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1 Basic definitions

A (directed) graph is a pair G = (V,E) where V is a finite set of nodes (or vertices) and V ⊆ E×E
is a set of (oriented) edges. Nodes can be visualized as points in the plane, and edges as arrows
joining nodes. Hereafter, I generally assume V = {1, . . . , n} and write i → j to indicate that
(i, j) ∈ E. Edges of the form (i, i) are called loops.

The graph G = (V,E) can be completely described by its adjacency matrix, which is the n× n
matrix A such that Aij = 1 if j → i and Aij = 0 otherwise.1 The notation A = AG indicates that
A is the adjacency matrix of G.
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WW  AG =


0 0 0 0
1 0 0 0
1 1 0 0
0 1 0 0

 .

A graph is undirected (or non-oriented) when i → j ⇔ j → i, that is, when its adjacency matrix
is symmetric. In that case, edges are depicted as lines instead of arrows, and the notation i ∼ j
replaces both i→ j and j → i.

Let A = AG, and let v ∈ Rn. If we consider vi as a score placed on node i, then it is useful
to look at the matrix-vector product w = Av as propagating the scores along the edges of G. A
more formal result is the following, whose simple proof proceeds by induction and is omitted for
brevity:

Lemma 1.1. Let A = AG. For any k ∈ N and i, j = 1, . . . , n the value of (Ak)ij is equal to the
number of different walks of length k starting from j and ending in i.

Hereafter, a walk of length k ≥ 1 in G is any sequence of nodes i0, i1, . . . , ik such that ij−1 → ij
(or ij−1 ∼ ij in the undirected case) for j = 1, . . . , k

For any given matrix A ∈ Rn×n, the graph associated to A is the graph GA = (V,E) such that
V = {1, . . . , n} and j → i⇐⇒ Aij 6= 0. Thus, if the entries of A belong to the set {0, 1} then A is
the adjacency matrix of GA. Other useful notations are the following:

• An all-zeros matrix is denoted by O. An all-ones vector is denoted by 1.

• Inequality operators like ≥ or > are extended to matrices and vectors in the componentwise
sense; for example, A ≥ O means that all elements of A are nonnegative.

1.1 Irreducible matrices

Definition 1.2. The matrix A ∈ Rn×n is reducible if there is a permutation matrix P such that
the matrix B = PAPT is in (lower) block triangular form:

B = PAPT =

(
B11 B12

O B22

)
,

1 Various authors define the adjacency matrix as Aij = 1 ⇔ i → j. I prefer the other definition for simplicity of
subsequent notations.
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where diagonal blocks B11, B22 are square matrices. An irreducible matrix is a matrix that is not
reducible.

Definition 1.3. A graph is strongly connected if any two nodes are connected by a walk.

The two preceding definitions are connected by the following important result:

Theorem 1.4. A matrix A ∈ Rn×n is irreducible if and only if GA is strongly connected.

Proof. Suppose that A is reducible. Apart of a permutation (which corresponds to a renum-
bering of the nodes of GA) we can assume that A is already in reduced block triangular form:

A =

(
A11 A12

O A22

)
, A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 , (1)

with n1+n2 = n. Hence, in GA there are no edges connecting nodes 1, . . . , n1 to nodes n1+1, . . . , n.
As a consequence, there are no walks going from nodes n1 + 1, . . . , n to nodes 1, . . . , n1, and the
graph is not strongly connected.

Conversely, if GA is not strongly connected then there are two distinct nodes, say i and j, such
that there is no walk from i to j. Let J be the set of all nodes that cannot be reached by a walk
starting from i, and let I be its complementary set. Without loss of generality, we can suppose
that J = {1, . . . , n1} (note that it’s not empty, since j ∈ J ) and I = {n1 + 1, . . . , n}. Clearly, A
has the form (1), hence it is reducible.

2 A glimpse to Perron–Frobenius theory

Quoting from [2, p. 662]: “The Perron–Frobenius theory is elegant. It is a testament to the fact
that beautiful mathematics eventually tends to be useful, and useful mathematics eventually tends
to be beautiful.”

Theorem 2.1 (Perron–Frobenius). Let A ∈ Rn×n be an irreducible, nonnegative matrix. Then,

1. A has a positive eigenvalue equal to ρ(A).

2. To ρ(A) corresponds a positive eigenvector x.

3. ρ(A) is a simple eigenvalue of A, that is, corresponds to a single Jordan block of order 1.

4. ρ(A) increases (or decreases) when any entry of A increases (or decreases, respectively). That
is, if A and B are two nonnegative, irreducible matrices with O ≤ A ≤ B and A 6= B then
ρ(A) < ρ(B).

It is usual to call ρ(A) the Perron eigenvalue of A. Any associated positive eigenvector is a
Perron eigenvector. Before proceeding to the proof of Theorem 2.1, it is useful to collect hereafter
some facts from matrix theory.

Lemma 2.2. If A ∈ Rn×n is an irreducible, nonnegative matrix then (I +A)n−1 > O.

Hint: (I + A)n−1 is a linear combination of I, A, . . . , An−1 with positive coefficients. Use
Theorem 1.4 and the “score propagation” argument to show that any column of (I + A)n−1 is
positive.

Lemma 2.3. For any square matrix M , if ρ(M) < 1 then the matrix series
∑∞
k=0M

k converges,
and

∑∞
k=0M

k = (I −M)−1.

Lemma 2.4. Let Ax = λx. Then, λ is multiple if and only if there exists y such that AT y = λy
and xT y = 0.

Hint: The proof of the last two facts relies on the Jordan normal form of A. Actually, it is
sufficient to consider just two simple cases: (1) A is diagonalizable; (2) A consists of a single
nontrivial Jordan block. In fact, complete proofs can be established on the basis of the discussion
of these two cases.
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2.1 Proof of Theorem 2.1

The following proof is largely based on the unpublished technical report by G. W. Stewart [3].
Various details have been added or adjusted after discussing with students of the Rome-Moscow
school.

First of all, observe that if A ≥ O is irreducible then ρ(A) > 0. In fact, if ρ(A) = 0 then A is
nilpotent, that is, there exists a positive integer m such that Am = O. In particular, Ame1 = 0.
According to the “score propagation” interpretation of matrix-vector products Ae1, A

2e1, . . ., we
must conclude that all walks in GA starting from node 1 sooner or later arrive to nodes without
outgoing edges. This fact contradicts the fact that, owing to Theorem 1.4, GA is strongly connected.

By replacing A with A/ρ(A), we may assume that ρ(A) = 1. For any 0 < τ < 1, the matrix
I − τA is nonsingular (hint: its eigenvalues lie in the circle {z ∈ C : |1− z| ≤ τ}). Hence, let

xτ = (I − τA)−11 = 1 + τA1 + τ2A21 + . . .

The series converges (owing to Lemma 2.3) and all terms are ≥ 0. Hence xτ ≥ 0. Its 1-norm is

‖xτ‖1 = 1Txτ =

∞∑
k=0

τk1TAk1.

We want to prove that ‖xτ‖1 →∞ as τ → 1. In fact, note that

1TAk1 ≥ max
i

(Ak1)i = ‖Ak‖∞ ≥ ρ(Ak) = ρ(A)k = 1,

hence ‖xτ‖1 ≥
∑∞
k=0 τ

k = 1/(1− τ).
The normalized vectors xτ/‖xτ‖1 lie on a compact (= closed and bounded) set. Hence, we can

choose a sequence τi → 1 such that xτi/‖xτi‖1 → x ≥ 0. Owing to continuity,

0 = lim
i→∞

1

‖xτi‖1
1 = lim

i→∞

1

‖xτi‖1
(I − τiA)xτi = (I −A)x.

Thus Ax = x, that is, x is an eigenvector of A corresponding to 1 = ρ(A). To show that x > 0
it is sufficient to observe that, since (I + A)x = 2x and (I + A)n−1 > O (Lemma 2.2), we have
0 < (I +A)n−1x = 2n−1x.

If ρ(A) is not a simple eigenvalue then by Lemma 2.4 there exists a vector y such that yTA =
ρ(A)yT and yTx = 0. Since x is positive, yT must have both positive and negative entries (otherwise
yTx > 0). Let P = {i : yi ≥ 0} and N = {i : yi < 0}. Both sets are not empty and, without loss
in generality, we can assume that P = {1, . . . , n1} and N = {n1 + 1, . . . , n}.

Let z be the vector defined as

zj =

{
yj j ∈ P
0 j ∈ N .

It is not difficult to see that ρ(A)zT ≤ zTA. Moreover, because of irreducibility, there exists i ∈ N
and j ∈ P such that Aij > 0; otherwise, A is as in (1). Consequently,

ρ(A)zj = ρ(A)yj =
∑
i∈P

Aijyi +
∑
i∈N

Aijyi

<
∑
i∈P

Aijyi =

n∑
i=1

Aijzi = (zTA)j .

Thus, the inequality ρ(A)zT ≤ zTA is strict in at least one entry in P. Oving to the positivity of
x we deduce

ρ(A)zTx = zTAx < ρ(A)zTx,

a contradiction.

Before completing the proof of Theorem 2.1, let’s prove a result of independent interest:

Lemma 2.5. Let A ≥ O be irreducible. Suppose that for some vector w ≥ 0 and scalars α, β ≥ 0
we have αw ≤ Aw ≤ βw, with strict inequalities in at least one entry. Then α < ρ(A) < β.
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Proof. Since AT is nonnegative and irreducible (why?), then there exists a vector y > 0 such
that yTA = ρ(A)yT . We have yTw > 0 and moreover,

αyTw < yTAw < βyTw,

and the claim follows from the identity yTAw = ρ(A)yTw.

Finally, let z be a Perroneigenvector of B. We have Az � Bz = ρ(B)z, and the last part of
Theorem 2.1 follows from the rightmost inequality of Lemma 2.5.

Exercise 2.6. Let A ≥ O be irreducible. Let α = mini
∑
j Aij and β = maxi

∑
j Aij . Prove that

(1) if α = β then ρ(A) = α; (2) if α < β then α < ρ(A) < β.

2.2 Primitive matrices

One more useful result belonging to the Perron–Frobenius theory is the following:

Theorem 2.7 (O. Perron). If A > O then there is only one eigenvalue with modulus ρ(A).

Proof. For some sufficiently small ε > 0, the matrix A− εI is still positive and, using Theorem
2.1, ρ(A − εI) = ρ(A) − ε. On the other hand, if λ 6= ρ(A) is another eigenvalue of A such that
|λ| = ρ(A), then λ− ε is an eigenvalue of A− εI with |λ− ε| > ρ(A− εI), a contradiction.

It is possible to extend Theorem 2.7 to any matrix A ≥ O with the following property:

There exists a positive integer m such that Am > O. (2)

In fact, if λ 6= ρ(A) is an eigenvalue on the spectral circle of A then λm belongs to the spectral
circle of Am, thus violating Theorem 2.7.

Actually, Frobenius called primitive any matrix A ≥ O having ρ(A) as the sole eigenvalue on
the spectral circle {λ ∈ C : |λ| = ρ(A)}, and proved that a matrix is primitive if and only if it
fulfills the condition (2). Note that a primitive matrix is necessarily irreducible, but the converse
is not true. Hence, a primitive, nonnegative matrix A has ρ(A) as unique eigenvalue with largest
modulus. All other eigenvalues are smaller in modulus.

Remark 2.8. Theorem 2.7 allows us to conclude that if we apply the (normalized version of the)
power method to a nonnegative, primitive matrix (starting from a positive vector, e.g., 1) then the
method will converge to a Perron eigenpair. This fact is not true for a generic irreducible A ≥ O.
For example, examine the behaviour of the power method applied to the matrix

A =

(
0 2

1/2 0

)
,

which is nonnegative and irreducible but not primitive (why?).

3 Complements: Bounding perturbations on Perron vectors

The forthcoming theorem provides a bound on the relative change in a Perron eigenvector when
some matrix rows are changed. The result states that when a few rows of a nonnegative matrix
are perturbed then the relative changes in the corresponding elements of the Perron vector bound
the relative changes in the other elements:

Theorem 3.1 ([1]). Let A, Â be irreducible, nonegative matrices, let Ax = ρx and Âx̂ = ρ̂x̂ be
corresponding Perron eigenpairs. Let I be the index set of unchanged rows:

I = {i : Ai,: = Âi,:}.

Hence,

∀i ∈ I, ρ

ρ̂
min
j=1...n

x̂j
xj
≤ x̂i
xi
≤ ρ

ρ̂
max
j=1...n

x̂j
xj
.

In particular, if ρ̂ > ρ then maxi∈I
x̂i

xi
< maxj /∈I

x̂j

xj
while if ρ̂ < ρ then mini∈I

x̂i

xi
< minj /∈I

x̂j

xj
.
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Proof. Firstly, note that by hypotheses we have x, x̄ > 0. For any i ∈ I we have

x̂i
xi

=
ρ̂x̂i
ρ̂xi

=
1

ρ̂xi

∑
k

Âij x̂j

=
1

ρ̂xi

∑
k

Aijxj
x̂j
xj

≤ 1

ρ̂xi

[
max
j

x̂j
xj

]
ρxi =

ρ

ρ̂

[
max
j

x̂j
xj

]
.

The opposite inequality is obtained analogously. Furthermore, if ρ/ρ̂ < 1 then maxi∈I
x̂i

xi
<

maxj
x̂j

xj
, whence maxj

x̂j

xj
= maxj /∈I

x̂j

xj
, and analogously for the other inequality when ρ/ρ̂ > 1.

Exercise 3.2. Prove the following result:2 Let v be a nonnegative vector, let B = A + eiv
T . If

x, y are positive Perron vectors of A and B, respectively, then yi/xi > yj/xj for j 6= i.

4 Applications: Epidemics on graphs

If the graph G represents a computer network, or a social network, and A = AG, then the number
ρ(A) plays an important role in modelling (computer or biologic, respectively) virus propagation
in G. The smaller ρ(A), the larger the robustness of the network against the spread of viruses.
Hereafter, I present a simple virus propagation model which has been discussed e.g., in [5, §2.7]
and [4].3

Consider a virus spreading on G, where at each time step, a contagious node may infect its
susceptible neighbors with probability µ (virus birth rate). At each time step, an infected node
may also be cured with probability β (virus curing rate). If the number pi(t) measures the amount
of infection of node i at time t, then the model is

pi(t) = (1− β)pi(t− 1) + µ
∑
j:j→i

pj(t− 1),

where p(t) = (p1(t), . . . , pn(t))T and p(0) is the initial state of infection. In matrix form,

p(t) = ((1− β)I + µA)p(t− 1).

Exercise 4.1. Prove that p(t)→ 0 as t→∞ for all initial states p(0) if and only if ρ(A) < β/µ.
You can assume that A is irreducible, but the claim is true in the most general case.

5 Exercises and problems

Exercises marked with a star (?) are requested for the final evaluation.

1. Let A ≥ O be irreducible. Prove that if z ≥ 0 is an eigenvector of A then it is the Perron
eigenvector of A.

Hint: Let y : yTA = ρ(A)yT . Evaluate ρ(A)yT z.

2. Let A ≥ O. Suppose (λI −A)−1 exists and is nonnegative. Then λ > ρ(A).

Hint: Let (µ, x) be a Perron eigenpair of (λI − A)−1. Deduce Ax = (λ − 1/µ)x and prove
that x is a Perron vector of A.

3. (?) A graph G = (V,E) is called bipartite if V = V1∪V2, V1∩V2 = ∅, and every edge belongs
to either V1 × V2 or V2 × V1.

(a) Prove that AG is not primitive.

2 Found in L. Elsner, C. Johnson, M. Neumann; Czech. Math. J. 32 (1982), 99–109.
3 Another model of virus propagation in computer networks, leading to the same conclusion concerning ρ(A), has

been developed in Van Mieghem P., Omic J., Kooij R., Virus spread in networks, IEEE/ACM Trans. Netw. 17
(2009) 1–14.
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(b) Assume that G is undirected. Find all eigenpairs (λ, x) of AG with |λ| = ρ(AG).

4. (?) Let A ≥ O be irreducible. Prove that if there exists an index i such that Aii > 0 then A
is primitive.

5. (?) Let O ≤ A � B and let B be irreducible. Prove that ρ(A) < ρ(B).
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[5] D. Cvetković, S. Simić. Graph spectra in Computer Science. Lin. Algebra Appl., 434 (2011),
1545–1562.

Last update: August 29, 2014


