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Dario Fasino

This document contains my lecture notes for the course “Numerical linear algebra with qua-
siseparable matrices”, held within the Rome-Moscow school on Matrix Methods and Applied Linear
Algebra, September 2011. The exercises whose solution is considered for grading are those marked
with an asterisk (Exercises 1.5, 3.5, 4.4, 5.1). To obtain a positive evaluation, the student should
submit the solution of as many as possible of them by the end of October 2011. Submission is
possible preferably via email (dario.fasino@uniud.it).

1 Tridiagonal and one-pair matrices

A tridiagonal matrix,

A =


a1 b1

c1 a2
. . .

. . . . . . bn−1

cn−1 an


is irreducible whenever bici 6= 0 for i = 1, . . . , n− 1. You can check easily that, if A is irreducible,
then there are two nonsingular, diagonal matrices D1, D2, such that D1AD2 is symmetric (also
the converse is true). To keep exposition simple, I will mainly consider real, symmetric matrices.
Actually, much of what follows can be easily extended to unsymmetric (and even complex) matrices,
with the help of diagonal scalings.

Definition 1.1. Let u = (u1, . . . , un)T and v = (v1, . . . , vn)T . Then the matrix

S = S(u, v), Sij =

{
uivj if i > j

viuj otherwise

is a one-pair matrix; the vectors u, v are its generators.

Gantmacher and Krein introduced one-pair matrices in the book [3] as a discrete counterpart
of certain integral operators, in order to reveal the structure of the inverse of tridiagonals:

Theorem 1.2. If A is an invertible, symmetric, irreducible tridiagonal matrix, then A−1 is one-
pair.

The proof of the above theorem is proposed as Exercise 3.3. Note that, if the matrix A in the
preceding theorem is not irreducible, then both A and A−1 are block diagonal matrices, and we
can apply the theorem to the irreducible diagonal blocks. Theorem 1.2 goes also in the opposite
way:

Theorem 1.3. The inverse of an invertible, one-pair matrix is tridiagonal and irreducible.

Proof. (Sketch) It is sufficient to show that the (i, j)-cofactor of S vanishes if i > j +1. Actually,
if we delete row i from S, then the columns i − 1 and i of the remaining submatrix are linearly
dependent. It remains to observe that S−1 is reducible iff S is.

1.1 Structured triangular factorization

If a tridiagonal matrix A admits a triangular (say, LU) factorization, then the factors are bidiagonal.
As a consequence, not only the factorization itself, but also det(A) and the solution of Ax = b can
be computed in O(n) arithmetic operations.
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One-pair matrices own analogous properties. Let S = S(u, v) be one-pair. If any entry of
u is zero then S does not admit a triangular factorization (why?), so let us assume that Du =
Diag(u1, . . . , un) is nonsingular. Now,

D−1
u SD−1

u =


z1 z1 · · · z1

z1 z2 · · · z2

...
...

. . .
...

z1 z2 · · · zn

 = S(e, z),

where e = (1, . . . , 1)T and z = (z1, . . . , zn)T with zi = vi/ui. Moreover,
z1 z1 · · · z1

z1 z2 · · · z2

...
...

. . .
...

z1 z2 · · · zn

 =

1
...

. . .
1 · · · 1


︸ ︷︷ ︸

L


z1

z2 − z1

. . .
zn − zn−1


1 · · · 1

. . .
...
1


︸ ︷︷ ︸

LT

= LDLT .

Thus S = DuLDLT Du. We conclude that S can be factored into diagonal and triangular matrices,
the latter being independent on the generators of S. Moreover, this structured factorization can
be computed in O(n) arithmetic operations.

Exercise 1.4. Devise a linear system solver for one-pair matrices based on the structured factor-
ization. What is the overall computational cost, in terms of arithmetic operations?

Exercise 1.5 (*). Find an explicit formula for det(S(u, v)). The formula should work with no
restrictions on the generators.

Hint: Exploit the structured factorization.

Remark 1.6. One possible extension of the one-pair structure to the nonsymmetric case goes as
follows: Given four n-vectors u, v, r, s with uivi = risi for 1 6 i 6 n, consider the matrix A such
that

Aij =

{
uivj if i > j,

risj else.

If A is invertible then A−1 is tridiagonal (and irreducible). Moreover, if either uiri 6= 0 or visi 6= 0
for 1 6 i 6 n, then there exist two nonsingular, diagonal matrices D1, D2 such that D1AD2 is
symmetric (check it).

2 Semiseparable matrices

In what follows, I will use the Matlab-style notation A(i1 : i2, j1 : j2) to denote the submatrix of
A with rows from i1 to i2 and columns from j1 to j2.

Definition 2.1. A symmetric matrix A ∈ Rn×n is semiseparable if

rank(A(i : n, 1 : i)) 6 1, i = 1, . . . , n.

One-pair matrices are also semiseparable, but not all semiseparable matrices are one-pair; a
counterexample:

A =

0 1 0
1 0 0
0 0 1

 . (1)

The following theorem, originally due to Eidelman and Gohberg, allows us to parametrize the set
of semiseparable matrices using a small set of coefficients:

Theorem 2.2. A symmetric matrix A ∈ Rn×n is semiseparable if and only if there exist numbers
d1, . . . , dn, c1, . . . , cn and s1, . . . , sn−1 such that

Aij =

{
djsjsj+1 · · · si−1ci if i > j

disisi+1 · · · sj−1cj if i 6 j,
(2)

assuming sisi+1 · · · sj−1 = 1 if i = j.
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An example with n = 4:

A =


c1d1 ∗ ∗ ∗

c2s1d1 c2d2 ∗ ∗
c3s2s1d1 c3s2d2 c3d3 ∗

c4s3s2s1d1 c4s3s2d2 c4s3d3 c4d4

 . (3)

A constructive proof of the foregoing theorem can be found also in the technical report [5]. There,
it is shown that the numbers c1, . . . , cn and s1, . . . , sn−1 can be chosen so that

ci = cos αi, si = sinαi, cn = 1.

In that case, the resulting parametrization of A is essentially unique and is called the Givens-weight
representation of A. From the numerical point of view, that representation enjoys nice stability
properties. For example, |di| does not exceed the Euclidean norm of the ith column of A; and A’s
norm can be easily bounded in terms of ‖(d1, . . . , dn)‖.

Theorem 2.2 allows us to establish when a semiseparable matrix is (or is not) one-pair:

Exercise 2.3. Prove that a semiseparable matrix A is one-pair iff it admits a representation (2)
where all coefficients si are different from zero.

Hint: ⇒ is trivial. ⇐: Try ui = cisi−1 · · · s1 and vj = dj/(s1 · · · sj−1).

On the other hand, if some si = 0 in (2), then A splits into a block diagonal form whose
diagonal blocks are still semiseparable; for example, if s2 = 0 in (3) then

A =


c1d1 c2s1d1 0 0

c2s1d1 c2d2 0 0
0 0 c3d3 c4s3d3

0 0 c4s3d3 c4d4

 .

Eventually, we find irreducible diagonal blocks. Hence, we arrive at the following claim, that you
can easily apply to the matrix in (1):

Corollary 2.4. Every semiseparable matrix A admits a block diagonal partitioning,

A =

B1

. . .
Bk

 ,

where each diagonal block Bi is a one-pair matrix.

Our next result encourages us to pay attention to one-pair matrices:

Theorem 2.5. One-pair matrices are dense in the set of semiseparable matrices.

Proof. We have to prove two facts: 1) the limit of any converging1 sequence of one-pair matrices
is semiseparable, and 2) any semiseparable matrix is the limit of a sequence of one-pair matrices.

1) Let {S(n)}n be a sequence of one-pair matrices, S(n) = S(un, vn), with limn→∞ S(n) = S̄.
Note that, in the stated hypothesis, the sequences {un}n and {vn}n may not have a limit;
nevertheless, for any index pair (i, j) we have limn→∞ S

(n)
ij = S̄ij .

Let 1 6 j1 < j2 6 i1 < i2 6 n be fixed, and let

X(n) =

(
S

(n)
i1j1

S
(n)
i1j2

S
(n)
i2j1

S
(n)
i2j2

)
.

Thus, X(n) is a 2×2 submatrix of S(n) extracted from its lower triangular part. By Definition
1.1 we have det(X(n)) = 0 (check it using generators). Since the determinant is a continuous
function, we have

det
(

S̄i1j1 S̄i1j2

S̄i2j1 S̄i2j2

)
= det

(
lim

n→∞
X(n)

)
= lim

n→∞
det(X(n)) = 0.

A simple contradiction argument leads us to conclude that all submatrices in the lower
triangular part of S̄ have rank not larger than 1, that is, S̄ is semiseparable.

1 Owing to the equivalence of all norms in a finite dimension vector space, there is no difference among norm
convergence and elementwise convergence here.
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2) For simplicity, let us consider a semiseparable matrix S̄ having a 2×2 block diagonal structure
with one-pair diagonal blocks (compare with Corollary 2.4):

S̄ =
(

S(u(1), v(1)) O
O S(u(2), v(2))

)
.

For ε > 0, consider the vectors

u(ε) =
(

u(1)

εu(2)

)
, v(ε) =

(
v(1)

ε−1v(2)

)
.

Then, the matrix Sε = S(u(ε), v(ε)) is one-pair; moreover,

Sε =

(
S(u(1), v(1)) εv(1)u(2)T

εu(2)v(1)T
S(u(2), v(2))

)
ε→0−−−→ S̄,

and the proof is complete.

3 Asplund’s theorem

Two matrices R,S form a complementary pair of projectors if

1. R + S = I,

2. RS = SR = O,

3. R2 = R and S2 = S.

You should recognize the geometric role of R and S as (possibly non-orthogonal) projectors2 onto
the complementary subspaces Im(R) and Im(S). Actually, the preceding conditions are somewhat
redundant. . .

The next theorem has been the first general result relating the presence of zero entries in an
invertible matrix to the presence of small rank submatrices in its inverse [1]:

Theorem 3.1 (Asplund). Let R,S and T,U be two complementary pairs of projectors. If A is an
invertible matrix and TAS = O, then

rank(RA−1U) 6 rank(R)− rank(T ).

Proof. Introduce the following notations: Let rankX(A) be the dimension of the image of the
linear map associated to A restricted to the image of the matrix X; that is, rankX(A) = rank(AX).
Moreover, let nullX(A) be the dimension of the kernel of the linear map associated to A restricted
to the image of X. Hence,

rankX(A) + nullX(A) = rank(X).

We start by observing that TA = TA(S+R) = TAR. From the properties of the complementary
projectors we obtain

O = TU = TAA−1U = TARA−1U = (TAR)(RA−1U).

Thus, Im(RA−1U) ⊂ Im(R) ∩Ker(TAR). Hence,

rank(RA−1U) 6 nullR(TAR)
= rank(R)− rankR(TAR)
= rank(R)− rank(TAR)
= rank(R)− rank(TA) = rank(R)− rank(T ),

owing to the invertibility of A.

2 Projectors (and associated subspaces) are orthogonal iff R = RT and S = ST , see e.g., [4, §9.5].
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Remark 3.2. In the hypotheses of Theorem 3.1 it holds rank(R) > rank(T ). Indeed, from
T (AS) = O we obtain rank(S) = rank(AS) 6 null(T ). Hence,

rank(R) = n− rank(S) > n− null(T ) = rank(T ).

Exercise 3.3. Use Asplund’s theorem to prove that the inverse of a tridiagonal matrix is semisep-
arable. Additionally, exploit Corollary 2.4 to prove Theorem 1.2.

Hint: Consider as projectors matrices like the following:

T =
(

Ok

In−k

)
, U = I − T, S =

(
I`

On−`

)
, R = I − S.

Asplund’s theorem can be generalized along various directions. One is the following:

Theorem 3.4. Let R,S and T,U be two complementary pairs of projectors. If A is an invertible
matrix, and rank(TAS) = ρ > 0 then

rank(RA−1U) 6 ρ + rank(R)− rank(T ).

Exercise 3.5 (*). Prove Theorem 3.4.

Hint: Firstly obtain rank(TARA−1U) = ρ.

4 Quasiseparable matrices

Definition 4.1. A symmetric matrix A ∈ Rn×n is quasiseparable if

rank(A(i + 1 : n, 1 : i)) 6 1, i = 1, . . . , n− 1.

Quasiseparable matrices include tridiagonals and semiseparable matrices. In fact, differently
from Definition 2.1, the rank conditions for a quasiseparable matrix do not consider its diagonal
entries: The strictly lower triangular part (excluding the diagonal) of a quasiseparable matrix of
order n looks like the lower triangular part (including the diagonal) of a semiseparable matrix of
order n− 1. The characterization corresponding to Theorem 2.2 is now immediate:

Theorem 4.2. A symmetric matrix A ∈ Rn×n is quasiseparable if and only if there exist numbers
δ1, . . . , δn, d1, . . . , dn−1, c1, . . . , cn−1 and s1, . . . , sn−2 such that

Aij =


djsjsj+1 · · · si−2ci−1 if i > j

δi if i = j

disisi+1 · · · sj−1cj if i < j.

An example with n = 5:

A =


δ1 ∗ ∗ ∗ ∗

c1d1 δ2 ∗ ∗ ∗
c2s1d1 c2d2 δ3 ∗ ∗

c3s2s1d1 c3s2d2 c3d3 δ4 ∗
c4s3s2s1d1 c4s3s2d2 c4s3d3 c4d4 δ5

 .

Besides to its many computational properties, one of the most intriguing aspects of this matrix
class is that it is closed under inversion:

Theorem 4.3. The inverse of an invertible quasiseparable matrix is quasiseparable.

Exercise 4.4 (*). Prove Theorem 4.3.

Hint: Apply Theorem 3.4 using projectors analogous to the ones in Exercise 3.3.
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5 Quasiseparable matrices and orthogonal functions

Functions that are orthogonal with respect to an inner product play a fundamental role in ap-
proximation theory (and numerical practice, too). Hereafter, we consider a discrete inner product
defined on certain simple, finite dimension function spaces:

〈f, g〉 =
n∑

k=1

w2
kf(λk)g(λk). (4)

Obvious assumptions: the nodes λ1, . . . , λn are pairwise distinct, and the weights w2
1, . . . , w

2
n are

positive. Under these hypotheses, we can perform the orthogonalization of some specific sets of
linearly independent functions {f1, . . . , fn} via the Gram-Schmidt algorithm.

5.1 Tridiagonal matrices and orthogonal polynomials

Consider the functions fi(x) = xi−1. The linear span of {f1, . . . , fn} is made of all polynomials
whose degree does not exceed n− 1. Remark: in this set the inner product (4) is positive definite
(why?).

Let w = (w1, . . . , wn)T and Λ = Diag(λ1, . . . , λn). Consider the Krylov matrix

K = [w |Λw | · · · |Λn−1w ], Kij = wiλ
j−1
i .

Due to the assumptions on (4), this matrix is nonsingular. Indeed, let Ka = 0 for a = (a1, . . . , an)T .
By inspecting the ith row we see that

wi(a1 + a2λi + · · ·+ anλn−1
i ) = 0, i = 1, . . . , n.

Hence, the polynomial a1 + a2x + · · ·+ anxn−1 vanishes in n distinct points ⇒ a1 = · · · = an = 0.
Thus K is nonsingular; consequently, the orthogonal factorization K = QR is essentially unique,

and the triangular factor R is also nonsingular. Let’s look carefully at the entries of Q. The ith
column of Q is a linear combination of the first i columns of K (this is the matrix interpretation
of the Gram-Schmidt algorithm, see e.g., [4, §8.8]). Thus, we can write

Qij = wiπj−1(λi), i, j = 1, . . . , n,

where πj−1(x) is an algebraic polynomial whose degree is (exactly) j−1. The orthogonality among
Q’s columns reveals an important fact:

δij =
n∑

k=1

QkiQkj =
n∑

k=1

w2
kπi−1(λk)πj−1(λk) = 〈πi−1, πj−1〉,

that is, the polynomials πk(x) are orthonormal with respect to the inner product (4). Moreover,
we can write K as the solution of a Sylvester equation:

ΛK −K


0
1 0

. . . . . .
1 0


︸ ︷︷ ︸

Z

=


0 · · · 0 ∗
0 · · · 0 ∗
...

...
...

0 · · · 0 ∗


︸ ︷︷ ︸

yeT
n

.

In the equation above, plug QR in place of K. Then, multiply from the left by QT and from the
right by R−1. After simple manipulations, we arrive at the equation

QT ΛQ = RZR−1 + QyeT
nR−1 =


∗ ∗ · · · ∗
∗ ∗ · · · ∗

. . . . . .
...

∗ ∗


︸ ︷︷ ︸

RZR−1

+


0 · · · 0 ∗
0 · · · 0 ∗
...

...
...

0 · · · 0 ∗


︸ ︷︷ ︸

QyeT
n R−1

.
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The common value (call it T ) of this equation is a Hessenberg matrix (due to the right hand side)
but also a symmetric matrix (because of the left hand side); thus it is tridiagonal.

We have obtained a matrix-oriented construction of classical orthogonal polynomials. In fact,
from the equation ΛQ = QT we obtain the three-term recurrence relation among the polynomials
πi(x) [4, §15.10]:

T =


a0 b1

b1 a1
. . .

. . . . . . bn−1

bn−1 an−1

 =⇒ λiπk(λi) = bkπk−1(λi) + akπk(λi) + bk+1πk+1(λi).

Moreover, if we know in advance the polynomials π0, . . . , πn−1 (say, we know their explicit expres-
sion from analysis) then we can construct explicitly the inner product (4). Indeed, the decompo-
sition T = QT ΛQ is a spectral factorization: the nodes λi are the eigenvalues of T , the weights wi

can be recovered e.g., from the first column of Q. This is the classical computational approach to
Gauss quadrature formulas [4, §16.5].

5.2 Quasiseparable matrices and orthogonal rational functions

Fix (not necessarily distinct) numbers d1, . . . , dn such that di 6= λj for 1 6 i, j 6 n, and consider
the rational functions

f1(x) =
1

x− d1
, fi(x) =

1
x− di

fi−1(x), i = 2, . . . , n.

In the aforementioned assumptions on (4) the rational Krylov matrix

K = [ f1(Λ)w | · · · | fn(Λ)w ], Kij = wifj(λi), (5)

is nonsingular (sketch: by reversing its columns, the matrix can be factored into the diagonal
matrix Diag(fn(λ1), . . . , (λn))−1, a classical Krylov matrix, and a nonsingular, upper triangular
matrix).

From arguments entirely analogous to the ones in the preceding paragraph, the entries of the
orthogonal factor Q in the factorization K = QR can be written as

Qij = wiφj(λi), φj(x) =
pj−1(x)∏j

k=1(x− dk)
∈ Span{f1, . . . , fj},

where pj−1(x) is an algebraic polynomial having degree (exactly) j − 1, and 〈φi, φj〉 = δij . Hence,
Q contains nodal values of the rational functions that result from the Gram-Schmidt orthonormal-
ization of the set {f1, . . . , fn}.

Also in the rational case our Krylov matrix solves a Sylvester equation:

ΛK −K


d1 1

d2
. . .
. . . 1

dn


︸ ︷︷ ︸

B

=


w1 0 · · · 0
w2 0 · · · 0
...

...
...

wn 0 · · · 0


︸ ︷︷ ︸

weT
1

.

Now, factor K = QR, multiply from the left by QT and from the right by R−1 (recall that K
is nonsingular). Observe that RBR−1 is upper triangular, and its ith diagonal entry is di. The
result:

QT ΛQ = QT weT
1 R−1︸ ︷︷ ︸

rank-one

+


d1 ∗ · · · ∗

d2
. . .

...
. . . ∗

dn


︸ ︷︷ ︸

RBR−1

.
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Denote by A the common value of the equation above. Thus, A = QΛQT is a spectral factorization
of a symmetric matrix. Moreover, the right hand side tells us that, if we neglect the diagonal entries
d1, . . . , dn, the lower triangular part of A is the same as that of a rank-one matrix. In conclusion,
A is a symmetric, quasiseparable matrix that can be decomposed into the sum of a one-pair matrix
and the diagonal term Diag(d1, . . . , dn) containing the poles of f1(x), . . . , fn(x).

As in the polynomial case, the spectral factorization A = QΛQT contains all informations
necessary to identify not only the orthonormal functions φ1(x), . . . , φn(x) but also nodes and
weights of the inner product (4). In passing from polynomials to rational functions, the key matrix
changes from tridiagonal to “diagonal-plus-one-pair”.

Exercise 5.1 (*). This exercise comes in two forms, polynomial and rational, whose difficulty is
comparable. Choose your favourite one.

Let A be a symmetric matrix with spectral factorization A = UΛUT , and let v 6= 0 be a fixed
vector. Consider the Krylov matrix K = [ f1(A)v | f2(A)v | · · · | fn(A)v ] where f1(x), . . . , fn(x) are
monomials as in §5.1 (polynomial case) or rational functions as in §5.2 (rational case).

1. Under what conditions on A and v the matrix K is nonsingular? Hint: let w = UT v.

2. Prove that, if K is nonsingular and K = QR, then QT AQ is tridiagonal (in the polynomial
case) or “diagonal-plus-one-pair” (in the rational case).

5.3 QR steps

Let A be a symmetric matrix. Choose a shift σ ∈ R and perform the factorization A + σI = QR.
Multiply the factors in reverse order and undo the shift: B = RQ − σI. The resulting matrix is
not only symmetric but also orthogonally similar to A: B = QT AQ (check it). This procedure
lies at the foundation of the QR method [4, Lect. 10], the most widespread numerical technique to
compute matrix eigenvalues. Usually, that method is started from a tridiagonal matrix, since if A
is tridiagonal then also B is; as a consequence, the basic step of the method can be implemented
efficiently. The main result in this section (whose content is excerpted from [2]) proves that, under
certain assumptions, if A is quasiseparable (more precisely, in “diagonal-plus-one-pair” form) then
also B is in the same form; moreover, the transition from A to B has a special interpretation in
term of rational Krylov matrices. The (far reaching) consequences of this basic fact are a current
research subject.

Consider again the rational Krylov matrix defined in (5). As shown in §5.2, if K is nonsingular
and K = QR, then A = QT ΛQ can be split into the diagonal matrix Diag(d1, . . . , dn) and a one-
pair matrix. Introduce the notation A = R(w) to highlight the dependence of A on w (consider Λ
and d1, . . . , dn as fixed).

Theorem 5.2. Let A = R(w). If A + σI is nonsingular, A + σI = QR, and B = RQ− σI, then
B = R((Λ + σI)w).

(The proof of this theorem has been presented during the school.)
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