
COMPLEXITY IN MATRIX COMPUTATION (Paolo Zellini)

1. Matrix algorithms. Matrix by vector computation.

Most developments in numerical analysis reveal that computation con-
sists mainly of mathematical tasks which a variety of users would like to
delegate to a computer. Moreover, most well specified computations are
hidden, that is “the human user sees neither the data nor the output. In
a big calculation the data for a subtask (a Fourier transform, perhaps) will
be generated by some program and the results promptly used by another.
This is characteristic of introverted numerical analysis . . . Algorithms for
hidden computations need to be more reliable than those for which results
will be seen by a human eye” [26, p.448]. This implies that reliability, sta-
bility and time execution of many basic algebraic computations, who are
necessary subtasks of complex computational strategies, should be carefully
examined.
Most numerical problems are systematically reduced to matrix computation.
In particular, the computational complexity of many fundamental methods
for solving a system of linear equations, for calculating the maximum (or
minimum) eigenvalue of a matrix or for solving a minimum problem depends
typically on a matrix by vector multiplication Ab, which must be computed
at each step of an iterative procedure. Often the same matrix A must be
applied to many different vectors b, so a special representation of A, or an
approximation of A by a another matrix with special structural properties,
may reduce the cost of computation and improve the efficiency. The com-
putational cost generally depends on the structure of the matrix, and must
obey, in every case, to some fixed lower bound of arithmetic complexity.
One can view the problem of computing a matrix by vector multiplication
from different points of view, depending on the model of computation, on
the structure of the matrix and on the nature of input data. The prin-
cipal and most general model for analyzing arithmetic complexity is the
straight-line program. A straight program or straight-line algorithm is a se-
quence of instructions of the form s = a ◦ b, where ◦ denotes one of the
four basic arithmetic operations: multiplication ·, division ÷, addition and
subtraction ±. Let F [x1, x2, . . . , xn] be the ring of the polynomials with co-
efficients in a field F in the variables (or indeterminates) x1, x2, . . . , xn, and
let F (x1, x2, . . . , xn) be the field of rational functions in the same variables
with coefficients in the same field F . At each step of a straight-line program
one calculates an element of F [x1, x2, . . . , xn] or of F (x1, x2, . . . , xn). The
variables (indeterminates) and the elements of F are the input data. The
fact that this model of computation is sufficient to study arithmetic com-
plexity may appear quite strange and non realistic, because the majority
of interesting algorithms are computation trees with branching instructions

1

(of the kind, for example, if x = 0 then go to i else go to j). For instance,
the classical procedure for computing the greatest common divisor of two
numbers exploits such instructions. However, as regards the point of view of
algebraic complexity, one can restrict himself to straight-line programs (see
[10, pp. 15 sgg.] for more details).
The idea of defining a process where at each step an element of F [x1, x2, . . . , xn]
or of F (x1, x2, . . . , xn) is constructed depends on the general concept of
number field, that is based on the idea of closure with respect to a set of
operations. In fact, a set F is called a number field when F contains at
least one element different from zero and the composition of two elements
of F by one of the four basic arithmetic operations (·,÷,±) gives rise to
an element of F . The fields Q,R, C are classical examples of number fields
and it is easy to demonstrate that, if F is a number field, then Q ⊆ F . If
G and F are number fields and G ⊆ F , one says that F is an extension of
G. For example, if q is a rational number and r =

√
q, then the set Q(r)

consisting of all numbers of the form a + rb, with a, b rational, is a field
obtained by extension from Q. Analogously, one obtains F (x1, x2, . . . , xn)
by extension from F adding the indeterminates x1, x2, . . . , xn and operates
in F (x1, x2, . . . , xn) by extending formally the four arithmetic operations
defined in F .
The number of steps in a straight-line algorithm for computing an alge-
braic expression E depends on the choice of the field F . For example, if
E = x2 + y2, 2 multiplications are required in the real field, that is

s1 = x · x, s2 = y · y, s3 = s1 + s2,

whereas only one multiplication, that is s = (x+ iy) · (x− iy) (i =
√
−1),

is sufficient in the complex field.
A first basic result stating lower bounds of complexity, due to Winograd

[31], deals with computation of a set of algebraic functions that are elements
of a vector Ay + b, where A is a matrix m × n with elements in F =
G(x1, x2, . . . , xt), G is a field, x1, x2, . . . , xt are indeterminates with respect
to G, y is a vector of n indeterminates y1, y2, . . . , yn with respect to F and
b is a vector whose elements vary in F .

Definition 1. Let ∗ denote a multiplication or a division. The oper-
ation f ∗ g is said to be inactive relative to F and G if one of the following
holds:

• g or f ∈ G and ∗ denotes a multiplication,

• g ∈ G and ∗ denotes a division,

• both f and g belong to F .

Thus an inactive operation is a scalar multiplication or division (a multi-
plication or a division by an element of G) or an operation involving only

2

rational functions of the variables x, that is only elements of F . An operation
that is not inactive is called active.

Definition 2. Let Gm and Gm(x) be the spaces of vectors with m
elements in G and in G(x), respectively. A set of q vectors v1,v2, . . . ,vq
in Gm(x) are said to be linearly independent modulo Gm (or modulo G) if
there is no nontrivial sequence c1, c2, . . . , cq in G such that

∑q
i=1 civi ∈ Gm.

The following theorem states a lower bound of active operations required
to compute a matrix-vector product Ay, plus a residual vector b of Fm in
the field F (y1, y2, . . . , yn).

Theorem 1. [31] Let A be a matrix m×n with elements in F and let
G have infinitely many elements. If A has q columns linearly independent
modulo Gm, then q active operations are necessary to compute Ay + b.

Proof
Let A be an algorithm computing Ay + b in F (y1, y2, . . . , yn). It is easy to
prove by induction on k that if the first k steps do not involve active oper-
ations, then, at each of these steps, the most general expression computed
has the form

f +
n∑
i=1

giyi (1)

where f ∈ F, gi ∈ G.
We prove the theorem by induction on q. If q = 1, then there exist r, s such
that Ar,s does not belong to G. As the algorithm A computes Ay + b, in a
step of A we obtain an expression of the form

n∑
j=1

Ar,jyj + br.

If no active operation appears in A, then the above expression is identical
to an expression that has the form (1), a contradiction. Thus at least one
active operation is necessary when q = 1.
Let the theorem hold for q−1 and let A be an algorithm computing Ay+b,
where A has q columns independent modulo G, in less than q, say in q − 1
active operations. Let k be the smallest integer such that an active operation
occurs at step k. The result rk of this operation has the form

rk = (f +
n∑
i=1

giyi) ∗ (f ′ +
n∑
i=1

hiyi),

where ∗ is a multiplication or a division, for some gi, hi ∈ G, i = 1, 2, . . . , n,
and f, f ′ ∈ F . Either one of the hi or else one of the gi is not zero, otherwise
rk ∈ F and the operation ∗ is inactive. With no loss of generality, assume
that gn 6= 0 and, since scalar operations are not counted, gn = −1. Let

3

g ∈ G be such that if we substitute g − f −
∑n−1
i=1 giyi for yn, the resulting

algorithm has not divisions by zero. This is possible because G has infinitely
many elements, A has a finite number of steps and at each steps a fraction
is computed of polynomials in yn, with only a finite number of substitutions
for yn causing divisions by zero.
By replacing g − f −

∑n−1
i=1 giyi for yn the first active operation ∗ becomes

inactive (if ∗ is a division and the coefficient hn is not zero, then make the
substitution of yn in the divisor, so ∗ becomes a scalar division). Then we
obtain a new algorithm A′ which computes with only q − 2 active opera-
tions A′y′ + b′, where A′ is a matrix m × (n − 1),y′ has n − 1 elements
y1, y2, . . . , yn−1, a′j = aj − gjan, j = 1, 2, . . . , n− 1 and b′ ∈ Fm.
To gain the thesis we prove that the matrix A′ has q − 1 columns linear-
ly independent modulo G, so we have a contradiction with the induction
hypothesis. Assume that A′ has not q − 1 columns linearly independent
modulo G and let {ai1 , . . . ,aiq} be a set of q columns of A linearly indepen-
dent modulo G. There exist q − 1 elements of G, d1, . . . , dq−1 not all zero
such that

q−1∑
j=1

dja′ij =
q−1∑
j=1

djaij + k1an ∈ Gm (2)

where k1 is a scalar different from zero, because the columns aij , j =
1, 2, . . . , q are linearly independent modulo G. With no loss of generality,
let d1 6= 0. For the same reason there exist q − 1 elements of G, e2, . . . , eq,
not all zero, such that

q∑
j=2

eja′ij =
q−1∑
j=2

ejaij + k2an ∈ Gm (3)

where k2 is a scalar different from zero. Now eliminate an by a lin-
ear combination of (2) and (3), so to obtain a linear non trivial com-
bination, with the coefficient of ai1 different from zero, of the columns
aij , j = 1, 2, . . . , q, belonging to Gm, a contradiction.

From now on the symbols m/d and a/s will be used to denote multipli-
cations/divisions and additions/subtractions, respectively.

Corollary 1. Every algorithm for evaluating a polynomial
∑n
i=0 aix

i

in a point x, where x, a0, a1, . . . , an are indeterminates with respect to a field
G, requires at least n active operations. Thus Horner’s rule minimizes the
number of m/d for computing a polynomial.

Proof
Let F = G(x). Let A be the matrix formed by the unique vector whose
elements are 1, x, x2, . . . , xn. Except 1, all elements of this vector are linearly

4

independent modulo G. The assertion follows from the equality
∑n
i=0 aix

i =
Aa, where a is the vector whose elements are a0, a1, . . . , an.

Corollary 2. Every algorithm for computing a matrix by vector
product Y x, where Y = (yij) is a matrix p × q and x = [x1 . . . xq]T is a
q−vector (yij , xj = indeterminates with respect to a field G), requires at
least pq active multiplications. Thus the standard algorithm for a matrix
by vector multiplications minimizes the number of active m/d.

Proof
Let F = G(x1, . . . , xq). Let A be the p × pq matrix whose element Aij
is xk if j = iq + k, 1 ≤ k ≤ q, and 0 otherwise. Then Y x = Ay where
y = [y11 . . . y1q y21 . . . y2q . . . ypq]T . The assertion follows from the fact
that the columns of A are linearly independent with respect to G.

Exercise 1. Let Q ⊂ G ⊂ C and assume that instead of Ay + b, we
want to compute m functions u1, . . . , um such that ‖ui−

∑n
j=1 aijyj−bi‖∞ ≤

a, for some 0 ≤ a <∞. Modify the proof of the Theorem 1 to show that at
least q m/d are necessary to compute the functions u1, . . . , um.

The following Remarks add some necessary comments to the previous
Winograd’s theorem (see [3], [9], [10], [27], [31]):

Remark 1. The field G in Theorem 1 can be chosen freely, but the
larger G is the fewer sets of columns of A are independent mod G and then
the fewer active operations are counted.

Remark 2. The number of active m/d required to compute a poly-
nomial

∑n
i=0 aix

i, in the Corollary 1, can not be reduced through possible
preliminary operations on the only indeterminate x. Analogously, The num-
ber of m/d required to compute Y x, in the Corollary 2, can not be reduced
by operations on the only indeterminates xj .

Remark 3. In the proof of the Corollaries 1 and 2 we have assumed
that multiplication is commutative over the indeterminates, but this as-
sumption is not really necessary. In fact one can prove a symmetric form of
Theorem 1 for computing a vector yTA+ bT .

The number of active operations required to compute a polynomial
p(x) =

∑n
i=0 aix

i can not be reduced by preliminary operations on x, but
the following example (due to Todd), shows that by performing rational op-
erations on the coefficient ai, without counting these operations, can reduce
the number of m/d. Here the operations on ai have the meaning of a pre-
processing, a kind of preconditioning of p(x) in case the same polynomial
p(x) has to be computed in many points x. The concept of preconditioning
of the coefficients was introduced by Motzkin [25].

Example 1. Consider the polynomial
∑4
i=0 aix

i and define

5

y = (x+ α0)x+ α1, z = ((y + x+ α2)y + α3)α4

Where the α are parameters. The explicit formula of z is

z = α4x
4+α4(2α0+1)x3+α4(2α1+α2+α2

0+α0)x2+((2α0+1)α1+α0α2)α4x+(α2
1+α1α2)α4+α3α4.

In order that z = p(x) the parameters α must satisfy the conditions

α4 = a4, α0 =
1
2

(
a3

a4
− 1)

and also

α4(2α1 + α2 + α2
0 + α0) = a2, ((2α0 + 1)α1 + α0α2)α4 = a1.

To calculate α1, α2 from the last two equalities observe that the matrix[
2 1

2α0 + 1 α0

]

has determinant equal to −1 6= 0. Now by equating the terms of degree 0
we compute α3. If we do not count operations to calculate the functions α,
then we compute p(x) with only 3 multiplications and 5 additions.

The idea of preprocessing can be extended to matrix by vector multipli-
cation Y x when the same matrix Y has to be multiplied by many vectors
x. The preprocessing is based on a new procedure for inner vector multipli-
cation. For any vector z = [z1, z2, . . . , zn]T , with n even, define

W (z) := z1z2 + z3z4 + . . .+ zn−1zn.

For each row yi of the matrix Y compute W (yi) and if y = yi then compute
the inner vector product y × x as follows:

y×x = (y1+x2)(y2+x1)+(y3+x4)(y4+x3)+. . .+(yn−1+xn)(yn+xn−1)−W (y)−W (x).

Thus, if we not count active multiplications involving only the elements yij
of Y , the vector Y x can be computed with 1

2n
2 + 1

2n multiplications.

Exercise 2. Is the previous preprocessing for inner vector multipli-
cation numerically stable? Try to compute with n = 2, basis B = 10, 4
significant digits, x1 = x2 = (.1000)103 and y1 = y2 = (.1000)10−1. Find a
simple strategy to avoid instability.

Exercise 3. Exploit the previous algorithm for inner vector multi-
plication to the case where n is odd. How many multiplications are saved
by applying the same algorithm to matrix by matrix multiplication? Is the

6

same algorithm useful to reduce the asymptotic complexity of matrix by ma-
trix multiplication by the same strategy used by Strassen in his celebrated
article [29]?

Exercise 4. Apply the previous algorithm for matrix by vector mul-
tiplication to Gaussian elimination applied to a linear system Ax = b when
n = k · l, so that A can be partitioned into a l × l matrix whose entries are
k × k matrices. How many multiplications can be saved?

The following theorem (we omit the proof) states a lower bound of com-
plexity for computing a matrix by vector product with preconditioning on
the matrix.

Theorem 2. [31] Every algorithm for computing Ay, where A is a
p× q matrix and y is a q−vector, requires at least [12pq] m/d which do not
depend only on the entries of A (or only on the entries of y).

An analogous result, due to Motzkin [25], holds for polynomials with a
preprocessing on the coefficients:

Theorem 3. [25] Every algorithm for computing a polynomial p(x) =∑n
i=0 aix

i requires at least d12ne m/d which do not depend only on the
coefficients ai (or only on x).

If a matrix A has a special structure, then the complexity of a matrix by
vector multiplication Ab may be reduced with respect to the lower bound
stated by Winograd’s theorem. Also, the relevance of more efficient formu-
las for A or A−1 increases dramatically in situations in which we apply the
same operator A to many vectors b, in which a linear system Ax = b has
to be solved or, equivalently, the corresponding matrix by vector product
A−1bj has to be computed for different vectors bj . We find some instances
of these situations in matrix by matrix multiplications, in the main itera-
tive algorithms for solving systems of linear equations (Jacobi, Gauss-Seidel,
Richardson-Euler, CG, GMRES [1, p.539]), in the power method for com-
puting the maximum eigenvalue of a matrix and in the iterative procedures
for unconstrained minimum problems.
Some different approaches are possible in order to define the structure of a
matrix, but no final formalization of this concept of structure can be def-
initely stated. Moreover, a relationship between the structure of a matrix
and his informational content should be investigated. In fact, numerical
work (like numerical treatment of elliptic problems, of time series or min-
imum problems) is often concerned with operations on matrices belonging
to special classes. Within a class the generic matrix is often specified by a
number k of parameters less than the number of elements. This fact justifies
the introduction of an idea of informational content of a matrix. A measure
of informational content, as was initially proposed by Forsythe [17], could be
the amount of memory required to store the matrix as compactly as possible

7

in a computer. But a very notion of informational content should be studied
through the following two main criteria:

• Best way of representing a matrix in a computer (Forsythe [17]).

• Computational complexity of matrix operations [8], [5].

Moreover one could usefully compare a possible notion of informational
content of a matrix to work of Chaitin [13] and of Kolmogorov [21] on
the informational content of a string of 0 and 1, which is defined as the
complexity, that is as the minimum length of a program that generates the
string.

The following different techniques (the list is far to be exhaustive) are
able, in different ways, to clarify the informal ideas of structure and of
informational content of a matrix:

• investigation of the structure of the inverses of tridiagonal and band
matrices, semi-separable matrices [8], [12], [13], [15], [19];

• mosaic-skeleton approximation (Tyrtyshnikov [30]);

• bilinear programs, decomposition of three-dimensional arrays, tensor
rank of a class of matrices;

• structure of matrices that can be reduced to diagonal form through
fast transforms, perturbations of such matrices by matrices of small
rank;

• displacement rank, applications to Toeplitz matrices [20];

• matrix by vector product in a linear model (Savage [28], Morgenstern
[24]).

Regarding the first point, the structure of a tridiagonal matrix Tn and of its
inverse, we give only a simple example, for n = 4:

Tn =


u1 v1 0 0
w1 u2 v2 0
0 w2 u3 v3
0 0 w3 u4

 , T−1
n =


a1b1 a1b2 a1b3 a1b4
c2d1 a2b2 a2b3 a2b4
c3d1 c3d2 a3b3 a3b4
c4d1 c4d2 c4d3 a4b4

 ,
where aibi = cidi and a1 = c1 = 1. In general, for every n, both Tn and
T−1
n are defined by 3n− 2 parameters. For n = 2k, divide T−1

n in 4 block of
dimension n

2 ×
n
2 . In fact we have

T−1
n =

[
T11 T12

T21 T22

]
.

8

Clearly T11, T22 are tridiagonal, and T12, T21 have rank = 1. But rank(C) =
1, that is C = stT , implies that Cy = (stT)y = s(tTy), which requires
2n multiplications. Then a product T−1

n by a vector can be computed with
M(n) = 2M(n2) + 2(n2 + n

2) = 2nlog2n multiplications. We are able to prove
that 3n− 2 multiplications are necessary [33].

Research problem. Find the minimum multiplicative complexity of
the set of trilinear forms defining a product T−1

n y when Tn is symmetric.

2. Bilinear programs. Tensor Rank.

This section will be mainly concerned with the optimal computation
of a set o bilinear forms. Studying the multiplicative complexity of a set
{fh(a,b)} of bilinear forms will be a strategy for finding a best representa-
tion of a matrix A in order to minimize the computational cost of a product
matrix by vector Ab. First recall the following

Definition 3. A function f(a,b) ∈ F [a,b] of the indeterminates
a1, . . . , am, b1, . . . , bn is a bilinear form in a,b, when it can be expressed in
the form

f(a,b) = aTMb

where M is a matrix of Fm×n.

Matrix by matrix, matrix by vector multiplications and polynomial mul-
tiplication define sets of bilinear forms and the complexity of these multipli-
cations depends on the structure of matrices M . Here the structure usually
depends on the fact that the generic element of a space of n × n matrices
may be specified by a number k of parameters with k < n2. In this case we
may say that the informational content is less than n2.

We may first conceive a space Ckn of matrices n × n of informational
content k as a manifold of dimension k, k ≤ n2, in the space of dimension
n2 of all real n× n matrices. The case when Ckn is an algebra spanned by k
linearly independent matrices Ji, i = 1, 2, . . . , k, is especially significant. Let

A =
k∑
i=1

aiJi, B =
k∑
j=1

bjJj , JiJj =
k∑

h=1

tijhJh,

so that the 3-dimensional array (tensor) tijh defines the multiplication table
of the algebra spanned by the set {Ji}. Then the product C = AB =∑k
h=1 chJh of two elements of the algebra is expressed as

C = AB =
k∑

i,j=1

aibjJiJj =
k∑

h=1

 k∑
i,j=1

tijhaibj

 Jh =
k∑

h=1

fh(a, b)Jh

9

where the coefficients ch = fh(a,b) =
∑k
i,j=1 tijhaibj are a set of bilinear

form in the variables (or indeterminates) ai, bj . That is the coefficients ch of
the representation of AB in the basis {Ji} are identical to fh(a,b). Hence
the last formula exhibits possible reductions in computational complexity.
In fact, define rk(tijh), the rank of the tensor tijh as follows:

Definition 4. rk(tijh), the rank of the tensor tijh in a field F , is the
minimum integer q such that

tijh =
q∑
r=1

urivrjwrh

for 3q vectors ur,vr,wr, r = 1, 2, . . . , q with elements in F . The above
formula for tijh gives its 3−adic decomposition, so a 3−adic decomposition
is defined by the set of three matrices {W,U, V }. This definition naturally
extends to n−adic decompositions of an n−array ti1i2...in [22].

If the rank of tijh is q, then the coefficients ch of C = AB are

ch =
k∑

i,j=1

aibj

q∑
r=1

urivrjwrh =
q∑
r=1

wrh(
k∑
i=1

aivri) · (
k∑
j=1

bjvrj)

i.e. q non-scalar multiplications are sufficient to compute ch. Then the rank
of the tensor tijh of the multiplication table of Ckn states an upper bound of
the multiplicative complexity of the product of two elements of Ckn.

Remark 4. The problem of computing a set of p bilinear forms fh(a,b), h =
1, 2, . . . , p, where a and b are vectors of m and of n indeterminates, respec-
tively, can also be formulated as the multiplication in an algebra [16]. In
fact, if fh(a, b) =

∑m
i=1

∑n
j=1 tijhaibj is a bilinear map f : Fm × Fn → F p,

then choose a basis {e1, e2, . . . , es}, with s ≥ max(m,n, p) and define the
multiplication table

eiej =

{ ∑p
h=1 tijheh if 1 ≤ i ≤ m, 1 ≤ j ≤ n,

0 otherwise.

The algebra resulting from this construction should not be confused with
algebras which may or may not already exist [16]. As an example consider
the bilinear forms defined by the matrix-vector product a1 a2 a3

a4 a1 a2

a5 a4 a1

×
 b1
b2
b3

 .
The 5-dimensional algebra where multiplication is equivalent to computing
the above matrix by vector product is defined by the following multiplication
table:

10

eiej e1 e2 e3 e4 e5
e1 e1 e2 e3 0 0
e2 0 e1 e2 0 0
e3 0 0 e1 0 0
e4 e2 e3 0 0 0
e5 e3 0 0 0 0

Exercise 4. Consider the bilinear forms defining the multiplication of
two symmetric 2 × 2 matrices. The symmetric matrices 2 × 2 form a 3-
dimensional space, but they are not a subalgebra of the algebra of 2 × 2
matrices. In spite of this define a 4-dimensional algebra in which multipli-
cation is equivalent to multiplying two symmetric 2× 2 matrices.

We will prove that in the general (non commutative) case the rank of the
tensor tijh defines a lower bound of multiplicative complexity of the bilinear
forms fh(a, b) =

∑m
i=1

∑n
j=1 tijhaibj . This implies that, if rk(tijh) = q, then q

non scalar multiplications are necessary and sufficient to compute all fh(a, b)
if the indeterminates a, b do not commute with each other.

In order to gain this result a preliminary definition of a model of compu-
tation is necessary. The useful strategy is to restrict gradually the general
notion of straight line program, in order to exploit the specific nature of
the functions to be computed, that is bilinear forms. We will prove that the
most general model to compute fh(a, b), 1 ≤ h ≤ p, is a F−bilinear program,
which can be informally described as follows:

Definition 5. An F−bilinear program is a procedure organized in
three stages:

• compute linear combinations of the indeterminates a and b,

• compute a number of products whose factors are the linear combina-
tions of the previous point,

• compute required linear combinations of the products of the previous
point.

All linear combinations have coefficients in F , so that the only non-scalar
multiplications appear at the second stage.

A first justification of this model is that divisions, in a straight-line
program computing {fh(a,b)}, 1 ≤ h ≤ p, can be simulated by a set of
additions and multiplications. This fact is stated in the following Theorem
5. As regards the complexity of a bilinear program we may count all arith-
metic operations or we may be concerned only with non-scalar operations.
The point of view that non-scalar multiplications dominate the complexity
has many justifications. First of all, the variables a and b may assume val-
ues outside F , and may be polynomials or matrices (the Strassen’s bilinear

11

program for computing the product of two matrices 2 × 2 with 7 multipli-
cations can be extended to block matrices [29]). Moreover, a lower bound
of complexity given in terms of non-scalar multiplications is stronger than
a lower bound in terms of multiplications tou-court. Now we will prove
that in general (when commutativity does’nt hold), dealing with non-scalar
multiplications, we should consider only programs whose non-scalar multi-
plications have the simple form l1(a)× l2(b), where l1 and l2 denote linear
combinations over F .

In the following theorem we first want to show how to simulate a compu-
tation in F [x1, . . . , xn] by a computation in F [x1, . . . , xn] modulo J , where F
is a field and J is the ideal generated by {xixjxk : 1 ≤ i ≤ j ≤ k ≤ n}, that
is dropping all terms of degree ≥ 3. Moreover, reducing the computation
modulo J does not modify asymptotically the total number of operations.

Theorem 4. [9, p. 35] Let S = {fh(x)} be a set of polynomials
in the variables x1, . . . , xn, where each fh(x) has degree ≤ 2. Suppose an
algorithm A computes S in F (x1, . . . , xn) with k1 additions/subtractions,
k2 scalar and k3 non-scalar multiplications. Then there is an algorithm A′
that computes S with k3 non-scalar multiplications of the form l1(x) · l2(x),
where both l1 and l2 denote linear combinations of x1, . . . , xn, and with less
than 9(k1 + k2 + k3) total operations.

Proof. The algorithm A can be reduced modulo J , because A does not
use divisions and fh(x) has degree ≤ 2. If S ∈ F [x1, . . . , xn], then call Lj(S)
the homogeneous part of S of degree j and Si the expression computed at
the step i. Let S′i = (L0 +L1 +L2)Si and S′′i = L1(Si). The reduction mod
J can be performed as follows:
1. If Si = λ · Sj , j < i, λ ∈ F , then we have S′i = λ · S′j and S′′i = λ · S′′j .
2. If Si = Sj ± Sk, j, k < i, then we have S′i = S′j ± S′k and S′′i = S′′j ± S′′k .
3. If Si = Sj · Sk, j, k < i, then we have

S′′i = (cj · S′′k) + (ck · S′′j)

and
S′i = (cj · S′k) + (ck · S′j) + (S′′j · S′′k)− cjck,

where cj = L0(Sj) and ck = L0(Sk). Thus the reduction mod J replaces any
non scalar multiplication by a non scalar multiplication of the form S′′j · S′′k ,
where both S′′j and S′′k are linear combinations of x1, . . . , xn plus other a/s
and scalar multiplications. The total number of operations is bounded by
9(k1 + k2 + k3).

To see how one can simulate divisions by multiplications we first recall
the definition and the essential properties of formal power series [2, pp.41
sgg]. A formal power series in x is an algebraic expression of the form A(x) =∑∞
k=0 akx

k, where x is never assigned a numerical value and questions of
convergence and divergence are not of interest. The set of these expressions

12

form a ring with sum and product defined by

A(x) +B(x) =
∞∑
k=0

akx
k +

∞∑
k=0

bkx
k =

∞∑
k=0

(ak + bk)xk

and

A(x)B(x) =
∞∑
k=0

ckx
k, ck =

k∑
s=0

asbk−s.

The zero element and the identity element are, respectively,

0 =
∞∑
k=0

akx
k, ck = 0 ∀k ≥ 0,

and

1 =
∞∑
k=0

akx
k, a0 = 1, ak = 0 ∀k ≥ 1.

If a formal power series A(x) =
∑∞
k=0 akx

k has the constant coefficient a0

different from zero, then there is a uniquely determined formal power series
B(x) =

∑∞
k=0 bkx

k such that A(x)B(x) = 1. The coefficients of B(x) can be
computed effectively, step by step, through the equations

a0b0 = 1, a0b1 + a1b0 = 0, a0b2 + a1b1 + a2b0 = 0,

For example, if A(x) = 1 +
∑∞
k=1 a

kxk, (the geometric series), then its
inverse is the formal polynomial B(x) = 1− ax. Analogous properties hold
for formal power series of several variables x1, . . . , xn. The set of formal
power series in x1, . . . , xn with coefficients in F is denoted by F [[x1, . . . , xn]]
or F [[x]] and an invertible element of F [[x1, . . . , xn]] is called a unit.

We have the following theorem, from which one deduces that no loss of
generality follows by considering algorithms without divisions in computing
a set of polynomials of degree at most 2. The same result can not be
extended to polynomials of degree ≥ 3, which implies that a possible F −
n−linear program (defined in an obvious way in conformity with a bilinear
program) would not be the most general model of computation of a set S
of n−linear forms. It follows that a possible n−adic decompositions of an
n−array ti1i2...in would not be a lower bound of multiplicative complexity
for S for n > 2.

Theorem 5. Let S = {fh(x)}, h = 1, 2, . . . p, be a set of polynomials
in the variables x1, . . . , xn, where each fh(x) has degree ≤ 2. If an algorithm
A computes S in F (x1, . . . , xn) with q non-scalar m/d, then there is an algo-
rithm A′ that computes S in F [x1, . . . , xn] with q non-scalar multiplications.

Proof. To simulate the algorithm A in F [x] we introduce the ring F [[x]]
of the formal power series in the variables x1, . . . , xn. We first prove that

13

if B is an algorithm computing {fh(x)} in F [[x]] with k m/d, where each
division has the form A(x) ÷ B(x) and B(x) is a unit of F [[x]], then there
exist an algorithm B′ in F [x1, . . . , xn] computing {fh(x)} with k non scalar
multiplications. In fact we can define B′ as follows:
1. replace the multiplications in B by multiplications modulo J , so to obtain
at each step an expression of the form c+l+q, where c, l, q have degree 0, 1, 2,
respectively. Then each multiplication can be reduced to a multiplication
where both factors are linear combinations of x1, . . . , xn (by Theorem 4),
plus a number of scalar multiplications and of a/s.
The first division in B has the form A(x)÷B(x), where A(x) = c1 + l1 + q1
and B(x) = c2 − (l2 + q2), c2 6= 0. Then

A(x)÷B(x) = (c1 + l1 + q1) · (1
c2

+
1
c22

(l2 + q2) +
1
c32

(l2 + q2)2 + . . .).

Reducing mod J , that is dropping all terms of degree ≥ 3, gives rise to the
expression

c1
c2

+
c1
c22

(l2 + q2) +
l1
c2

+
q1
c2

+ (
c1
c32
l2 +

1
c22
l1) · l2

where we have only one non scalar multiplication of the simplified form
described in Theorem 4. The next division, and then each division in B, can
be replaced by a non scalar multiplication plus other scalar multiplications
and a/s by the same technique.
If B has some divisions where the divisor B(x) is not a unit, that is c2 = 0,
then define the new variables x̃i = xi − θi, θi ∈ F , in order to obtain all
divisions by units. Hence we are able to obtain from A an algorithm with k
non scalar multiplications of the simplified form l(x) · l′(x) in F [x̃1, . . . , x̃n],
and then eventually an algorithm A′ of the same complexity in F [x1, . . . , xn].

Now, by restricting the analysis to the non-scalar complexity, we have
proved that it is sufficient to have all non-scalar operations of the form
l1(a,b)× l2(a,b), where l1 and l2 denote linear combinations over F . Then,
when the number of these special multiplications is q, we are able to write

fh(a, b) =
q∑
r=1

wrhlr1(a,b) · lr2(a,b)), wrh ∈ F

and to consider this formula, defining an F−bilinear program, as the most
general strategy to compute the set {fh(a,b)}. If the variables do not
commute, then in the above sum the contribution of the cross-products
b× a is identical to zero and the same conclusion holds for all product a× a
and b× b. In this case we can assume, in general, lr1(a,b) = uTr a = aTur =∑m
i=1 uriai and lr2(a,b) = vTr b = bTvr =

∑n
j=1 vrjbj where uri, vrj ∈ F

and then

14

fh(a,b) ≡ aTMhb ≡
q∑
r=1

wrh(aTur) · (vTr b) ≡ aT
[q∑
r=1

wrh(urvTr)

]
b. (4)

From the last formula we deduce that the complexity, defined as the
number q of non-scalar multiplications, depends on the fact that one can
writes each Mh as a linear combination on F of q matrices urvTr of rank
1. This leads to search the minimum integer q such that each Mh can be
expressed as a linear combination of q matrices of rank = 1 with elements in
F . But it easy to verify, by considering the Definition 4 and by rewriting the
formula Mh =

∑q
r=1wrh(urvTr), that this minimum q is equal precisely to

the rank of the tensor tijh defining the set of matrices Mh, that is (Mh)ij =
tijh. Then we have the following alternative Definition of rk(tijh):

Definition 4bis. rk(tijh), the rank of the tensor tijh in a field F , is the
minimum integer q such that each matrix Mh, (Mh)ij = tijh can be expressed
in the form

∑q
r=1wrh(urvTr), for 3q vectors ur,vr,wr with elements in F .

The matrices of rank 1 urvTr form a tensor basis of the set {Mh} and clearly
q ≥ d, where d is the dimension of the space spanned by Mh.

A third equivalent definition of the tensor rank is obtained by rewriting
the formula Mh =

∑q
r=1wrh(urvTr) as a split of the matrix Mh as a product

UDhV , where Dh is a diagonal matrix of dimensions q × q whose diagonal
elements are wrh, U is the m× q matrix whose columns are ur and V is the
matrix q × n whose rows are vTr .

Definition 4bisbis. rk(tijh), the rank of the tensor tijh in a field F ,
is the minimum integer q such that each matrix Mh can be written in the
form UDhV , where Dh is diagonal q×q and U, V are matrices of dimensions
m× q and q × n, respectively, with elements in F .

Now the relationship between tensor rank and multiplicative complexity
is stated in the following

Theorem 6. If rk(tijh) = q, then the bilinear forms fh(a,b) =
aTMhb, h = 1, . . . , p, defined by the matrices Mh whose elements (Mh)ij
are tijh can be computed with q non-scalar multiplications. Moreover, in
the general, non commutative case, q non-scalar multiplications are neces-
sary to compute {fh(a,b)}.

Proof. By the previous formula (4) q non-scalar multiplications are suf-
ficient. To prove that q non-scalar multiplications are necessary consider a
bilinear program of complexity s that computes {fh(a,b)}. Then we can
write

fh(a,b) =
s∑
r=1

wrh(aTur) · (vTr b) ≡ aT [
s∑
r=1

wrh(urvTr)]b,

which implies Mh =
∑s
r=1wrh(urvTr). As q = rk(tijh) is the minimum

15

number of rank 1 matrices spanning the space of matrices generated by the
set {Mh}, we have, by Definition 4bis, s ≥ q.

Exercise 5. Prove that if one can use commutativity in the products
of variables, then rk(tijh) = q implies that q/2 non-scalar multiplications are
necessary to compute fh(a,b), h = 1, . . . , p. Moreover, if d is the dimension
of the space spanned by Mh, then d non-scalar multiplications are necessary
in both commutative and non commutative cases.

An example of a bilinear program exploiting commutativity is given by
the inner vector multiplication defining the preprocessing in the matrix by
vector product in the previous section. Notice [22, p.10], that the dyadic
decompositions of tensors (Definition 4) are not unique but they have a link
(as it is shown by Definition 4bisbis) with singular value decomposition (SVD)
and with eigenvector decomposition (ED). The uniqueness of SVD and of ED
can be ascribed to added constrained. Suppose that A = UDV is the SVD
of A, so U and V each have orthonormal columns and D is diagonal with
positive entries on the main diagonal. Then A is a linear combination of the
outer products of the columns of U with the corresponding rows of V , using
coefficients from D. The uniqueness property of this dyadic decomposition
is a consequence of the well known uniqueness property of SVD when the
diagonal entries of D are unequal. The orthogonality of the columns of U
and of the rows of V are added constraints that suffice to provide uniqueness.
If {Mh} is a set of symmetric and commutative matrices, then the unitary
matrix U defining on a field F their common ED UDhU

H defines also the
tensor basis of the space spanned by {Mh}, and the tensor rank is n on the
field F .

We state once for all, for the indices i, j, h, the following ranges:

1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ h ≤ p.

For any 3-adic tensor (tijh) it is convenient to distinguish their different
sections:

• the m × n matrices {Mh} associated to fh(a,b), h = 1, . . . , p, with
(Mh)ij = tijh are called 3-sections;

• the n× p matrices Bi, with (Bi)jh = tijh are the 1-sections;

• the m× p matrices Cj , with (Cj)ih = tijh are the 2-sections.

In the following we will suppose, for the sake of simplicity, that all sec-
tions are composed of linear independent matrices. A tensor tijh can be
represented through their 3-sections Mh, h = 1, 2, . . . , p, as well as through
the matrix M =

∑p
h=1 chMh, where the ch are variables. A third way to rep-

resent the same tensor consists of assigning the trilinear form g(a,b, c) :=∑p
h=1 fh(a,b)ch ≡

∑
ijh tijhaibjch.

16

Let the set {W,U, V } define a 3-adic decomposition of tijh, i.e. tijh =∑q
r=1 urivrjwrh and then Mh =

∑q
r=1wrh(urvTr). Consider the (new) ten-

sor defined by a cyclic permutation of the indices i, j, h of tijh, that is the
tensor t′ whose elements t′hij are equal to tijh. The tensor t′ defines a
(new) set of bilinear forms associated to the p × m matrices Pj (their 3-
sections), with (Pj)hi = thij . We have t′hij =

∑q
r=1 vrjwrhuri = tijk and

Pj =
∑q
r=1 vrj(wruTr), that is the two tensors t and t′ have the same rank

and if (urvTr) is a tensor basis of tijh, then (wruTr) is a tensor basis of t′hij .
In general, if {U1, U2, U3} = {W,U, V } defines a 3-adic decomposition of tijh
and if σ is any permutation of the indices of tijh, then {Uσ(1), Uσ(2), Uσ(3)}
defines a 3-adic decomposition of t′σ(i)σ(j)σ(h). So two tensors t and t′ such
that one is obtained from the other by a permutation of the indices have the
same rank and are associated to sets of bilinear forms that have the same
multiplicative complexity. These sets define dual problems.

Example 2. Consider the matrix by vector product[
a1 a2

a2 a3

]
×

[
b1
b2

]
,

giving rise to the bilinear forms

f1 = a1b1 + a2b2, f2 = a2b1 + a3b2

defined by the tensor tijh, 1 ≤ i ≤ 3, 1 ≤ j ≤ 2, 1 ≤ h ≤ 2, whose 3-sections
are

{Mh} =


 1 0

0 1
0 0

 ,
 0 0

1 0
0 1


 .

We have t111 = t221 = t212 = t322 = 1 and tijh = 0 otherwise. Now consider
the tensor t′ whose elements t′jhi are equal to tijh, that is

t′111 = t111 = t′122 = t212 = t′212 = t221 = t′223 = t322 = 1,

and t′jhi = 0 otherwise. The 3-sections of the tensor t′ are the matrices Bi
such that (Bi)jh = tijh, that is

{Bi} =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
.

Notice that the space of matrices

[
a1 a2

a2 a3

]
are spanned by the matrices

BT
i = Bi.

Now we can explain more precisely the formal relationship between ma-
trix by vector product and bilinear forms simply as follows: if tijh is the

17

tensor associated to the set {fh(a,b)}, then the matrices transposed of its
1-sections are BT

i and the matrix by vector product

(
m∑
i=1

aiB
T
i)b

gives rise to a vector whose element h is equal precisely to fh(a,b).
In fact, set ch :=

[
(
∑m
i=1 aiB

T
i)b

]
h
. We have:

ch =

[
m∑
i=1

ai(BT
i b)

]
h

=
m∑
i=1

ai(BT
i b)h =

m∑
i=1

ai

n∑
j=1

(BT
i)hjbj =

m∑
i=1

n∑
j=1

(Bi)jhaibj

and then

ch =
m∑
i=1

n∑
j=1

tijhaibj = fh(a,b).

Notice that the matrix

B =
m∑
i=1

aiBi

represents the tensor obtained from tijh by the permutation (231). So the
rank of the tensor tijh defines the exact multiplicative complexity of the
matrix by vector product (

∑m
i=1 aiB

T
i)b.

We can interpret the rank of tijh as the rank of the space spanned by
{Bi}. By the Definition 4bis and by the dual property, the multiplicative
complexity of fh(a,b) depends on the minimum number q such that we
can write each {BT

i } as a linear combination of q matrices of rank 1. If
rank({BT

i }) = q, that is BT
i =

∑q
r=1 uri(wrvTr), then the algorithm for the

matrix by vector product (
∑m
i=1 aiB

T
i)b with the minimum number of non

scalar multiplications is given by

m∑
i=1

ai

q∑
r=1

uri(wrvTr)b =
q∑
r=1

wr(
∑
i

uriai) · (
∑
j

vrjbj).

That is [
(
m∑
i=1

aiB
T
i)b

]
h

=
q∑
r=1

wrh(
∑
i

uriai) · (
∑
j

vrjbj),

which is precisely a bilinear program of complexity q. As a consequence, the
complexity of each step k of an iterative algorithm based on a matrix by
vector product Bxk, for different vectors xk, depends on the representation
of B as a linear combination of the minimum number q of rank 1 matrices.
This number q is precisely the tensor rank of the space spanned by the
matrices Bi.

18

3. Tensor rank of Toeplitz (and Hankel) Matrices. Circulant
matrices and the space τ .

An n×n Toeplitz matrix Tn has all elements equal on the main diagonal
and on the diagonal parallel to the main diagonal. An n× n Hankel matrix
Hn has all elements equal on the antidiagonal and on the diagonal parallel
to the antidiagonal. A Toeplitz matrix is obtained from a Hankel matrix by
a permutation of columns. For n = 5 we have

T5 =


t0 t5 t6 t7 t8
t1 t0 t5 t6 t7
t2 t1 t0 t5 t6
t3 t2 t1 t0 t5
t4 t3 t2 t1 t0

 , H5 =


h0 h1 h2 h3 h4

h1 h2 h3 h4 h5

h2 h3 h4 h5 h6

h3 h4 h5 h6 h7

h4 h5 h6 h7 h8

 .

A Toeplitz matrix has elements Tps = tp−s, t−k = tn+k−1.

Theorem 8. Both spaces Tn and Hn have tensor rank 2n− 1 on the
rational field.

Proof. As a Toeplitz matrix is obtained from a Hankel matrix by a
permutation of columns, it is sufficient to prove the theorem for Hn. To this
aim consider the Hankel rank-1 matrix (λ = parameter)

H(λ) =


1 λ λ2 . . . λn−1

λ λ2 λ3 . . . λn

λ2 λ3 λ4 . . . λn+1

.
λn−1 λn λn+1 . . . λ2n−2

 .

Call H2n−1 the matrix whose entries are all zero, but the entry at position
(n, n) that is equal to 1. Let λ1, λ2, . . . , λ2n−1 be 2n − 1 distinct non null
values of λ in Q. Now the matrices H(λi), i = 1, . . . , 2n − 1, are linear
independent. In fact, consider a linear combination, in Q, of the matrices
H(λi):

α1H(λ1) + α2H(λ2) + . . .+ α2n−1H(λ2n−1) = 0, αi ∈ Q.

Writing the above equality in explicit form gives an homogeneous system of
2n − 1 linear equations in the 2n − 1 unknowns α, whose coefficients form
a non singular Vandermonde matrix. Then all α are zero. An analogous
result is obtained by considering the matrices H(0), H2n−1 and other 2n− 3
matrices H(λi) for 2n−3 distinct rational values λi. The thesis follows from
the fact that the rank of the space Hn is ≥ of its dimension, which is equal
exactly to 2n− 1.

The formal product of two polynomials of degree n−1, p(x) =
∑n−1
k=0 akx

k

and q(x) =
∑n−1
k=0 bkx

k is a polynomial r(x) =
∑2n−2
h=0 chx

h whose coefficients

19

ch are defined by a set of n bilinear forms fh(a,b) = aTMhb, h = 1, 2, . . . , n,
where the Mh are n× n Hankel matrices. Then 2n− 1 non-scalar multipli-
cations are sufficient and necessary to compute p(x)q(x).

Exercise 6. For n = 3, multiply two polynomials of degree n by mean-
s of the optimal decomposition of the associated tensor. Consider the proof
of the previous Theorem 8, choosing the tensor basisH(0), H(1), H(−1), H(2), H2n−1

and prove that the only significant scalar operation is a division by 3.

A special class of Toeplitz matrices are the well known algebra of n× n
circulant matrices, a space generated by the first n powers of the circulant
permutation matrix P whose first row is [0 1 0 . . . 0]. A 5 × 5 circulant
matrix and the correspondent P have the form

C5 =


a0 a1 a2 a3 a4

a4 a0 a1 a2 a3

a3 a4 a0 a1 a2

a2 a3 a4 a0 a1

a1 a2 a3 a4 a0

 , P =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 .

It is easy to prove the following equalities for a n × n circulant matrix
Cn (see also [5]):

Cn =
n−1∑
h=0

ahP
h, P iP j =

n−1∑
h=0

tijhP
h, tijh = (P i)jh = (P j)ih.

Moreover, Cn = F ∗nDFn, with (Fn)ij = ω(i−1)(j−1), ω = ei2π/n. In
other words all n × n circulant matrices can be reduced to diagonal form
by the Fourier matrix Fn. Then the multiplicative table tijh has the same
structure of the matrices P h, so the tensor tijh = (P i)jh, whose rk(tijh) is
equal to n over the complex field, is the tensor associated to the discrete
convolution on n points, defined precisely, for n = 5, as the product of
Cn by a vector b = [b0 b4 b3 b2 b1]T . In fact, the convolution product of
two vectors a = [a0 a1 . . . an−1]T and b = [b0 b1 . . . bn−1]T is a vector
c := a ? b = [c0 c1 . . . cn−1]T whose component ch is given by

ch =
n−1∑

i+jmod h

aibj .

The formal product of the polynomials p(x) and q(x) of degree n−1 is defined
by the convolution of the two (2n − 1)-vectors a = [a0 a1 . . . an−1 0 . . . 0]T

and b = [b0 b1 . . . bn−1 . . . 0]T .

To compute c = a ? b the following equality, known as the Convolution
Theorem, is usually exploited:

c = a ? b = F−1
n [(Fna) · (Fnb)]

20

where · denotes the element by element vector multiplication. The Convolu-
tion Theorem is a consequence of the eigenvector decomposition of circulant
matrices (verify that!), and the previous equality defines a bilinear program
on C to compute a ? b. The total asymptotic complexity of this program
depends on the complexity of the FFT, which is O(nlog2n).

The following space, called space τ , is an algebra of n×n symmetric and
persymmetric matrices reduced to diagonal form by a unitary matrix with
real elements. In [8] and in [32] some interesting links of τ with symmetric
Toeplitz matrices have been discovered. We write here below a matrix of
the algebra τ for n = 5:

τ5 =


t1 t2 t3 t4 t5
t2 t1 + t3 t2 + t4 t3 + t5 t4
t3 t2 + t4 t1 + t3 + t5 t2 + t4 t3
t4 t3 + t5 t2 + t4 t1 + t3 t2
t5 t4 t3 t2 t1

 .

The space τ is defined, in general, by a cross-sum property: ti−1,j +
ti+1,j = ti,j−1 + ti,j+1, with suitable “boundary conditions”. The eigenvec-
tors are defined by uij = (2

n+1)1/2sin ijπ
n+1 , so τ = UDUH . The space τ is

generated in R by the non-derogatory matrix

H =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 .

Both circulant and τ matrices can be exploited to define fast algorithms for
matrix by vector product when the matrix has Toeplitz form. In fact, a
general n × n Toeplitz matrix is a part of a circulant matrix of dimension
2n, so the problem Tn×vector can be reduced to a problem C2n×vector, and
then to a number of FFT on 2n points, with only O(nlog2n) operations.
Consider here below the case n = 3:

t0 t3 t4 0 t2 t1
t1 t0 t3 t4 0 t2
t2 t1 t0 t3 t4 0
0 t2 t1 t0 t3 t4
t4 0 t2 t1 t0 t3
t3 t4 0 t2 t1 t0


×



s0
s1
s2
0
0
0


.

Notice that the previous decomposition of the tensor of Toeplitz or Han-
kel matrices, stated in Theorem 8, is not optimal, on the real field, for sym-
metric Toeplitz matrices. In fact, consider the following split of a general

21

symmetric Toeplitz matrix (for n = 5):

T5 =


t1 t2 t3 t4 t5
t2 t1 t2 t3 t4
t3 t2 t1 t2 t3
t4 t3 t2 t1 t2
t5 t4 t3 t2 t1

 =


t1 t2 t3 t4 t5
t2 t1 + t3 t2 + t4 t3 + t5 t4
t3 t2 + t4 t1 + t3 + t5 t2 + t4 t3
t4 t3 + t5 t2 + t4 t1 + t3 t2
t5 t4 t3 t2 t1



−


0 0 0 0 0
0 t3 t4 t5 0
0 t4 t3 + t5 t4 0
0 t5 t4 t3 0
0 0 0 0 0

⇒ T5 = τ5 −

 0 0T 0
0 τ3 0
0 0T 0

 .
We see that, in general, 2n − 2 non-scalar multiplications are sufficient to
compute a matrix by vector product Tn × b on the real field when Tn is a
n×n Toeplitz symmetric matrix. Moreover 2n−2 non-scalar multiplications
are necessary, as rk(Tn) = 2n− 2 in R [32].

Research problem. Find a tensor basis of the space of symmetric
Toeplitz matrices on the rational field.

4. Displacement structure. Toeplitz matrices.

When T is an upper (lower) triangular non singular Toeplitz matrix T−1

is also an upper (lower) triangular Toeplitz matrix, because Toeplitz upper
or lower triangular matrices form an algebra (closed under multiplication
and inversion). But if T is a non singular Toeplitz matrix, T−1 has not, in
general, a Toeplitz structure. Yet we should investigate the very nature of
the structure of the matrix T or T−1 apart from its Toeplitzness, which is,
in T , the most obvious and visible structural property. Now consider the
case of a general 4× 4 symmetric Toeplitz matrix, together with the matrix
Z defined here below:

T4 =


t0 t1 t2 t3
t1 t0 t1 t2
t2 t1 t0 t1
t3 t2 t1 t0

 , Z =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 .
The effect of Z consists of shifting downwards the elements of a vector by
one position and replacing the first element with a zero entry:

Z


x0

x1

x2

x3

 =


0
x0

x1

x2

 .

22

Now let T a Toeplitz matrix and define the operator ∇T as follows:

∇T := T − ZTZT = T −


0 0 0 0
0 t0 t1 t2
0 t1 t0 t1
0 t2 t1 t0

 =


t0 t1 t2 t3
t1 0 0 0
t2 0 0 0
t3 0 0 0


We have (for t0 = 1)

∇T = GJGT , G =


1 0
t1 t1
t2 t2
t3 t3

 , J =

[
1 0
0 −1

]
, rk(GJGT) = 2.

Notice that ∇T is symmetric when T is symmetric, so the eigenvalues of
∇T are real. Moreover the two diagonal elements of J indicate that ∇T has
one eigenvalue positive and the other negative.
The same operator ∇ can be applied to a general Hermitian matrix. In fact
let, for an Hermitian matrix R,

∇R = R− ZRZH .

The matrix ZRZH corresponds to shifting R downwards along the main
diagonal by one position, which explains the name displacement for ∇R. If
∇R has low rank, say r << n, then R is said to be structured with respect
to the displacement defined by the operator ∇R, and r is referred as the
displacement rank of R [20]. The matrix ∇R = R − ZRZH is Hermitian,
its eigenvalues are real and we can define the displacement inertia of R as
the pair (p, q), where p and q are the number of the positive and negative
eigenvalues, respectively. The displacement rank r is equal precisely to p+q
and then

∇R = R− ZRZH = GJGH , J = (Ip ⊕−Iq)

where J and G have dimensions r × r and n × r, respectively. In [20] the
pair {G, J} is called a generator of R. In fact it contains all information
regarding R, that is the information on the structure allowing to reduce the
space for representing R and the useful information on the complexity of a
matrix by vector product Ry. It is easy to prove that the only solution of
the above equation is

R =
n−1∑
i=0

ZiGJGH(ZH)i.

In fact, let

R = GJGH + ZGJGHZH + Z2GJGH(ZH)2 + . . .+ Zn−1GJGH(ZH)n−1.

23

Now multiply on the left by Z and on the right by ZH . As Z is nilpotent,
i.e. Zn = 0, we have

ZRZH = ZGJGHZH + Z2GJGH(ZH)2 + . . .+ Zn−1GJGH(ZH)n−1.

Then subtract term by term the last two equalities so to obtain, eventually,

R− ZRZH = GJGH .

If
G = [x0x1 . . .xp−1y0y1 . . .yq−1],

then we can rewrite the equality R =
∑n−1
i=0 Z

iGJGH(ZH)i in the form

R =
p−1∑
i=0

L(xi)LH(xi)−
q−1∑
i=0

L(yi)LH(yi), (5)

where

L(z) =


z0 0 0
z1 z0 0 . . . 0
.
zn−2 z0 0
zn−1 z1 z0

 .

Exercise 7. Prove that (5) is identical to the equalityR =
∑n−1
i=0 Z

iGJGH(ZH)i.

A general result concerning matrices with displacement structure states
that the displacement inertia of a matrix R is in some way inherited by its
inverse. More precisely, we have the following

Theorem 9.[20] The displacement inertia of a Hermitian non singular
matrix R with respect to R − ZRZH is equal to the displacement inertia
of its inverse with respect to R−1 − ZHR−1Z, i.e. Inertia(R − ZRZH) =
Inertia(R−1 − ZHR−1Z).

Proof. The theorem follows from the two identities, exploiting the Schur
complements of R,[

R Z
ZH R−1

]
=

[
I 0

ZHR−1 I

] [
R 0
0 R−1 − ZHR−1Z

] [
I 0

ZHR−1 I

]H
and [

R Z
ZH R−1

]
=

[
I ZR
0 I

] [
R− ZRZH 0

0 R−1

] [
I ZR
0 I

]H
,

The matrices R−ZRZH and R−1−ZHR−1Z are called Schur complements.
As in general Inertia(ABAH) = Inertia(B) (Sylvester’s theorem: congruence
transformations preserve Inertia), the two matrices[

R 0
0 R−1 − ZHR−1Z

]
,

[
R− ZRZH 0

0 R−1

]

24

have the same Inertia. This implies the final identity Inertia(R−ZRZH) =
Inertia(R−1 − ZHR−1Z).

Exercise 8. Find (possibly in the matrix literature) a proof of the
Sylvester’s theorem: congruence transformations preserve Inertia.

A consequence of the above theorem is concerned with the Toeplitz ma-
trices: the inverse of a non singular symmetric Toeplitz matrix T has the
same displacement Inertia of T . In fact Inertia(T − ZTZH) = (1, 1) =
Inertia(T−1 − ZHT−1Z) = Inertia(T−1 − ZT−1ZH), because

ĨT Ĩ = T, ĨT−1Ĩ = T−1, ĨZH Ĩ = Z,

where Ĩ is the reverse identity matrix with ones on the antidiagonal and
zeros elsewhere. Then we have precisely, for a pair of vectors {x,y},

T−1 − ZT−1ZH = xxh − yyH =
[

x y
] [

1 0
0 −1

] [
xH

yH

]
,

and
T−1 = L(x)L(x)H − L(y)L(y)H ,

which is the celebrated formula of Gohberg-Semencul. By this formula the
matrix-vector product T−1z can be computed, as the product Tz, through
a small number of FFT, and then in only O(nlog2n) arithmetic operations.
Thus iterative solvers for Toeplitz systems may be quite competitive because
of a fast matrix by vector procedure with a small number of fast transforms.
Notice that the result of Theorem 9 does not depend on the special form of
the matrix Z and so the matrix Z could be replaced by a general matrix Ω:
the displacement inertia of an Hermitian non singular matrix R with respect
to R−ΩRΩH is equal to the displacement inertia of its inverse with respect
to R−1 − ΩHR−1Ω.

References

1. Ammar, Gader, A variant of the Gohberg-Semencul formula involv-
ing circulant matrices, SIAM Journal Matrix Analysis and Applications,
12(1991), pp. 534-540

2. T.M. Apostol, Introduction to Analytic Number Theory, Springer,
New York, 1976.

3. E.G. Belaga, Evaluation of polynomials of one variable with prelim-
inary processing of coefficients, in A.A, Lyapunov, ed., Problems of Cyber-
netics, Pergamon Press, 5(1961), pp. 1-13.

4. R. Bevilacqua, M. Capovani, Proprietà delle matrici a banda ad
elementi ed a blocchi, Bollettino U.M.I. (5) 13-B (1976), 844-861.

25

5. R. Bevilacqua, C. Di Fiore, P. Zellini, h-space Structure in Matrix
Displacement Formulas, Calcolo, 33(1996), pp. 11-35.

6. R. Bevilacqua, P. Zellini, Closure, Commutativity and Minimal Com-
plexity of Some Spaces of Matrices, Linear and Multilinear Algebra, 25(1989),
pp. 1-25.

7. D. Bini, M. Capovani, G. Lotti, F. Romani, Complessità numerica,
Boringhieri, Torino, 1981.

8. D. Bini, M. Capovani, Spectral and Computational Properties of Band
Symmetric Toeplitz Matrices, Linear Algebra and its Applications, 99-126

9. A. Borodin, I. Munro, The computational Complexity of Algebraic
and Numeric Problems, Elsevier, New York, 1975.

10. P. Bürgisser, M. Clausen, M.Amin Shokrollahi, Algebraic Complexity
Theory, Springer, Berlin, 1997.

11. M. Capovani, Sulla determinazione dell’inversa delle matrici tridiag-
onali a blocchi, Calcolo, 7(1970), 295-303.

12. M. Capovani, Su alcune proprietà delle matrici tridiagonali e penta-
diagonali, Calcolo, 8(1971), 149-159.

13. G.J. Chaitin, Information-Theoretic Limitations of Formal Systems,
Journal of the ACM, 21(1974), 403-424.

14. C. Di Fiore, P. Zellini, Matrix Decompositions using Displacement
Rank and Classes of Commutative Matrix Algebras, Linear Algebra and its
Applications, 229(1995), 49-99.

15. D. Fasino, L. Gemignani, Structural and Computational Properties
of Possibly Singular Semiseparable Matrices, Linear Algebra and its Appli-
cations, 340(2002), 183-198.

16. C.M. Fiduccia, Y. Zalcstein, Algebras having linear multiplicative
complexities, Journal of the ACM, 24(1977), 311-331.

17. G.E. Forsythe, Today’s Computational Methods of Linear Algebra,
SIAM Review, 9(1967), pp. 489-515.

18. P.D. Gader, Displacement Operator Based Decompositions of Ma-
trices Using Circulants or Other Group Matrices, Linear Algebra and its
Applications, 139(1990), 111-131.

19. F.R. Gantmacher, M.G. Krein, Oszillationsmatrizen, Oszillationskerne
und kleine Schwingungen mechanischer Systeme, Akademie Verlag, Berlin,
1960.

20. T. Kailath, A.H. Sayed, Displacement Structure: Theory and Ap-
plications, SIAM Review, 37(1995), 297-386.

21. A.N. Kolmogorov, Logical Basis for Information Theory and Proba-
bility Theory, IEEE Transactions, IT-14(1968), 662-664.

22. J.B. Kruskal, Rank, Decomposition, and Uniqueness for 3-Way and
N -Way Arrays, in R. Coppi, S. Bolasco (Editors), Multiway Data Analysis,
Elsevier, New York, 1989, pp. 7-18.

23. J.C. Lafon, Base Tensorielle des Matrices de Hankel (ou de Toeplitz).
Applications, Numerische Mathematik, 23(1975), 349-361.

26

24. J. Morgenstern, Note on a Lower Bound of the Linear Complexity
of the Fast Fourier Transform, Journal of the ACM, 20(1973), 305-306.

25. T.S. Motzkin, Evaluation of polynomials and Evaluation of Rational
Functions, Bulletin of the American Mathematical Society, 61(1955), 163.

26. B. Parlett, Progress in Numerical Analysis, SIAM Review, 20(1978),
443-456.

27. M.S. Paterson, Lectures at IAC, Roma, March 1974.
28. J.E. Savage, An Algorithm for the Computation of Linear Forms,

SIAM Journal on Computing, 3(1974), 150-158.
29. V. Strassen, Gaussian Elimination is Not Optimal, Numerische

Mathematik, 13(1969), 354-356.
30. E. Tyrtyshnikov, Mosaic-Skeleton Approximations, Calcolo, 33(1996),

pp. 47-57.
31. S. Winograd, On the Number of Multiplications Necessary to Com-

pute Certain Functions, Communications on Pure and Applied Mathematics,
23(1970), 165-179.

32. P. Zellini, On the Optimal Computation of a Set of Symmetric and
Persymmetric Bilinear Forms, Linear Algebra and its Applications, 23(1979),
101-119.

33. P. Zellini, Optimal Bounds for Solving Tridiagonal Systems with
Preconditioning, SIAM Journal on Computing, 17(1988), 1036-1043.

27

