Applied spectral graph analysis—Exercises

Dario Fasino

This document contains warm-up and starred exercises for the course "Applied spectral graph analysis", held within the Rome-Moscow school on Matrix Methods and Applied Linear Algebra, September 2012. To obtain a positive evaluation students should submit the solution of starred exercises (as many as possible) by the end of September 2012 to the email adress dario.fasino@uniud.it.

Hereafter the following notations are used: X_{ij} is the (i, j)-entry of the matrix X; e_i is the *i*th canonical vector (i.e., the *i*th column of the identity matrix); e is a vector having all entries equal to 1; when a graph is considered, n denotes its size, and the graph is assumed to be (strongly) connected.

1 Warm-up exercises

1. If a node has no outlinks then its hub index is zero. Conversely, if a node has no inlinks then its authority index is zero. Why?

Hint: note that if $\deg^+(i) = 0$ then the *i*th row/column of the hub matrix is zero.

- 2. Let L be a Laplacian matrix, and let L^+ denote its Moore-Penrose inverse. Prove that $L^+ = (L + \frac{1}{n}ee^T)^{-1} \frac{1}{n}ee^T$.
- 3. The Randić index of a graph $\mathcal{G} = (V, E)$ whose degree sequence is $d_i = \deg(i)$, for $i = 1, \ldots, n$, is the topological network invariant defined as

$$R(\alpha) = \sum_{(i,j)\in E} (d_i d_j)^{\alpha} \qquad (\alpha \neq 0).$$

- (a) Compute $R(\alpha)$ for a starred star graph having center degree d_c and star degree d_s . Answer: $R(a) = d_s^{\alpha}(d_s - 1 + d_c^{\alpha+1})$.
- (b) Prove the following inequality between $R(\alpha)$ and the spectral radius of the adjacency matrix for a general graph:

$$R(\alpha) \le \rho(A) \Big(\sum_{i=1}^n d_i^{2\alpha}\Big).$$

Hint: let $v_i = d_i^{\alpha}$. Expand $(v^T A v) / (v^T v) \leq \rho(A)$.

2 Starred exercises

2.1 What is an irreducible matrix?

The matrix $A \in \mathbb{R}^{n \times n}$ is said to be *reducible* if there is a permutation matrix P such that the matrix $B = PAP^T$ is in (lower) block triangular form:

$$B = PAP^T = \begin{pmatrix} B_{11} & B_{12} \\ O & B_{22} \end{pmatrix},$$

diagonal blocks B_{11}, B_{22} being square matrices. An *irreducible* matrix is a matrix that is not reducible.

The graph associated to A is the digraph $\mathcal{G}(A) = (V, E)$ such that $V = \{1, \ldots, n\}$ and

$$(i,j) \in E \iff A_{ij} \neq 0.$$

Thus, if the entries of A belong to the set $\{0, 1\}$ then A is the adjacency matrix of $\mathcal{G}(A)$. Recall that a (di-)graph is *strongly connected* when any two nodes are connected by a walk. Prove the following claim:

Theorem 2.1. A matrix A is irreducible if and only if $\mathcal{G}(A)$ is strongly connected.

Hint: Firstly, note that we can safely assume that the entries of A belong to $\{0,1\}$. Remind the relationship between entries of A^k and walks of length k in $\mathcal{G}(A)$; and that the powers of a block triangular matrix are still block triangular.

2.2 A closeness centrality index

Let \mathcal{G} be a graph and let L be its Laplacian matrix. The *resistance distance* between nodes i and j is given by

$$R(i,j) = (e_i - e_j)^T L^+ (e_i - e_j).$$

Define the *current-flow closeness centrality* of node i as

$$C(i) = \frac{1}{n} \sum_{j=1}^{n} R(i, j).$$

- 1. Prove that the resistance distance is really a distance.
- 2. Prove that

$$C(i) = (L^+)_{ii} + \frac{1}{n} \operatorname{trace}(L^+).$$

2.3 HITS scores on a modified network

Suppose that in the digraph \mathcal{G} node j has no inlinks $(\deg^{-}(j) = 0)$. Let $i \ (i \neq j)$ be a node having positive hub score $(h_i > 0)$. We modify \mathcal{G} by adding the oriented edge (i, j). Prove the strict inequality

$$\forall \ell \neq i, \quad \frac{\bar{h}_{\ell}}{h_{\ell}} < \frac{\bar{h}_i}{h_i},$$

where \bar{h}_i is the updated hub score of node *i*, which shows that, for any fixed normalization, the hub score of node *i* gets the largest relative increase.

Hint: find a relationship between original and updated hub matrix; prove that the spectral radius of the updated hub matrix is strictly greater than the original.

2.4 A workload balancing process

To every node of a graph we allocate an initial workload $x_i(0) \in \mathbb{R}$, i = 1, ..., n. The workload is then updated at discrete time instants according to the following rule: At every time step, every node sends a fixed fraction $0 < \alpha < 1$ of its current workload to its neighbors (and receives their workload fractions):

$$x_i(t+1) = x_i(t) + \alpha \sum_{j:i \sim j} (x_j(t) - x_i(t)).$$

- 1. Prove that $\sum_{i=1}^{n} x_i(t)$ is constant over time.
- 2. Describe the stationary workload distributions.
- 3. Find a necessary and sufficient condition (in terms of the Laplacian spectrum) so that any initial workload distribution evolves toward a stationary distribution.

Last update: September 17, 2012