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NUMERICAL METHODS WITH
TENSORIZATION OF DATA

We consider typical problems of numerical analysis
(matrix computations, interpolation, optimization)
under the assumption that the input, output and all
intermediate data are represented by
tensors with many dimensions
(tens, hundreds, even thousands).

Of course, it assumes a very special structure of data.
But we have it in really many problems!
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THE CURSE OF DIMENSIONALITY

The main problem is that using arrays as means to
introduce tensors in many dimensions is infeasible:

I if d = 300 and n = 2, then such an array
contains 2300 � 1083 entries
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NEW REPRESENTATION FORMATS

Canonical polyadic and Tucker decompositions are of
limited use for our purposes (by different reasons).

New decompositions:
I TT (Tensor Train)
I HT (Hierarchical Tucker)
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REDUCTION OF DIMENSIONALITY

i1i2i3i4i5i6

i1i2 i3i4i5i6

i1 i2 i3i4 i5i6

i3 i4 i5 i6
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SCHEME FOR TT

i1i2i3i4i5i6

i1i2α i3i4i5i6α

i1β i2αβ i3i4γ i5i6αγ

i3δ i4γδ i5αη i6γη
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SCHEME FOR HT
i1i2i3i4i5i6

i1i2α i3i4i5i6α

i1β i2αβ

i2φ αβφ

i3i4γ i5i6αγ

i3δ i4γδ

i4ψ γδψ

i5i6ξ γηξ

i5ζ i6ξζ

i6ν ξζν
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THE BLESSING OF DIMENSIONALITY

TT and HT provide new representation formats for
d -tensors + algorithms with complexity linear in d .

Let the amount of data be N. In numerical analysis,
complexity O(N) is usually considered as a dream.

With ultimate tensorization we go beyond the dream:

since d ∼ logN, we may obtain complexity O(logN).
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BASIC TT ALGORITHMS

I TT rounding.
Like the rounding of machine numbers.
COMLEXITY = O(dnr 3).
ERROR 6

√
d − 1 · BEST ERROR.

I TT interpolation.
A tensor train is constructed from sufficiently few
elements of the tensor, the number of them is O(dnr 2).

I TT quantization and wavelets.
Low-dimensional → high-dimensional ⇒
algebraic wavelet tranbsforms (WTT).

In matrix problems the complexity may drop
from O(N) down to O(logN).
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SUMMATION AGREEMENT

Omit the symbol of summation. Assume summation
if the index in a product of quantities with indices is
repeated at least twice. Equations hold for all values
of other indices.
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SKELETON DECOMPOSITION

A = UV> =
r∑

α=1

u1α

. . .
umα

 [v1α . . . vnα
]

According to the summation agreement,

a(i , j) = u(i , α)v(j , α)
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CANONICAL AND TUCKER

CANONICAL DECOMPOSITION

a(i1 . . . id) = u1(i1α) . . . ud(idα)

TUCKER DECOMPOSITION

a(i1 . . . id) = g(α1 . . . αd)u1(i1α1) . . . ud(idαd)
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TENSOR TRAIN (TT) IN THREE DIMENSIONS

a(i1 ; i2i3) = g1(i1 ; α1)a1(α1 ; i2i3)

a1(α1i2 ; i3) = g2(α1i2 ; α2)g3(α2 ; i3)

TENSOR TRAIN (TT)

a(i1i2i3) = g1(i1α1)g2(α1i2α2)g3(α2i3)
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TENSOR TRAIN (TT) IN d DIMENSIONS

a(i1 . . . id) =

g1(i1α1)g2(α1i2α2) . . .
gd−1(αd−2id−1αd−1)gd(αd−1id)

a(i1 . . . id) =
d∏

k=1

gk(αk−1ikαk)
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KRONECKER REPRESENTATION
OF TENSOR TRAINS

A = G 1
α1
⊗ G 2

α1α2
⊗ . . .⊗ G d−1

αd−2αd−1
⊗ G d

αd−1

A is of size (m1 . . .md)× (n1 . . . nd).

G k
αk−1αk

is of size mk × nk .
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ADVANTAGES OF TENSOR-TRAIN
REPRESENTATION

The tensor is determined through
d tensor carriages gk(αk−1ikαk),
each of size rk−1 × nk × rk .

If the maximal size is r × n × r ,
then the number of representation parameters
does not exceed dnr 2 � nd .
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TENSOR TRAIN PROVIDES
STRUCTURED SKELETON DECOMPOSITIONS
OF UNFOLDING MATRICES

Ak = a(i1 . . . ik ; ik+1 . . . id) =

uk(i1 . . . ik ; αk) vk(αk ; ik+1 . . . id) = UkV>k

uk(i1 . . . ikαk) = g1(i1α1) . . . gk(αk−1ikαk)

vk(αk ik+1 . . . id) = gk+1(αk ik+1αk+1) . . . gd(αk−1id)
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TT RANKS ARE BOUNDED BY THE RANKS
OF UNFOLDING MATRICES

rk > rankAk , Ak = [a(i1 . . . ik ; ik+1 . . . id)]

Equalities are always possible.
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ORTHOGONAL TENSOR CARRIAGES

A tensor carriage g(αiβ) is called row orthogonal if
its first unfolding matrix g(α ; iβ) has orthonormal
rows.

A tensor carriage g(αiβ) is called column orthogonal
if its second unfolding matrix g(αi ; β) has
orthonormal columns.
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ORTHOGONALIZATION OF TENSOR
CARRIAGES

∀ tensor carriage g(αiβ) ∃ decomposition

g(αiβ) = h(αα′)q(α′iβ)

with q(α′iβ) being row orthogonal.

∀ tensor carriage g(αiβ) ∃ decomposition

g(αiβ) = q(αiβ′)h(β′β)

with q(αiβ′) being column orthogonal.
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PRODUCTS OF ORTHOGONAL TENSOR
CARRIAGES

A product of row (column) orthogonal tensor
carriages

p(αs , is . . . it , αt) =
t∏

k=s+1

gk(αk−1ikαk)

is also row (column) orthogonal.
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MAKING ALL CARRIAGES ORTHOGONAL

Orthogonalize the columns of g1 = q1h1, then
compute and orthogonalize h1g2 = q2h2. Thus,

g1g2 = q1q2h2

and after k steps

g1 . . . gk = q1 . . . qkhk .

Similarly for the row orhogonalization,

gk+1 . . . gd = hk+1zk+1 . . . zd .
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STRUCTURED ORTHOGONALIZATION

∀ TT decomposition a(i1 . . . id) =
d∏

s=1
gs(αs−1isαs)

∃ column qk and row zk orthogonal carriages s. t.

a(i1 . . . ik ; ik+1 . . . id) =(
k∏

s=1
qk(α′s−1isα

′
s)

)
Hk(α′k , α

′′
k)

(
d∏

s=k+1
zs(α′′s−1isα

′′
s )

)

qk and zk can be constructed in dnr 3 operations.
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CONSEQUENCE: STRUCTURED SVD
FOR ALL UNFOLDING MATRICES
IN O(dnr3) OPERATIONS

It suffices to compute SVD for the matrices
Hk(α′kα

′′
k).
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TENSOR APPROXIMATION VIA MATRIX
APPROXIMATION

We can approximate any fixed unfolding matrix using
its structured SVD:

a(i1 . . . ik ; ik+1 . . . id) = ak + ek

ak = Uk(i1 . . . ik ; α′k)σk(α′k)Vk(α′k ; ik+1 . . . id)

ek = ek(i1 . . . ik ; ik+1 . . . id)
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ERROR ORTHOGONALITY

Uk(i1 . . . ikα′k)ek(i1 . . . ik ; ik+1 . . . id) = 0

ek(i1 . . . ik+1 ; ik+1 . . . id)Vk(α′k ik+1 . . . id) = 0
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COROLLARY OF ERROR ORTHOGONALITY

Let ak be further approximated by a TT but so that
uk or vk are kept. Then the further error, say el , is
orthogonal to ek . Hence,

||ek + el ||2F = ||ek ||2F + ||el ||2F
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TENSOR-TRAIN ROUNDING

Approximate successively A1,A2, . . . ,Ad−1

with the error bound ε. Then

FINAL ERROR 6
√

d − 1 ε
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TENSOR INTERPOLATION

Interpolate an implicitly given tensor by a TT using
only small part of its elements, of order dnr 2.

Cross interpolation method for tensors is constructed
as a generalization of the cross method for matrices
(1995) and relies on the maximal volume principle
from the matrix theory.
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MAXIMAL VOLUME PRINCIPLE

THEOREM (Goreinov, Tyrtyshnikov) Let

A =

[
A11 A12

A21 A22

]
,

where A11 is a r × r block with maximal determinant
in modulus (volume) among all r × r blocks in A.
Then the rank-r matrix

Ar =

[
A11

A21

]
A−1

11

[
A11 A12

]
approximates A with the Chebyshev-norm error at
most in (r + 1)2 times larger than the error of best
approximation of rank r .
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BEST IS AN ENEMY OF GOOD

Move a good submatrix M in A to the upper r × r
block. Use right-side multiplications by nonsingular
matrices.

A =



1
. . .

1
ar+1,1 ... ar+1,r

... ... ...
an1 ... anr


NECESSARY FOR MAXIMAL VOLUME:
|aij | 6 1, r + 1 6 i 6 n, 1 6 j 6 r
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BEST IS AN ENEMY OF GOOD

COROLLARY OF MAXIMAL VOLUME

σmin(M) > 1/
√

r(n − r) + 1

ALGORITHM
I If |aij | > 1 + δ, then swap rows i and j .
I Make identity matrix in the first r rows by
right-side multiplication.

I Quit if |aij | < 1 + δ for all i , j . Otherwise repeat.
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MATRIX CROSS ALGORITHM

I Given initial column indices j1, ..., jr .
I Find good row indices i1, ..., ir in these columns.
I Find good column indices in the rows i1, ..., ir .
I Proceed choosing good columns and rows until
the skeleton cross approximations stabilize.

E.E.Tyrtyshnikov, Incomplete cross
approximation in the mosaic-skeleton method,
Computing 64, no. 4 (2000), 367–380.
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CROSS TENSOR-TRAIN INTERPOLATION
Let a1 = a(i1, i2, i3, i4). Seek crosses in the unfolding matrices.
On input: r initial columns in each. Select good rows.

A1 = [a(i1 ; i2, i3, i4)], J1 = {i (β1)
2 i (β1)

3 i (β1)
4 }

A2 = [a(i1, i2 ; i3, i4)], J2 = {i (β2)
3 i (β2)

4 }

A3 = [a(i1, i2, i3 ; i4)], J3 = {i (β3)
4 }

rows matrix skeleton decomposition
I1 = {i (α1)

1 } a1(i1 ; i2, i3, i4) a1 =
∑
α1

g1(i1;α1) a2(α1; i2, i3, i4)

I2 = {i (α2)
1 i (α2)

2 } a2(α1, i2 ; i3, i4) a2 =
∑
α2

g2(α1, i2; α2) a3(α2, i3; i4)

I3 = {i (α3)
1 i (α3)

2 i (α3)
3 } a3(α2, i3 ; i4) a3 =

∑
α3

g3(α2, i3; α3) g4(α3; i4)

Finally

a =
∑

α1,α2,α3,α4

g1(i1, α1) g2(α1, i2, α2) g3(α2, i3, α3) g4(α3, i4)
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QUANTIZATION OF DIMENSIONS

Increase the number of dimensions.

E.g. 2× . . .× 2.

Extreme case is conversion of a vector of size N = 2d

to a d -tensor of size 2× 2× . . .× 2.

Using TT format with bounded TT ranks may reduce
the complexity from O(N) to as little as O(log2 N).
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EXAMPLES OF QUANTIZATION

f (x) is a function on [0, 1]

a(i1, . . . , id) = f (ih), i =
i1
2

+
i2
22 + · · ·+ id

2d

The array of values of f is viewed as a tensor of size
2× · · · × 2.

EXAMPLE 1. f (x) = ex + e2x + e3x

ttrank= 2.7 ERROR=1.5e-14

EXAMPLE 2. f (x) = 1 + x + x2 + x3

ttrank= 3.4 ERROR=2.4e-14

EXAMPLE 3. f (x) = 1/(x − 0.1)

ttrank= 10.1 ERROR=5.4e-14
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THEOREMS

If there is an ε-approximation with separated variables

f (x + y) ≈
r∑

k=1

uk(x)vk(y), r = r(ε),

then a TT exists with error ε and TT-ranks 6 r .

If f (x) is a sum of r exponents, then an exact TT
exists with the ranks r .

For a polynomial of degree m an exact TT exists
with the ranks r = m + 1.

If f (x) = 1/(x − δ) then r = log ε−1 + log δ−1.
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ALGEBRAIC WAVELET FILTERS

a(i1 . . . id) = u1(i1α1)a1(α1i2 . . . id) + e1

u1(i1α1)u(i1α′1) = δ(α1, α
′
1)

a→ a1 = u1a→ a2 = u2a1 → a3 = u3a2 . . .
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TT QUADRATURE

I (d) =

∫
[0,1]d

sin(x1 + x2 + . . .+ xd) dx1dx2 . . . dxd =

Im
∫

[0,1]d
e i(x1+x2+...+xd) dx1dx2 . . . dxd = Im

((
e i − 1

i

)d
)

n nodes in each dimension ⇒ nd values in need!
TT interpolation method uses only small part (n = 11)

d I (d) Relative Error Timing
500 -7.287664e-10 2.370536e-12 4.64
1000 -2.637513e-19 3.482065e-11 11.60
2000 2.628834e-37 8.905594e-12 33.05
4000 9.400335e-74 2.284085e-10 105.49
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QTT QUADRATURE

∫ ∞
0

sinx
x

dx =
π

2

Truncate the domain and use the rule of rectangles.

Machine accuracy causes to use 277 values.
The vector of values is treated as a tensor of size
2× 2× . . .× 2.

TT-ranks 6 12 for the machine precision.
Less than 1 sec on notebook.
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TT IN QUANTUM CHEMISTRY

Really many dimensions are natural in quantum
molecular dynamics:

HΨ = (−1
2

∆ + V (R1, . . . ,Rf ))Ψ = EΨ

V is a Potential Energy Surface (PES)

Calculation of V requires to solve Schredinger
equation for a variety of coordinates of atoms
R1, . . . ,Rf . TT interpolation method uses only small
part of values of V from which it produces a suitable
TT approximation of PES.
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TT IN QUANTUM CHEMISTRY

Henon-Heiles PES:

V (q1, . . . , qf ) =
1
2

f∑
k=1

q2
k + λ

f−1∑
k=1

(
q2

kqk+1 −
1
3
q3

k

)

TT-ranks and timings (Oseledets-Khoromskij)
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SPECTRUM IN THE WHOLE

Use the evolution in time:

∂Ψ

∂t
= iHΨ, Ψ(0) = Ψ0.

Physical scheme reads Ψ(t) = e iHtΨ0, then we find
the autocorrelation function a(t) = (Ψ(t),Ψ0) and
its Fourier transform.
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SPECTRUM IN THE WHOLE

Henon-Heilse spectra for f = 2 and different
TT-ranks.
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SPECTRUM IN THE WHOLE

Henon-Heiles spectra for f = 4 and f = 10.
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TT FOR EQUATIONS WITH PARAMETERS

Diffusion equation on [0, 1]2. The diffusion
coefficients are constant in each of p × p square
subdomains, i.e. p2 parameters varing from 0.1 to 1.

256 points in each of parameters, space grid of size
256× 256. The solution for all values of parameters
is approximated by TT with relative accuracy 10−5:

Number of parameters Storage
4 8 Mb
16 24 Mb
64 78 Mb
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WTT FOR DATA COMPRESSION

f (x) = sin(100x)
A signal on uniform grid with the stepsize 1/2d on
0 6 x 6 1 converts into a tensor of size
2× 2× . . .× 2 with all TT-ranks = 2.
The Dobechis transform gives much more nonzeros:

ε storage(WTT) storage for
filters

storage(D4) storage(D8)

10−4 2 152 3338 880
10−6 2 152 19696 2010
10−8 2 152 117575 6570
10−10 2 152 845869 15703
10−12 2 152 1046647 49761

sin(100x), n = 2d , d = 20
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WTT FOR COMPRESSION OF MATRICES
WTT for vectorized matrices applies after reshaping:

a(i1 . . . id ; j1 . . . jd) → ã(i1j1 ; . . . ; id jd).

WTT compression with accuracy ε = 10−8 for the
Cauchy-Hilbert matrix

aij = 1/(i − j) for i 6= j , aii = 0.

n = 2d storage(WTT) storage(D4) storage(D8) storage(D20)
25 388 992 992 992
26 752 4032 3792 3348
27 1220 15750 13246 8662
28 1776 59470 41508 20970
29 2260 213392 102078 45638
210 2744 780590 215738 95754
211 3156 1538944 306880 176130
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TT IN DISCRETE OPTIMIZATION

Among all elements of a tensor given by TT find
minimum or maximum. Discrete optimization
problem is solved a an eigenvalue problem for
diagonal matrices. Block minimization of Raleigh
quotient in TT format, blocks of size 5, TT-ranks
6 5 (O.S.Lebedeva).

Function Domain Size Iter. (Ax , x) (Aei , ei )
ei ≈ x

Exact
max

3Q
i=1

(1+0.1 xi +sin xi ) [1, 50]3 215 30 428.2342 429.2342 429.2342

same [1, 50]3 230 50 430.7838 430.7845
3Q

i=1
(x + sin xi ) [1, 20]3 215 30 8181.2 8181.2 8181.2

same [1, 20]3 230 50 8181.2 8181.2
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CONCLUSIONS AND PERSPECTIVES

I TT algorithms (http://pub.inm.ras.ru) are
efficient new instruments for compression of
vectors and matrices. Storage and complexity
depend on matrix size logarithmically.

I Free access to a current version of TT-library:
http://spring.inm.ras.ru/osel.

I There are some theorems with TT-rank
estimates. Sharper and more general estimates
are to be derived. Difficulty is in nonlinearity of
TT decompositions.
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CONCLUSIONS AND PERSPECTIVES

I TT interpolation methods provide new efficient
methods for tabulation of functions of many
variables, also those that are hard to evaluate.

I There are examples of application of TT methods
for fast and accurate computation of
multidimensional integrals.

I TT methods are successfully applied to image
and signal processing and may compete with
other known methods.
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CONCLUSIONS AND PERSPECTIVES

I TT methods are a good base for numerical
solution of multidimensional problems of
quantum chemistry, quantum molecular
dynamics, optimization in parameters, model
reduction, multiparametric and stochastic
differential equations.
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