−T )(ET x) = E−1b, or, equivalently, by mimimizing the function

1

2
yT (E−1TE−T )y − yT (E−1b),

by the CG method, one obtains a sequence of approximations yk which converge superlinearly to y = ETx.
. . .

Low complexity matrix algebras L in unconstrained minimization methods

Assume we have to minimize a generic function f : R
n → R. Let xk ∈ R

n be an approximation of x∗, a
(local) minimum of f . In order to see if it is a good approximation, one can evaluate a norm of ∇f(xk). If
xk is not a good approximation of x∗, how to generate a better approximation?

First introduce a descent search direction in xk for f , i.e. a vector dk such that dT
k ∇f(xk) < 0 (recall

that ∇f(xk) is the direction of max increasing of f in a neighbourhood of xk and is orthogonal to the level
ipersurface {x ∈ Rn : f(x) = f(xk)}).

Then find λk > 0 suitable such that f(xk +λkdk) is enough smaller than f(xk), and xk +λkdk is enough
far from xk, and set xk+1 = xk +λkdk. Procedures defining a step-length λk with such properties are due to
Armijo, Goldstein and Wolfe. They have to be preferred to the procedures that try to compute λk for which
f(xk + λdk), λ ∈ R, is (at least locally) minimum in λk, because the latter are too expensive. Note that the
most known Armijo-Goldstein-Wolfe procedures (line searches) for defining λk yield a new guess xk+1 such
that sT

k yk > 0, where sk = xk+1 − xk, yk = ∇f(xk+1) −∇f(xk) (see for instance [Dennis, Schnabel, 1983],
[Di Fiore et al, 2003] or [Cipolla et al, 2014]).

The Newton method



In Newton method dk = −∇2f(xk)−1∇f(xk).
This choice of dk is very good from a mathematically point of view if xk is near the minimum we are

approaching. In fact, in this case dT
k ∇f(xk) is of course negative (since ∇2f(xk) is r.s.p.d.) and thus dk is

a descent direction for f in xk, and, moreover, xk+1 turns out to approximate x∗ much better than xk.
But from other points of view, the Newton direction is not so good. First it fails to be a descent direction

in xk for f if xk is “far” from x∗ (∇2f(xk) could be not positive definite). Second, the computation of it (at
each step) can be too expensive, since it requires the evaluation of n(n + 1)/2 second derivatives (the entries
of ∇2f(xk)) and the solution of a linear system (∇2f(xk)dk = −∇f(xk)), which in general requires O(n3)
arithmetic operations.

The Quasi-Newton Secant methods and BFGS

In quasi-Newton methods dk = −B−1
k ∇f(xk), where Bk is chosen at each step real symmetric positive

definite. [Note the generality of quasi-Newton methods; in fact, any descent direction in xk for f , say dk,
must be of the type dk = −B−1

k ∇f(xk) for some r.s.p.d. matrix Bk (see [Di Fiore, Fanelli, Zellini, 2007]). ]
An important requirement made on Bk is usually that

Bksk−1 := Bk(xk − xk−1) = ∇f(xk) −∇f(xk−1) =: yk−1. (sec)

This condition is the vectorial analogous of the scalar condition bk(xk − xk−1) = f ′(xk) − f ′(xk−1) which
defines uniquely the well known secant method for finding the stationary points of a function f : R → R:

xk+1 = xk − λkb−1
k f ′(xk) = xk − λk

f ′(xk)
f ′(xk)−f ′(xk−1)

xk−xk−1

.

If Bk solves the secant equation (sec) then the quasi-Newton direction dk = −B−1
k ∇f(xk) is said secant.

Among the many possible real symmetric positive matrices Bk solving the secant equation (there is an
infinite number of such matrices if sT

k−1yk−1 > 0), the most effective is the one proposed simultaneously
by Broyden, Fletcher, Goldfarb, Shanno (BFGS). In the following we illustrate the corresponding BFGS
minimization method (which can be implemented with O(n2) per step and require no computation of second
derivatives) and some much cheaper but efficient versions of such method, which involve low complexity
matrix algebras L and best least squares fit to Bk in L (see the previous sections) and thus allow the
application of the very effective BFGS-type scheme to large scale minimization problems.

Assume we already have Bk (from the previous step); then in BFGS the matrix Bk+1 is defined from Bk

by the following identity:

Bk+1 = Φ(Bk, sk,yk), sk = xk+1 − xk, yk = ∇f(xk+1) −∇f(xk),

Φ(B, s,y) = B +
1

yT s
yyT − 1

sT Bs
BssT B.

Note that Bk+1sk = yk, so BFGS is a quasi-Newton secant method. Let us resume here below the main
instructions of the BFGS algorithm:

x0 ∈ Rn, B0 ∈ Rn×n r.s.p.d.
For k = 0, 1, 2, . . . {
dk = −B−1

k ∇f(xk)
xk+1 = xk + λkdk, with λk suitable so that (it is possible!) f(xk+1) < f(xk) − ηk, ηk > 0, and...
sk = xk+1 − xk, yk = ∇f(xk+1) −∇f(xk) ... sT

k yk > 0. But this implies...
Bk+1 = Φ(Bk, sk,yk) ...Bk+1 r.s.p.d., and thus dk+1 desc direction in xk+1 }

Each step of the above algorithm is well defined, and a strictly decreasing sequence {f(xk)} is produced.
Under suitable assumptions on f , the method has a local superlinear rate of convergence, i.e. if x0 ≈ x∗,



then for all k we have ‖xk − x∗‖ ≤ ηk‖xk−1 − x∗‖, with ηk → 0 (the proof of this not obvious result is due
to Dennis-More’). The method can be implemented with O(n2) arithmetic operations per step. In fact, by
Sherman-Morrison formula it is possible to obtain the following expression of B−1

k+1 in terms of B−1
k ,

B−1
k+1 =

(

I − yks
T
k

yT
k sk

)T

B−1
k

(

I − yks
T
k

yT
k sk

)

+
sks

T
k

yT
k sk

.

Then, thanks to this expression, B−1
k+1∇f(xk+1) can be computed by performing a matrix-vector product

involving B−1
k and cheaper computations, such as scalar products or multiplications of vectors by scalars.

. . .

BFGS-type and L(k)QN methods

With the aim to reduce the space and time-per-step complexity of BFGS method, one can modify the
above BFGS procedure by defining, at each step, in corrispondence with the current Hessian approximation
Bk, a lower complexity r.s.p.d. matrix B̃k which maintains as more as possible information on the structure
and on the spectrum of Bk, and by updating, via the BFGS-type iterative scheme, in place of Bk, such matrix
B̃k.

This idea produces the following BFGS-type secant algorithm:

SECANT BFGS-type:
x0 ∈ Rn, B0 ∈ Rn×n r.s.p.d.
For k = 0, 1, 2, . . .:
dk = −B−1

k ∇f(xk)
xk+1 = xk + λkdk, . . . λk . . .
sk = xk+1 − xk, yk = ∇f(xk+1) −∇f(xk) . . . sT

k yk > 0 . . .

define B̃k r.s.p.d. with B̃k ≈ Bk (in some sense)
Bk+1 = Φ(B̃k, sk,yk) . . . Bk+1 r.s.p.d. . . .

Note that yet Bk+1sk = yk and a well defined decreasing sequence f(xk) is produced. How to define the
B̃k ? Assume that at each step k a space L(k) ⊂ Cn×n is introduced with the property

L(k) such that A r.s.p.d. implies L(k)
A r.s.p.d.. (upddefpos)

(note that such L(k) must necessarily satisfy the inclusions L(k) ⊂ L(k) and (L(k))H ⊂ L(k)). Then one can

choose, in the above algorithm, B̃k = L(k)
Bk

:

SECANT L(k)QN:
x0 ∈ Rn, B0 ∈ Rn×n r.s.p.d.
For k = 0, 1, 2, . . .:
dk = −B−1

k ∇f(xk)
xk+1 = xk + λkdk, . . . λk . . .
sk = xk+1 − xk, yk = ∇f(xk+1) −∇f(xk) . . . sT

k yk > 0 . . .

Bk+1 = Φ(L(k)
Bk

, sk,yk) . . . Bk+1 r.s.p.d. . . .

If L(k) = L for all k and L = {Ud(z)UH : z ∈ Cn} with U fast discrete transform (f.i. L = C±1, L = τ ,
L =Hartley algebra), or if L(k) = {Ukd(z)UH

k : z ∈ Cn} with Uk suitable fast discrete transforms (f.i. L
generated by a Householder or by two Householder matrices), then the eigenvalues of L(k+1)

Bk+1
can be obtained

from those of L(k)
Bk

at the cost of transforms involving Uk and Uk+1, and this result, together with the formula

B−1
k+1 =

(

I − yks
T
k

yT
k sk

)T

(L(k)
Bk

)−1
(

I − yks
T
k

yT
k sk

)

+
sks

T
k

yT
k sk

,



let us conclude that the cost of each step of the above L(k)QN secant method is of the order of the cost of

transforms involving Uk and Uk+1.
Let us prove this in the case L(k) = L, ∀ k: by projecting on L the equation Bk+1 = φ(LBk

, sk,yk) =
LBk

+ 1
yT

k
sk

yky
T
k − 1

sT
k
LBk

sk
LBk

sks
T
k LBk

, we obtain

LBk+1
= LBk

+
1

yT
k sk

LykyT
k
− 1

sT
k LBk

sk
L(LBk

sk)(LBk
sk)T .

If we call zk the vector of the eigenvalues of LBk
, then

Ud(zk+1)U
H = Ud(zk)UH +

1

yT
k sk

Ud(|UHyk|2)UH − 1

zT
k |UHsk|2

Ud(|d(zk)UHsk|2)UH ,

d(zk+1) = d(zk) +
1

yT
k sk

d(|UHyk|2) −
1

zT
k |UHsk|2

d(|d(zk)UHsk|2),

zk+1 = zk +
1

yT
k sk

|UHyk|2 −
1

zT
k |UHsk|2

d(zk)2|UHsk|2. (updEig)

From the latter formula it is clear that the vector zk+1 of the eigenvalues of LBk+1
can be computed from zk

at a cost equal to the cost of the transforms UHsk and UHyk. For example, if U is the Hartley matrix as in
[Bortoletti et al, 2003], then such updating of the eigenvalues can be implemented in O(n log2 n) arithmetic
operations. If U is a Householder matrix or the product of two Householder matrices, then the cost reduces
to O(n).

Exercise. Find an eigenvalues updating formula of the type (updEig) in case L(k) changes at each step and
is equal to L(k) = {Ukd(z)UH

k : z ∈ Cn} with Uk = H(uk) := I − uku
H
k , uk ∈ Rn, ‖uk‖2 =

√
2. Note that

the cost of its implementation is O(n).

In [Bortoletti et al, 2003] it is shown that the SECANT L(k)QN method has a very good performance
on experiments even in case L(k) = L for all k (in that paper L is chosen equal to the Hartley matrix
algebra). SECANT L(k)QN is competitive with the best known minimization algorithms suitable for large
scale problems, such as Limited memory BFGS.

But no convergence result has been proved for SECANT L(k)QN.
Instead, in [Di Fiore et al, 2003] it is shown that a subsequence of the sequence of gradients ∇f(xk)

generated by the following NON SECANT BFGS-type algorithm

NON SECANT BFGS-type:
x0 ∈ Rn, B0 ∈ Rn×n r.s.p.d.
For k = 0, 1, 2, . . .:
define B̃k r.s.p.d. with B̃k ≈ Bk (in some sense)
dk = −B̃−1

k ∇f(xk)
xk+1 = xk + λkdk, . . . λk . . .
sk = xk+1 − xk, yk = ∇f(xk+1) −∇f(xk) . . . sT

k yk > 0 . . .

Bk+1 = Φ(B̃k, sk,yk) . . . Bk+1 r.s.p.d. . . .

converges to the zero vector if the matrices B̃k are chosen such that

det(Bk) ≤ det(B̃k), tr (Bk) ≥ tr (B̃k). (convNS)

These conditions are satisfied for B̃k = L(k)
Bk

if L(k) = {Ukd(z)UH
k : z ∈ Cn} with Uk unitary such that

(upddefpos) holds.



Exercise. Prove the latter assertion by using the formula L(k)
Bk

= Uk diag ((UH
k BkUk)ii)U

H
k and Hadamard

inequality for r.s.p.d. matrices.

However, the behaviour of the Non Secant BFGS-type algorithm, in particular in the case B̃k = L(k)
Bk

:

NON SECANT L(k)QN:
x0 ∈ Rn, B0 ∈ Rn×n r.s.p.d.
For k = 0, 1, 2, . . .:

dk = −(L(k)
Bk

)−1∇f(xk)
xk+1 = xk + λkdk, . . . λk . . .
sk = xk+1 − xk, yk = ∇f(xk+1) −∇f(xk) . . . sT

k yk > 0 . . .

Bk+1 = Φ(L(k)
Bk

, sk,yk) . . . Bk+1 r.s.p.d. . . .

is far from being good, in numerical experiences.
Recently, in [Cipolla et al, 2014] it has been proposed to choose B̃k such that secant and non secant BFGS-

type algorithms essentially coincide, so that one achieves simultaneously convergence and good experimental
behaviour. More precisely, it is required that the non secant direction −B̃−1

k ∇f(xk) is a multiple of the
secant one −B−1

k ∇f(xk).
So, in [Cipolla et al, 2014] the equality

B̃−1
k ∇f(xk) = σB−1

k ∇f(xk) (SECequNONSEC)

is investigated for B̃k ∈ L(k) = {Ukd(z)UH
k : z ∈ Cn}, Uk unitary. First (SECequNONSEC) is studied for

B̃k = L(k)
Bk

= Uk diag ((UH
k BkUk)ii)U

H
k . But, in this case, even the question of existence of Uk satisfying

(SECequNONSEC) is not clear; thus the question of existence of a simple such Uk (Uk =Householder or
product of two Householder) is difficult ...

Then the (SECequNONSEC) condition is investigated for B̃k = Uk diag ((V H
k BkVk)ii)U

H
k , with Uk and

Vk unitary. In this case, if Vk is such that the numbers maxi(V
H
k BkVk)ii and mini(V

H
k BkVk)ii satisfy a

certain condition (such matrix Vk always exist), then we have the existence of Uk for which B̃k satisfies
(SECequNONSEC), and such Uk is simple since it is the product of two Householder matrices. One can
check the condition first for Vk = Uk−1: if it is satisfied then also Vk turns out to be simple (i.e. the product
of two Householder matrices); otherwise, Vk must be chosen different from Uk−1 and the procedure for finding
a right Vk, even if exists, could be expensive . . .

For more details, see [Cipolla et al, 2014].
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APPENDIX (the discrete Fast Fourier Transform)

The Fourier matrix, circulants, and fast discrete transforms

Consider the following n × n matrix

Π1 =















0 1
0 1

. . .
. . .

1 1
1 0















.

Let ω ∈ C. Note that

Π1









1
1
·
1









=









1
1
·
1









= 1









1
1
·
1









, Π1









1
ω
·

ωn−1









=













ω
ω2

·
ωn−1

1













= ω









1
ω
·

ωn−1









,

where the latter identity holds if ωn = 1. More in general, if ωn = 1, we have the following vectorial identities

Π1









1
ωj

·
ω(n−1)j









=









ωj

·
ω(n−1)j

1









= ωj









1
ωj

·
ω(n−1)j









, j = 0, 1, . . . , n − 1,

or, equivalently, the following matrix identity

Π1W = WD1ωn−1 ,

D1ωn−1 =









1
ω

·
ωn−1









, W =









1 1 · 1 · 1
1 ω ωj ωn−1

· · · ·
1 ωn−1 · ω(n−1)j · ω(n−1)(n−1)









.

Proposition. If ωn = 1 and if ωj 6= 1 for 0 < j < n, then W ∗W = nI.

proof: since |ω| = 1, ω = ω−1, we have

[W ∗W ]ij = [WW ]ij =
∑n

k=1[W ]ik[W ]kj =
∑n

k=1 ω(i−1)(k−1)ω(k−1)(j−1)

=
∑n

k=1 ω(k−1)(j−i) =
∑n

k=1(ω
j−i)k−1.

Thus [W ∗W ]ij = n if i = j, and [W ∗W ]ij = 1−(ωj−i)n

1−ωj−i = 0 if i 6= j (note that the assumption ωj 6= 1 for

0 < j < n is essential in order to make 1 − ωj−i 6= 0).

By the result of the above Proposition, we can say that the following (symmetric) Fourier matrix

F =
1√
n

W

is unitary, i.e. F ∗F = I.



Exercise. Prove that F 2 = JΠ1 where J is the permutation matrix Jek = en+1−k, k = 1, . . . , n (J is usually
called anti-identity).

The matrix identity satisfied by Π1 and W can be of course rewritten in terms of F , Π1F = FD1ωn−1 ,
thus we obtain the equality

Π1 = FD1ωn−1F ∗

which states that the Fourier matrix diagonalizes the matrix Π1, or, more precisely, that the columns of the

Fourier matrix form a system of n unitarily orthonormal eigenvectors for the matrix Π1 with corresponding

eigenvalues 1, ω, . . . , ωn−1.
But if F diagonalizes Π1, then it diagonalizes all polynomials in Π1:

Πk−1
1 = FDk−1

1ωn−1F
∗,

∑n
k=1 akΠk−1

1 = F
∑n

k=1 akDk−1
1ωn−1F

∗

= F









∑n
k=1 ak

∑n
k=1 akωk−1

·
∑n

k=1 akω(n−1)(k−1)









F ∗

= Fd(Wa)F ∗ =
√

nFd(Fa)F ∗

where by d(z) we mean the diagonal matrix whose diagonal entries are z1, z2, . . . , zn.
Let us investigate the matrices Πk−1

1 , k = 1, . . . , n, and the matrix
∑n

k=1 akΠk−1
1 in the case n = 4:

Π0
1 = I, Π1

1 =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









, Π2
1 =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









, Π3
1 =









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









,

Π4
1 = Π3

1Π1 = ΠT
1 Π1 = I = Π0

1,

4
∑

k=1

akΠk−1
1 =









a1 a2 a3 a4

a4 a1 a2 a3

a3 a4 a1 a2

a2 a3 a4 a1









=
√

4Fd(Fa)F ∗, F =
1√
4









1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9









,

ω4 = 1, ωj 6= 1, 0 < j < 4 (ω = e±i2π/4).

Note that, for n generic, we have the identities eT
1 Πk−1

1 = eT
k , k = 1, . . . , n, and Πn

1 = I (prove them!).
So, the set C = {p(Π1)} of all polynomials in Π1 is spanned by the matrices Jk = Πk−1

1 ; the particular
polynomial

∑n
k=1 akJk is simply denoted by C(a). Note that C(a) is the matrix of C with first row aT :

C(a) =

n
∑

k=1

akJk =













a1 a2 · an−1 an

an a1 · an−1

· · · · ·
a3 · · a2

a2 a3 · an a1













= Fd(FT a)d(FT e1)
−1F−1.

C is known as the space of circulant matrices.



Exercise. (i) Repeat all, starting from the n × n matrix

Π−1 =















0 1
0 1

. . .
. . .

0 1
−1 0















and arriving to the (−1)-circulant matrix whose first row is aT , a ∈ Cn:

C−1(a) =













a1 a2 · an−1 an

−an a1 · an−1

· · · · ·
−a3 · · a2

−a2 −a3 · −an a1













.

(ii) Let T be a Toeplitz n × n matrix, i.e. T = (ti−j)
n
i,j=1, for some tk ∈ C. Show that T can be written as

the sum of a circulant and of a (−1)-circulant, that is, T = C(a) + C−1(b), a,b ∈ Cn.

Why circulant matrices can be interesting in the applications of linear algebra? The main reason is in
the fact that the matrix-vector product C(a)z can be computed in at most O(n log2 n) arithmetic operations
(whereas, usually, a matrix-vector product requires n2 multiplications).

Proposition FFT. Given z ∈ Cn, the complexity of the matrix-vector product Fz is at most O(n log2 n).
Such operation is called discrete Fourier transform (DFT) of z. As a consequence, the matrix-vector product
C(a)z is computable by two DFTs (after the preprocessing DFT Fa).

proof: since ω(i−1)(k−1) is the (i, k) entry of W and zk is the k entry of z ∈ C
n, we have

(Wz)i =
∑n

k=1 ω(i−1)(k−1)zk =
∑n/2

j=1 ω(i−1)(2j−2)z2j−1 +
∑n/2

j=1 ω(i−1)(2j−1)z2j

=
∑n/2

j=1(ω
2)(i−1)(j−1)z2j−1 +

∑n/2
j=1 ω(i−1)(2(j−1)+1)z2j

=
∑n/2

j=1(ω
2)(i−1)(j−1)z2j−1 + ωi−1

∑n/2
j=1(ω

2)(i−1)(j−1)z2j .

Note that ω is in fact a function of n, i.e. the right notation for ω should be ωn. Then ω2 = ω2
n is such that

(ω2
n)n/2 = 1 and (ω2

n)i 6= 1 0 < i < n/2; in other words ω2
n = ωn/2. So, we have the identities

(Wnz)i =

n/2
∑

j=1

ω
(i−1)(j−1)
n/2 z2j−1 + ωi−1

n

n/2
∑

j=1

ω
(i−1)(j−1)
n/2 z2j, i = 1, 2, . . . , n. (?)

It follows that, for i = 1, . . . , n
2 ,

(Wnz)i = (Wn/2









z1

z3

·
zn−1









)i + ωi−1
n (Wn/2









z2

z4

·
zn









)i.

Moreover, by setting i = n
2 + k, k = 1, . . . , n

2 , in (?), we obtain

(Wnz)n
2 +k =

∑n/2
j=1 ω

n
2 (j−1)

n/2 ω
(k−1)(j−1)
n/2 z2j−1 + ω

n
2
n ωk−1

n

∑n/2
j=1 ω

n
2 (j−1)

n/2 ω
(k−1)(j−1)
n/2 z2j

=
∑n/2

j=1 ω
(k−1)(j−1)
n/2 z2j−1 − ωk−1

n

∑n/2
j=1 ω

(k−1)(j−1)
n/2 z2j

= (Wn/2









z1

z3

·
zn−1









)k − ωk−1
n (Wn/2









z2

z4

·
zn









)k, k = 1, . . . , n
2 .



(ω
n
2
n = −1; think ω = e±i2π/n). Thus

Wnz =

[

I D
1ω

n
2

−1
n

I −D
1ω

n
2

−1
n

]

[

Wn/2 0
0 Wn/2

]

Qz,

D
1ω

n
2

−1
n

=









1
ωn

·
ω

n
2 −1
n









, Q =

























1
0 0 1

· ·
1 0

0 1
0 0 0 1

· ·
0 1

























.

(??)

If cn denotes the complexity of the matrix-vector product Fnz, then, by the previous formula,

cn ≤ 2cn/2 + rn, r constant.

But this implies cn = O(n log2 n). The proof of the last assertion is left to the reader.

Of course, any time a n × n matrix U , well defined for all n, satisfies for n even an identity of the type

Un =
[

sparse matrix
]

[

Un/2 0
0 Un/2

]

[

permutation matrix
]

,

the matrix-vector product Unz can be computed in at most O(n log2 n) arithmetic operations. The above
identity is verified for at least 10 matrices U , the Fourier transform and its (−1)-version, and the eight Hartley-
type transforms. Note, however, that there are also other 16 discrete transforms of complexity O(n log2 n),
sine-type and the cosine-type transforms. See [],[].

Exercise. Let Un = U be the Hartley matrix, i.e. U = 1√
n
(cos 2ijπ

n + sin 2ijπ
n )n−1

i,j=0. Then UT = U = U−1,

and

U2n =
1√
2

[

I R
I −R

] [

Un O
O Un

]

Qn,2,

R = d(c)+d(s)JΠ1, ch = cosϕh, sh = sinϕh, ϕh = hπ/n, h = 0, 1, . . . , n−1, Qn,2z = [z0 z2 · · · z2n−2 z1 z3 · · · z2n−1]
T .

Exercise G. Prove that the n × n matrix G = Gn defined by

Gij =
1√
n

(cos
(2i + 1)(2j + 1)π

2n
+ sin

(2i + 1)(2j + 1)π

2n
), i, j = 0, . . . , n − 1,

is symmetric, persymmetric, real, unitary, and satisfies the identity:

Gn =
1√
2

[

R+ R−
−R−J R+J

] [

Gn/2 0
0 Gn/2

]

Q, R± = Dc ± DsJ,

(J n
2 × n

2 anti-identity) for some suitable n
2 × n

2 diagonal matrices Dc, Ds. Prove, moreover, that each row of
Gn has at least a zero entry when n = 2+4s. This is like to say, that a matrix in the space {Gd(z)G : z ∈ Cn}
is not uniquely defined from any of its rows.


