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In this short lecture we would like to propose some inequalities that
use the eigenproperties of modularity matrices to analyze the community
structure of a network. Complex networks appear in a large variety of ap-
plications, important examples are the World Wide Web, biological networks
like food webs or protein protein interaction networks, social networks, com-
munication networks, and many other. Loosely speaking a complex network
is a graph which occur in real life, therefore we need some standard graph
theory concepts. Let me fix some preliminary notation and definition:

A complex network is modelled by a graph G and is assumed for the sake
of simplicity to be finite, simple, undirected, unoriented and loop-
free. It turns out that G is the pair (V,E) where V is the set of n nodes of
the graph and E ⊆ V ×V is the set of edges. A natural bijection there exists
between graphs and the cone of entrywise nonnegative matrices, indeed to
any such G we can associate a unique nonnegative adjacency matrix A. For
our discussion, in particular, A will be a symmetric matrix with boolean
entries, i.e. aij and aji are either 1, if nodes i and j are joined by an edge,
or 0, otherwise.

1 Community detection

The discover and description of communities in a network is a central prob-
lem in modern graph analysis. Observations on real life graphs reveal that
complex networks are intrinsically divided into groups. Think for instance
at a network describing the scientific collaborations between a set of re-
searchers, everybody would expect it to be divided into groups depending
on the scientific interests and the geographical distance among the individ-
uals, for instance. Similarly for a social network describing the friendship
relations between a group of people, see for example Figure 1 where the
friendship relations between students of an high-school in the United States
are represented. So given a generic graph describing some real life interac-
tion, the community detection problem consists in discovering and revealing
the groups (if any) in which it is subdivided.
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Figure 1: Network of friendships between US high-school students

Given two sets S, T ⊆ V let

ein(S) = 2|{ij ∈ E | i, j ∈ S}| e(S, T ) = |{ij ∈ E | i ∈ S, j ∈ T}|

An informal statement of the community detection problem is the following:

find the natural partition S1, . . . , Sm of V such that ein(Si) contains (∗)
many edges and e(Si, Sj) contains few edges, when i 6= j.

Here I use the word “natural” to stress the fact that such partition is a
property of the network itself. The size of each Si and the number m are
not specified and may vary significantly from one network to another.

Of course the problem in this form is not well posed, at least we need to
formalize the concepts of “many” and “few”. Let me devote the remaining
part of the section to briefly recall how the modularity function is used to
such aim.

Let G = (V,E) be a given connected graph. Let A be its adjacency
matrix and 1 be the vector of all ones. The degree vector of G is given by

d = A1 di = |{ij ∈ E | j ∈ V }|

Consider any subset S ⊆ V . The characteristic vector of S is denoted by
1S and is defined by

(1S)i =

{
1 if i ∈ S
0 otherwise

,
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whereas the volume of S is the sum of the degrees of the vertices in S, i.e.

volS =
∑
i∈S

di = 1T
Sd = 1T

SA1 = 2ein(S) + eout(S)

where eout(S) is a shorthand for e(S, S). Correspondingly, volG is commonly
used to denote the volume of the whole set V .

Definition 1.1 Let S ⊆ V , and let G(S) be the induced subgraph. The
principal submatrix of A corresponding to the vertices in S is the adjacecncy
matrix of G(S) and is denoted by A(S).
The modularity of S is

Q(S) = ein(S)− (volS)2

volG
,

and if Q(S) > 0, we say that G(S) is a module in G.

Simple algebraic manipulations can be used to show that Q(S) = Q(S),
indeed:

Q(S) = volS − eout(S)︸ ︷︷ ︸
ein(S)

−(volS)2

volG

= volS

(
1− volS

volG

)
− eout(S)

=
volS · volS

volG
− eout(S)

which is symmetric in S and S.
The modularity matrix of G has been introduced in [New06a] as the

following rank one perturbation of A:

M = A− 1

volG
ddT.

With the help of this matrix we can express Q(S) as the following quadratic
form:

Q(S) = 1T
SM1S . (1)

Undoubtely, the modularity of a vertex set is one of the most efficient in-
dicators of its consistency as a community in G. Indeed the usefulness of
Definition 1.1 lies in the fact that, in practice, if G(S) is a connected module
whose size is significant, then it can be actually recognized as a community
in G. Thus, for the sake of simplicity, we shall say that
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a connected graph G(S) such that Q(S) > 0 is a community in G.

Definition 1.1 leads naturally to an efficiency measure of a partitioning of
G into modules. Indeed, let S1, . . . , Sm be a partitioning of V into pairwise
disjoint subsets. The (normalized) modularity of S1, . . . , Sm is defined as

q(S1, . . . , Sk) =

k∑
i=1

q(Si) =

k∑
i=1

Q(Si)

|Si|
.

The normalization factor 1/volG is purely conventional and has been intro-
duced in [New06a, NG04] for compatibility with previous works, to settle
the value of q(S) in a range independent on G and m.

The problem of partitioning a graph into an arbitrary number of
subrgaphs whose overall modularity is maximized is known as the
modularity-based community detection problem and is a possible (and
very popular) rigorous formulation of the informal statement we have given
in (∗). Of course such optimization problem is not easy and deserve a deep
analysis.

First of all we should stress the fact that in this form the problem has not
a unique solution. Second, we see that the quantitiesQ(S) and q(S1, . . . , Sm)
appears to be related with the spectrum of M , due to the variational charac-
terization of the eigenvalues of a symmetric matrix. The first theorem that
I want to discuss shows indeed that, if {S1, . . . , Sm} is a partition that max-
imizes the modularity function on G, then m is not larger than the number
of positive eigenvalues of M , plus one. I shall discuss such result in the next
section

Upper bound on the number of modules

Given two subsets S, T ⊆ V , let us define their joint modularity as

Q(S, T ) = e(S, T )− volS volT

volG

and let us observe the following facts:

◦ Clearly, Q(S, T ) = Q(T, S) and Q(S) = Q(S, S). Furthermore, we can
express the joint modularity of S and T equivalently as

Q(S, T ) = 1T
SM1T .
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◦ From the equation (1S + 1T )TM(1S + 1T ) = 1T
SM1S + 1T

TM1T +
21T

SM1T we have

Q(S ∪ T ) = Q(S) +Q(T ) + 2Q(S, T ).

In particular, Q(S, T ) > 0 if and only if Q(S ∪ T ) > Q(S) + Q(T ).
It follows that if {S1, . . . , Sm} is a partition that maximizes the mod-
ularity it is necessary that the joint modularity of any two subset is
non-positive, i.e. Q(Si, Sj) ≤ 0 for any i 6= j, otherwise we can increase
the overall modularity by merging two subgraphs into one. Moreover,
if {S1, . . . , Sm} is a partition that maximizes the modularity and it has
minimal cardinality among all those partition that maximize q (recall
that the optimal partition is not unique in general), then Q(Si, Sj) < 0
for all i 6= j. As a consequence:

◦ If {S1, . . . , Sm} is a partition that maximizes the modularity, it has
minimal cardinality, and it is made up entirely by modules, then the
matrix

(LQ)ij =

{
Q(Si) > 0 i = j

Q(Si, Sj) < 0 i 6= j

is symmetric and irreducible.

We are ready for the announced theorem:

Theorem 1.2 Let {S1, . . . , Sk} be a partition that maximizes the mod-
ularity, which has minimal cardinality, and which is made up entirely by
modules. Then k ≤ π(M) + 1, where π(X) denotes the number of positive
eigenvalues of a matrix X.

Proof. Consider the matrix X = [1S1 · · ·1Sk
]. If LQ is defined as above then

LQ = XTMX

Furthermore, LQ is weakly diagonally dominant. Indeed,

k∑
j=1

(LQ)ij = 1T
Si
M

k∑
j=1

1Sj = 1T
Si
M1 = 0

thus (LQ)ii = −
∑

j 6=i(LQ)ij and 1 is an eigenvector with zero eigenvalue of
LQ. Now let

AQ = (aij)ij =

{
−Q(Si, Sj) = i 6= j

0 otherwise
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It follows that LQ is the Laplacian matrix of the weighted unoriented graph
GQ, whose adjacency matrix is AQ. We deduce that LQ is a symmetric
positive semidefinite matrix, with a zero eigenvalue which is associated to
the eigenvector 1.

Consider now the matrix

B = αI − LQ

and observe that for a sufficient large α > 0 (say α > maxiQ(Si)) it is
entrywise nonnegative and irreducible. Hence, by Perron-Frobenius theory,
its largest eigenvalue is simple. Since the eigenspaces of B and LQ coincide,
the zero eigenvalue of LQ must be simple.

We deduce that π(LQ) = k − 1, i.e. LQ has exactly k − 1 positive
eigenvalues. Let us finally observe that this implies that M has at least
k − 1 positive eigenvalues.

Given any vector v let me introduce the notation v to denote its nor-
malized counterpart, i.e. v = v/‖v‖. So that 1Si = 1Si/‖1Si‖ = 1Si |Si|−1.
Consider now any set of n − k real unitary vectors yk+1, . . . , yn such that
{1S1 , . . . ,1Sk

, yk+1, . . . , yn} is a set of orthonormal vectors (it would be suf-
ficient to require linear independence of course). Now let Z be the following
unitary matrix

Z =


...

...
...

...
1S1 · · · 1Sk

yk+1 · · · yn
...

...
...

...

 =
(
X Y

)
We immediately observe that there exists a nonsingular diagonal matrix D
such that X = XD.

Now consider a set {x1, . . . , xk} of orthonormal eigenvectors of LQ cor-
responding to the eigenvalues γ1, . . . , γk (one and only one of them is zero),
then (

xTi D
−1 0

)
(ZTMZ)

(
D−1xi

0

)
=
(
xTi D

−1 0
)( X

T

Y T

)
M
(
X Y

)( D−1xi
0

)

=
(
xTi D

−1 0
)( X

T
MX X

T
MY

Y TMX Y TMY

)(
D−1xi

0

)
= xTi D

−1(XD)TM(XD)D−1xi = xTi LQxi = γi
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It follows that there exists a linear vector space L of dimension k − 1 such
that xT(ZTMZ)x > 0, for all x ∈ L. Therefore π(ZTMZ) ≥ k−1 and since
ZTMZ and M are similar, we conclude that k ≤ π(M) + 1.

It is important to note that the theorem we have just stated actually
gives a sharp bound. Indeed there are several graphs for which the maximal
partition is made up by exactly π(M) + 1 modules. An example is the
circulant ring of cliques where G is made by n = pq nodes, divided as in the
picture below

G =

Cp

C2

C3

C1

q

q
q

each Gi is a complete graph on q nodes and each pair (Ci, Ci+1) is joined
by exactly q edges each having a weight of 1/q. The adjacency matrix is

A =


Eq q−1I · · · q−1I

q−1I Eq
. . .

. . .
. . . q−1I

q−1I q−1I Eq


where Eq = 11T − I, of order q × q. It can be shown that M has exactly
p− 1 positive eigenvalues, i.e. exactly the number of “communities” minus
one.

In the forthcoming discussion we shall consider a simpler version of the
community detection problem, known as the cut-version of the community
detection problem.

2 The cut-modularity of a graph

In what follows, we consider the cut version of the community detection
problem, that is the problem of finding a subset S ⊆ V having maximal
modularity (uniqueness is not ensured in the general case). More precisely,
we consider estimating the maximum

qG = max
S⊆V

q(S, S) = max
S⊆V

Q(S)
n

|S||S|
(2)
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by means of spectral techniques. The quantity qG is referred henceforth as
the cut-modularity of the graph G. The probably best known methods for
detecting a subset whose modularity well approximates qG are based on the
idea of spectral partitioning. The idea of such methods is quite simple and
reads as follows: we have already seen that, if

vS =
1

n
(|S|1S − |S|1S)

then vTSvS = |S||S|
n2 and vTSMvS = Q(S)/n, so that

vTSMvS

vTSvS
= q(S) + q(S) .

Observe now that vS can be wrote as vS = n1S −|S|1, thus it belongs to L,
the following subset of Rn: let {0, 1}n be the set of n-dimensional vectors
whose components are only 0 or 1, then

L = {nx− ‖x‖1 | x ∈ {0, 1}n}

Clearly

qG = max
v∈L

vTMv

vTv
.

Now let m1 ≥ · · · ≥ mn be the eigenvalues of M and u1, . . . , un the corre-
sponding orthogonal eigenvectors. Then

M =
n∑
i=1

miuiu
T
i and qG = max

v∈L

n∑
i=1

mi
(uTi v)2

‖v‖2
.

Therefore it is clear that, if v could be chosen to be proportional to u1, then
the former sum would be maximized and it would equal a positive multiple
of m1. However the constrain v ∈ L prevents us to such a simple choice and
makes the optimization problem much more difficult. In fact it has been
pointed out in several works, see e.g., [New06b, New06a], that it is extremely
unlikely that a simple procedure exists for finding the optimal v ∈ L. As a
consequence the spectral partitioning based methods essentially select
v accordingly with the sign of the elements in u1, by setting

v = sing(u1) i.e. vi =

{
1 if (u1)i is positive (or nonnegative)

0 otherwise
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Then the vertex set V is partitioned into S+ = {i ∈ V | vi = 1} and S+ = V \
S+, G(S+) is proposed as an approximation of the module having maximal
modularity in G and, analogously, m1 is proposed as an approximation of
the modularity qG.

Although the described procedure proposes the subgraph G(S+) as a
leading module, next theorem will show that if q(S+) > 0 then G(S+) is
indeed a community.

Given a real symmetric matrix X, let me write λi(X) to denote the ith

eigenvalue ofX, according to the non-increasing order λ1(X) ≥ · · · ≥ λn(X).
We need the following lemmas

Lemma 2.1 Let y be a nonzero real vector, and let X be a real symmetric
matrix. Then

λ1(X) ≥ λ1(X − yyT) ≥ λ2(X)

Lemma 2.2 Let A ≥ O be irreducible. Let λ1(A) ≥ µ ≥ λ2(A) and let u
be such that Au ≥ µu. If S+ = {i | ui ≥ 0}, then G(S+) is connected.

Proof. Assume by contradiction that G(S+) has two distinct connected com-
ponents, and let uT = (uT1 , u

T
2 , u

T
3 ). Each ui corresponds to a distinct com-

ponent of G(S+), as in the picture below

u1

u3

u2

S+

V \ S+
G

TT JJ

oo
//

Note that by the hypothesis we have done the following entrywise inequality
holds

u3 < 0

Now, up to a permutation, we have the following block structure

µ

 u1
u2
u3

 ≤
 A1 B1

A2 B2

BT
1 BT

2 B3

 u1
u2
u3


Since A1 and A2 are the adjacency matrices of the two distinct connected
components of G(S+), then both of them are irreducible. By the Perron-
Frobenius theorem there exist vectors xi > 0 such that xTi Ai = ρ(Ai)x

T
i .
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Therefore µui ≤ Aiui +Biu3 implies

µ(xTi ui) ≤ ρ(Ai)(x
T
i ui) + xTi Biu3 < ρ(Ai)(x

T
i ui) i = 1, 2

Now, since xi > 0, we have xTi ui > 0 so that the previous inequalities imply

µ < ρ(Ai) i = 1, 2

By Cauchy’s interlacing theorem A has at least two eigenvalues strictly
larger than µ, that is λ2(A) > µ, but this is impossible since λ2(A) ≤ µ by
definition.

Theorem 2.3 Let u be the eigenvector corresponding to the largest nonzero
eigenvalue of M . Assume uTd ≥ 0 and let 0 ≤ σ ≤ uTd

volG . If Sσ = {i | ui ≥ σ}
then G(Sσ) is a connected subgraph of G.

Proof. Observe that

M(u− σ1) = A(u− σ1)− d dT(u− σ1)/volG ≤ A(u− σ1)

thus

A(u−σ1) ≥M(u−σ1) = Mu = λ1(M)(u−σ1)+λ1(M)σ1 ≥ λ1(M)(u−σ1)

Using Lemma 2.1 we get λ1(A) ≥ λ1(M) ≥ λ2(A), therefore by Lemma 2.2
we obtain the thesis.

Observe that despite the case of the Laplacian nodal domain, we can
not apply the above theorem to the set S− = {i | ui ≤ 0}, indeed the
hypothesis uTd ≥ 0 would not hold anymore. Of course one may guess that
a different argument could be used to overcome such a request. However,
unfortunately, if the sign of u is chosen so that G(S+) is connected, it is not
possible to ensure that G(S−) is connected as well, at least in the general
case. Indeed the following counterexample holds

Example 2.4 Let Sm be the star graph with m leaves (thus m+ 1 nodes).
Assume in addition that each vertex has a non-weighted self-loop except for
the root that has a self-loop with a positive weight β > 0. The adjacency
matrix of Sm and its degree vector are as follows

Sm =
1 . . . m

n

�� ��

β

HH

A =


1 1

. . .
...

1 1
1 · · · 1 β

 , d =


2
...
2

β +m


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It is not difficult to see that the eigenvalues of the modularity matrix M are
the following:

◦ 0, with associated eigenvector 1;

◦ 1, with multiplicity m− 1 and associated eigenvectors 1{1} − 1{j} for
j = 2, . . . ,m;

◦ λβ = (β−m)(m+1)/volG, with associated eigenvector uβ = (−1, . . . ,−1,m)T.

Observe that, when β is large enough we have

uTβd ≥ 0 and λβ > 1

thus λ1(M) = λβ, and then V \ S0 = {1, . . . ,m}. However G(S−) is com-
pletely non-connected, it consists of m distinct singletons, given by the leaf
nodes.
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