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1 A brief introduction to the analysis of complex networks

Complex networks is a common name for various real networks which are usually presented by
graphs with a large number of vertices. Here belong Internet graphs, phone graphs, e-mail graphs,
social networks and many other. The term network analysis refers to a wealth of mathematical
techniques aiming at describing the structure, function, and evolution, of complex networks.

• One of the main tasks in network analysis is the localization of nodes that, in some sense,
are the “most important” in a given graph. The main tool to quantify the relevance of nodes
in a graph is through the computation of suitably defined centrality indices.

Many centrality indices have been invented during time. Each one of them refers to a
particular definition of “importance” or “relevance” that is most useful in a given context.

• Graph partitioning is the problem of dividing the vertices of a graph into a given number
of disjoint subsets of given sizes such that the total weight of edges between such sets is
minimized. The best known example of a graph partitioning problem is the problem of
dividing a graph into two subsets of comparable size, such that the number of edges between
them is minimized.

• Community detection differs from graph partitioning in that the number and size of the
subsets into which the network is divided are generally not apriori specified. Instead it is
assumed that the graph is intrinsically structured into communities or groups of vertices
which are more or less evidently delimited, the aim being to reveal the presence and the
consistency of such groups.

1.1 Notations and definitions

Two graphs G = (V,E) and G′ = (V,E′) are called isomorphic if there exists a permutation matrix
P such that AG′ = PAGP

T .

Let A = AG. The in-degree and the out-degree of node i are respectively the numbers

dini =

n∑
j=1

Aij , douti =

n∑
j=1

Aji.

They represent the number (or overall weight) of edges that arrive to or depart from node i,
respectively. If G is not oriented the two numbers are the same and their common value is the
degree di.

Let V = {1, . . . , n} and let Gn be the set of all graphs whose node set is V . A graph invariant
is any function f : Gn 7→ R which is invariant under graph isomorphisms: If A′G = PAGP

T then
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f(G) = f(G′). A centrality index is any function c : Gn 7→ Rn such that if A′G = PAGP
T then

Pc(G) = c(G′).

The degree vectors din = A1 and dout = AT1 are the most simple (somehow trivial) examples
of a centrality index. Clearly, 1T dout = 1T dout, and the sum is equal to the total edge weight of G,
which is a graph invariant called volume. Many interesting graph invariants and centrality indices
are based on linear algebraic properties (in particular, eigenpairs) of AG and variations thereof.

Remark 1.1. Let G ∈ Gn and let A = AG. Let c : Gn 7→ Rn be a centrality index. Suppose that
there exists a nontrivial permutation matrix P such that A = PTAP (that is, the graph owns a
nontrivial automorphism). Then for all i = 1 . . . , n the centrality index of node i is the same as
that of node j, where ej = Pei.

2 Eigenvector centralities

The purpose of this section is to describe some of the most important centrality indices, whose
definition is largely based on tools and concepts borrowed from linear algebra and matrix analysis.
They are the Bonacich index, PageRank, and HITS scores. The common feature shared by these
indices is that they are Perron eigenvectors of suitably defined nonnegative matrices.

2.1 The Bonacich index

One of the first centrality indices (besides degrees) was introduced by the american sociologist
Bonacich [1]. Let G be a directed graph. For simplicity, assume it is strongly connected, and let
A = AG. The original idea is that a node is important it is connected to other important nodes.
This sort of circular defintion can be formalized rigorously by assuming that the score of node i is
proportional to the sum of scores of all nodes j such that i→ j:

λbi =
∑
j:j→i

bj =

n∑
j=1

Ajibj ,

where A = AG. Hence, the vector of Bonacich indices fulflills the eigenvalue equation AT b =
λb. Among the possible solutions of the previous equation, the Bonacich index is the one which
corresponds to the Perron eigenpair of AT . In fact, if G is strongly connected then the Bonacich
score vector b = (b1, . . . , bn)T immediately obtains a number of useful properties from Perron–
Frobenius theory:

• It is uniquely defined, apart of a scaling factor; its entries are positive (every node gets a
nonzero score).

• If we add a new edge i → j to G then the node whose Bonacich index receives the largest
increase is i (by Dietzenbacher theorem), consistently to the idea that its influence has
increased.

Remark 2.1. Recall that the number (Ak)ij represents the number of distinct paths from node j to
node i whose length is k. If A is primitive then we can compute the Bonacich index by applying the
(normalized) power method to AT . Hence, apart of a scaling factor, b = limk→∞(AT )k1/‖(AT )k1‖.
In particular, bi is proportional to limit for k → ∞ of the number of different paths whose length
is k from node i to every node in the graph. Thus a node with a large Bonacich index is a node
that originates many long paths.

Exercise 2.2. A star graph with n nodes is the undirected graph whose adjacency matrix is

A =


0 1 · · · 1
1 0 · · · 0
...

...
...

1 0 · · · 0

 ∈ Rn×n.

Prove that the spectrum of A is {−ρ, 0, ρ} and a Perron eigenvector of A (which contains the
Bonacich centrality index of the nodes) is x = (ρ, 1, . . . , 1)T where ρ =

√
n− 1.
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2.2 PageRank

One of the best known centrality indices for arbitrary graphs is PageRank, whose fortune is due
to its usage in the Google search engine [5].

The original formula by S. Brin and L. Page [2] defines the PageRank vector π = (π1, . . . , πn)T

of a graph G as the solution of the following linear system:

πi = (1− α) + α
∑
j:j→i

πj
doutj

,

where α ∈ (0, 1) is a fixed constant called the damping factor, originally set to α = 0.85. In matrix
form,

(I − αM)π = (1− α)1, (1)

where M ≥ O is the so-called link matrix which is defined as

Mij =

{
Aij/d

out
j if doutj > 0

0 otherwise

and A = AG.
For simplicity of exposition, hereafter I assume that all nodes in G have at least one outgoing

edge, that is, dout > 0. In this case, the sum of all entries in any column of M is 1. Unfortunately,
M is seldom irreducible. Nevertheless, we can say something about ρ(M):

Lemma 2.3. ρ(M) = 1.

Proof. Since M ≥ O, there exists x ≥ 0 such that Mx = ρ(M)x. Moreover, we can rewrite∑
iMij = 1 as MT1 = 1. Hence, 1Tx = 1TMx = ρ(M)1Tx, and the proof is complete, by

observing that 1Tx > 0.

The surprise is that there exists a matrix Γ > O (which is called Google matrix) such that,
apart of a scaling factor, π is a Perron–Frobenius eigenvector of Γ.

Theorem 2.4. Let Γ ∈ Rn×n be the positive matrix defined as

Γ = αM +
1− α
n

11T .

for 0 < α < 1. Then, ρ(Γ) = 1 and the vector π defined in (1) is a Perron eigenvector.

Proof. Observe that Γ > O by construction; in particular, it is primitive, hence irreducible.
Simple computations show that ΓT1 = 1, so that ρ(Γ) = 1.

Finally, let x be a Perron eigenvector of Γ normalized so that 1Tx = n. Then,

x = Γx = αMx+
1− α
n

11Tx = αMx+ (1− α)1.

Rearranging terms, (I − αM)x = (1− α)1, which is (1).
To complete the proof it remains to prove that I − αM is nonsingular. Using Lemma 2.3 we

can derive that all eigenvalues of I − αM are contained in the circle {z ∈ C : |1− z| ≤ α}, which
excludes 0 since α < 1 by hypothesis.

2.3 Hubs and Authorities

Exactly in the same year Brin and Page invented PageRank, J. Kleinberg introduced another
algorithm to evaluate the relevance of documents in a large hypertext, such as the internet [3, 5].
This algorithm (HITS, Hypertext Induced Topic Search) quantifies the importance of nodes in a
graph according to two centrality indices: the hub score and the authority score.

Very informally, the hub score of a node is a measure of how good it is as “access point”
or “portal”, while the authority score is a measure of how good a node is as “final document”.
Kleinberg original idea is that a node is a good hub if it points to good authorities; and a node is
a good authority if it is pointed by good hubs.
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This concept has been formalized by the following equations: Let hi and ai be the hub score
and authority score of node i, respectively. Then,

λhi =
∑
j:i→j

aj λai =
∑
j:j→i

hj , i = 1 . . . , n, (2)

where λ is a proportionality constant, to be defined. In matrix notations, λh = Aa and λa = ATh.
The two equations can be uncoupled as follows:

λ2h = ATAh, λ2a = AATa.

Let Mhub = ATA and Mauth = AAT be the hub matrix and the authority matrix, respectively.
These two matrices are symmetric, nonnegative, positive semidefinite, and have exactly the same
eigenvalues (why?). In particular, ρ(Mhub) = ρ(Mauth). The preferred solution to (2) corresponds
to Perron eigenvectors, with λ =

√
ρ(Mhub). Unfortunately, Mhub and Mauth are usually not

irreducible, even if the original graph is strongly connected.
As an exercise, let’s compute hub and authority scores of the following graph:

1

2

3

4





��
77

WW

The adjacency and hub matrix are

A =


0 0 0 0
1 0 0 0
1 1 0 0
0 1 0 0

 , Mhub = ATA =


2 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 .

The eigenvalues of Mhub are 3, 1, 0, 0. An eigenvector associated to ρ(Mhub) = 3 is h = (1, 1, 0, 0)T .
We can compute authority scores from the formula λa = Ah. We obtain a = (0, 1, 2, 1)T /

√
3.

We conclude that nodes 1 and 2 are good hubs, nodes 3 and 4 are not (indeed, they have no
outgoing links). The best authority node is 3, which is pointed by both best hubs. Node 1 is not
an authority, because it has no ingoing links.

Exercise 2.5. Suppose that in a given graph G there are two nodes, say i and j such that for
every k ∈ V it holds k → i⇒ k → j. Prove that ai ≤ aj .

HITS algorithm is essentially the power method (with normalization) applied to Mhub and
Mauth starting from the initial vector 1 [3]. However, the largest eigenvalue of these matrices may
be not simple, and this fact implies that hub scores and authority scores may be not uniquely
defined (apart of a scaling factor), since the convergence of the power method may be affected by
the choiche of the starting vector.

For example, consider

1

2 3

4
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 Mhub =


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 .

The eigenvalues of Mhub are 2, 2, 0, 0. Any vector of the form h = (α β β 0)T is an eigenvector
corresponding to ρ(Mhub) = 2. If we apply the power method to Mhub starting from (1 1 1 1)T we
obtain h ∼ (1 1 1 0)T , while if the starting vector is (1 0 0 0)T then we obtain h ∼ (1 0 0 0)T .

Various modifications have been devised in order to make hub-authority scores well defined
under rather general hypotheses, see e.g., [4]. One of these tricks is described in the following
exercise:
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Exercise 2.6. Let Â = A + εI where ε > 0 (note: this modification corresponds to adding a

loop with weight ε to every node in the graph) and let M̂hub = ÂT Â. Prove that if G is not

disconnected1 then M̂hub is irreducible.

Hint: M̂hub = ε(A+AT ) + other nonnegative matrices.

3 Exercises and problems

Exercises marked with a star (?) are requested for the final evaluation.

1. (?) For any given integers p, q ≥ 1, let G be the graph having 1 + p + pq nodes, which is
defined as follows:

• There is a root node, which is connected to p star nodes;

• every star node is connected to q peripheral nodes.

Compute the Bonachich centrality index for the nodes of this graph.

Use the preceding result to prove that the Bonacich index of a node is not an inccreasing
function of its degree.

2. (?) Let G = (V,E) be an undirected, connected graph. Consider the following centrality
indices for both nodes and edges: To any i ∈ V and ij ∈ E associate variables qi and eij
respectively, by means of these equations:

λqi =
∑
j:i∼j

eij , λeij = qi + qj .

where λ is a constant (depending on G) to be determined.

Discuss existence, uniqueness, positivity. . . (open ended problem).
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1 A graph is disconnected if its vertex set can be partitioned into two subsets, V = V1 ∪ V2 and V1 ∩ V2 = ∅, so
that no edge belongs to (V1 × V2) ∪ (V2 × V1).


