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Abstract

In this paper the definition of semiseparable matrices is investigated. Prop-
erties of the frequently used definition and the corresponding representation by
generators are deduced. Corresponding to the class of tridiagonal matrices another
definition of semiseparable matrices is introduced preserving the nice properties
dual to the class of tridiagonal matrices. Several theorems and properties are in-
cluded showing the viability of this alternative definition.

Because of the alternative definition, the standard representation of semisepar-
able matrices is not satisfying anymore. The concept of a representation is expli-
citely formulated and a new kind of representation corresponding to the alternative
definition is given. It is proved that this representation keeps all the interesting
properties of the generator representation.

As an example of the effectivity of the new representation, we design on O(n)
algorithm for the multiplication of a semiseparable matrix given by the new rep-
resentation, with a vector.

Keywords: semiseparable matrices, representations, definitions

1 Introduction

To our knowledge the most early papers concerning semiseparable matrices are the
papers [1, 2, 13, 21, 35, 36, 37, 38]. In these papers semiseparable matrices are defined
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as the inverses of unreducible tridiagonal matrices. In these latter papers the authors
refer to these matrices as: Green’s matrix, one-pair matrix, single-pair matrix. In these
papers different proofs are included stating the fact that the inverses of unreducible
band matrices are semiseparable matrices, also singular and higher order semiseparable
matrices are considered.

Semiseparable matrices appear in several types of applications, e.g., the field of
integral equations [24, 27, 28], boundary value problems [26, 24, 30, 39], in the theory
of Gauss-Markov processes [29], time varying linear systems [10, 23], in statistics [25],
acoustic and electromagnetic scattering theory [9] and rational interpolation [40].

Also lots of connections appear within the field of linear algebra, already lots of
algorithms for different types of factorizations, reductions, solvers,... are developed.
For example there exist reduction algorithms to reduce semiseparable matrices towards
bidiagonal or tridiagonal matrices [17, 32], also reduction algorithms based on the
divide and conquer approach exist [31]. Recently there is also a reduction algorithm
in the other direction namely to transform symmetric matrices into semiseparable ones
[41]. Also several papers are dedicated to different types of factorizations algorithms
and the solvers corresponding to these factorizations [6, 12, 42]. Extension of this
theory leads to solvers for higher rank semiseparable matrices plus banded matrices [8,
22]. There exist also techniques for solving least squares problems for semiseparable
matrices [3], and also rank revealing problems via semiseparable matrices [33].

There are several theoretical papers investigating properties of this class of matrices
[14, 18, 20, 19]. Inversion formulas for diagonal plus semiseparable matrices are stud-
ied in [11], properties of possibly singular semiseparable matrices are investigated in
[16]. Recently a new class of semiseparable matrices was introduced called recurs-
ively or sequentially semiseparable matrices. For example the papers [4, 6] introduce
algorithms for this new, useful class of matrices.

Also algorithms have been designed to compute the eigenvalues and singular val-
ues of semiseparable matrices or semiseparable plus banded matrices, via divide and
conquer algorithms and via the reduction towards bi or tridiagonal form [7, 15, 5, 34].
Recently also algorithms have been proposed for QR algorithms working directly on
the semiseparable matrix [42, 43].

This paper consists of three main parts. In a first part the often used definition of
semiseparable matrices, namely by generators, is investigated. Because of the strong
connection with tridiagonal matrices, we based ourself on the class of tridiagonal
matrices to devise properties for the semiseparable matrices. The result of this part is
the definition of a larger class of semiseparable matrices, containing the former class.
The second part of this paper investigates a new representation for this wider class.
We search for a representation keeping all the interesting properties of the generator
representation. In a final smaller part, an algorithm is given showing that it is possible
to multiply a semiseparable matrix, in Givens-vector representation, with a vector in
order O(n) operations.
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2 Semiseparable matrices and their definition

In this section the definition of a semiseparable matrix is investigated. We start with
one of the first definitions, namely as the inverse of unreducible tridiagonal matrices.
Properties of this class of semiseparable matrices are compared with the properties of
the class of tridiagonal matrices. Based on these comparisons an alternative definition
of semiseparable matrices is given. Note that this paper is restricted to the class of
symmetric matrices. The extension to higher order and nonsymmetric semiseparable
matrices is straightforward.

2.1 One-pair matrices as the inverse of tridiagonal matrices

Originally, semiseparable matrices were defined as the inverses of unreducible tridiag-
onal matrices, see for instance [1, 36]. Later on they were also defined as the inverses of
unreducible band matrices [21]. Note that these early definitions immediately exclude
the possibility of having singular semiseparable matrices. In the book [21] semisep-
arable matrices got for the first time a name, namely one-pair or single-pair matrices
(depending on the translation; the book was originally written in Russian). In fact these
one-pair matrices are a special sort of semiseparable matrices, and they have strong
connections with Jacobi matrices, more commonly known as tridiagonal matrices. In
this section the two most important theorems of the book [21] will be mentioned, and
their proofs will be given in appendix A.

Originally the one-pair matrices were defined as:

Definition 1 A one-pair matrix is a symmetric matrix S such that

Si, j =

{

uiv j (i ≤ j)
u jvi (i ≥ j)

(1)

where the elements ui and v j are chosen arbitrarily.

The main theorem in [21, Chapter II] states that the inverse of an unreducible Jacobi
matrix is a one-pair matrix.

Theorem 1.1 Suppose A is a symmetric tridiagonal matrix of size n:
















a1 b1

b1 a2 b2

b2 a3
. . .

. . .
. . . bn−1

bn−1 an

















(2)

with all the bi different from zero. The inverse of A will be a one-pair matrix.

PROOF: See appendix A. �

This theorem states that the inverse of an unreducible symmetric tridiagonal matrix
is a so called one-pair matrix, nothing is mentioned about general tridiagonal matrices.

Also the inverse of the preceding theorem is true: the inverse of an invertible one-
pair matrix is a tridiagonal matrix, with nonzero subdiagonal elements. The proof is
given in appendix A.
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2.2 Symmetric tridiagonal matrices

Before introducing another definition of a semiseparable matrix, we take a close look
at the class of symmetric tridiagonal matrices and derive some of its properties. We
consider this class of matrices, because the inverse of an invertible symmetric tridiag-
onal is a semiseparable matrix. Therefore, both classes of matrices have very strong
connections.

A first important property of symmetric trididiagonal matrices, is that they are
defined by the diagonal and subdiagonal elements, in fact storing 2n− 1 elements is
enough to reconstruct the tridiagonal matrix. A second important point is the fact that
also singular matrices can be tridiagonal and symmetric. The following property is
important in several applications. Suppose we have a symmetric tridiagonal matrix T
and apply the QR algorithm, to compute the eigenvalues, to this matrix. Doing so we
get a sequence of tridiagonal matrices

T (0) → T (1) → ·· · → T (n) → ·· ·

which converge towards a (block-)diagonal matrix. This (block-)diagonal matrix also
belongs to the class of tridiagonal matrices. To formulate this more precisely, we need
the definition of pointwise convergence:

Definition 2 The pointwise limit of a collection of matrices Aε ∈ R
n×n (if it exists) for

ε → ε0, with ε,ε0 ∈ R and with the matrices Aε as

Aε =







(a1,1)ε · · · (a1,n)ε
...

. . .
...

(an,1)ε · · · (an,n)ε







is defined as:

lim
ε→ε0

Aε =







limε→ε0(a1,1)ε · · · limε→ε0(a1,n)ε
...

. . .
...

limε→ε0(an,1)ε · · · limε→ε0(an,n)ε







Corollary 2.1 For the class of symmetric tridiagonal matrices T we have the following
properties:

• They can be represented by order O(n) information.

• Tridiagonal matrices can also be singular.

• The class of tridiagonal matrices is closed for pointwise convergence.

2.3 The frequently used definition of semiseparable matrices in-
vestigated

Most of the definitions of semiseparable matrices are made by using generators, for
example the papers [5, 16, 32, 42]. After given the definition we will investigate the
properties of this class of semiseparable matrices in correspondence with the properties
of Corollary 2.1
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Definition 3 S is called a semiseparable matrix of semiseparability rank r if there exist
two matrices R1 and R2 both of rank r, such that

S = triu(R1)+ tril(R2)

triu(R1) and tril(R2) denote respectively the strictly upper triangular part of the matrix
R1 and the lower triangular part of the matrix R2. Suppose r = 1, because R1 and R2

are now two rank one matrices, they can both be written as the outer product of two
vectors, respectively u and v for R1 and s and t for R2. These vectors are also called
the generators of the semiseparable matrix S.

This definition is already a generalization of the definition for one-pair matrices. First
of all the matrices do not have to be symmetric anymore. Moreover semiseparable
matrices of semiseparability rank higher than 1 are defined now. This definition is
already much stronger than just defining semiseparable matrices as the inverses of sym-
metric tridiagonals. We can reconstruct the matrices by keeping O(n) information. For
example a symmetric semiseparable matrix of rank 1 looks like:

















u1.v1 u1.v2 u1.v3 . . . u1.vn

u1.v2 u2.v2 u2.v3 . . . u2.vn

u1.v3 u2.v3
. . .

. . .
...

...
...

. . .
u1.vn u2.vn . . . un.vn

















In the following part when we speak about semiseparable matrices, we mean sym-
metric semiseparable matrices of semiseparability rank 1. We will also denote semisep-
arable matrices satisfying Definition 3 with S(u,v), this means a semiseparable matrix
representable with two generators u and v. A semiseparable plus diagonal matrix is
defined as the sum of a semiseparable matrix and a diagonal one.

The following example is included, to illustrate some common misunderstandings
about semiseparable matrices. In several papers there are statements which are not
completely true.

Example 1 Several papers state that the inverse of a tridiagonal matrix is a semisep-
arable matrix according to Definition 3. However, consider the following matrix:

A =





0 1 0
1 0 0
0 0 1





This is clearly a nonsingular, symmetric tridiagonal matrix. According to the state-
ments above, its inverse should be a semiseparable matrix representable with two gen-
erators u and v. Matrix A is its own inverse, and one cannot represent this matrix with
two generators u and v. When we expand this class to the class of semiseparable plus
diagonal matrices, we can represent the matrix A in this way, but this is not the case
for all the inverses of tridiagonal matrices.
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For example consider the following matrix A, which is a block combination of the
matrix from above:

A =

















0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

















The reader can verify that the inverse of this nonsingular symmetric tridiagonal matrix
cannot be represented by two generators u and v nor by two generators u,v and a
diagonal.

The following example deals with the numerical instability of the representation
with generators. The reason is the non-closedness of the class of semiseparable matrices
as defined in Definition 3 for the pointwise limit.

Example 2 Suppose a symmetric 5×5 matrix A is given with the following eigenval-
ues: (1,2,3,100,105). Constructing a semiseparable matrix from it (the procedure,
how to do so is explained in paper [41]) generates the following matrix (Using 16
decimal digits of precision in Matlab1.):

S =











1.2738e+00 −5.7004e−01 1.2664e−01 −1.6459e−04 −7.7607e−12
−5.7004e−01 2.2236e+00 −4.9398e−01 6.4202e−04 2.5203e−12

1.2664e−01 −4.9398e−01 2.5026e+00 −3.2527e−03 −2.8150e−12
−1.6459e−04 6.4202e−04 −3.2527e−03 1.0000e+02 4.8028e−08

1.5753e−12 −1.5858e−13 1.5679e−12 4.8030e−08 1.0000e+05











Even though this matrix is semiseparable it can clearly be seen that the last entry of
the diagonal already approximates the largest eigenvalue. Representing this matrix
with the traditional generators u and v gives us the following vectors:

u =
(

8.0861e+11 −3.6187e+11 8.0391e+10 −1.0448e+08 1.0000e+00
)T

and

v =
(

1.5753e−12 −1.5858e−13 1.5679e−12 4.8030e−08 1.0000e+05
)T

Trying to reconstruct the matrix S with the given generators u and v gives huge er-
rors in the matrix (up to 10−4). This means that this representation looses almost 12
decimal digits. The digit loss in this example is unacceptable. This problem can how-
ever be explained rather easily, and it is inherent to the representation connected with
the definition. Because the diagonal matrices do not belong to the class of matrices
representable by the generators u and v, the representation of the matrix above can
never be very well. Very large and very small numbers can be seen in the vectors u and
v to try to compensate the fact that the matrix is almost block diagonal.

Both examples immediately reveal problems of the representation and the definition
of semiseparable matrices. First of all, not all inverses of tridiagonal matrices can be
represented, and also diagonal matrices cannot be found in the class of matrices of
Definition 3. Therefore an extension of this definition is needed.

1Matlab is a registered trademark of the Mathworks Inc.
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2.4 An alternative new definition for semiseparable matrices

A more general definition of a semiseparable matrix is the following one (it can easily
be extended to the more general class of higher rank and nonsymmetric semiseparable
matrices).

Definition 4 An n×n symmetric matrix S is called a symmetric semiseparable matrix
of semiseparability rank one if the following properties are satisfied:

∀i with 1 ≤ i ≤ n : rank (S(i : n,1 : i)) ≤ 1

One can easily verify, that this class of matrices contains the matrices from Definition
3, diagonal matrices and also the matrices from Example 1.

In the following section some theoretical results with proofs, will justify this new
definition.

2.5 Some justifications for the alternative definition

Assume that a semiseparable matrix satisfying Definition 4 is denoted as S, and a
semiseparable matrix, representable with two generators u,v is denoted as S(u,v). The
next theorem shows how the class of semiseparable matrices represented with two gen-
erators can be embedded in the class of semiseparable matrices as defined in Definition
4. To prove the theorem an interesting property is needed, revealing the close connec-
tion between the two definitions.

Proposition 4.1 Suppose a symmetric semiseparable matrix S is given, which cannot
be represented by two generators, then this matrix can be written as a block diagonal
matrix, for which all the blocks are semiseparable matrices representable with two
generators.

PROOF: It can be seen that a matrix S cannot be represented by two generators (e.g.
u and v), if and only if

∃k : 1 ≤ k ≤ n,∃l : 1 ≤ l ≤ k such that S(k, l) = 0

∃i : l ≤ i ≤ n such that S(i, l) 6= 0

∃ j : 1 ≤ j ≤ k such that S(k, j) 6= 0.
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(In case it is representable with two generators, a uk,vl would exist for which one of
the two has to be zero, this leads to a contradiction.)

l j k
↓ ↓ ↓

l →

i →

k →





























. . .
...

...
. . .

...
...

· · · · · ·
. . .

...

×
. . .

...

· · · · · · 0 ×
. . .

...





























Because of the rank 1 assumption following from Definition 4, extra conditions can
be placed on the indices, namely: i < k and j > l. Suppose now, that the element
S(î, l) 6= 0, with l ≤ î < k and all S(i, l) = 0 for î < i < k. The rank one assumption on
the blocks implies that S(i, j) = 0, for all î < i ≤ n and 1 ≤ j < î+1. This means that
our matrix can be divided into two diagonal blocks. This procedure can be repeated
until all the diagonal blocks are representable by two generators. �

The following theorem justifies the new definition of semiseparable matrices. Also
clearly seen in the following proof, is the situation when problems arise with the defin-
ition in terms of the generators.

Theorem 4.2 The pointwise closure of the class of semiseparable matrices represent-
able by two generators is the class of semiseparable matrices according to Definition
4.

PROOF:

⇒ Suppose a sequence of semiseparable matrices representable with two generators
is given:

S(u(ε),v(ε)) ∈ R
n for ε ∈ R and ε → ε0, (3)

such that the pointwise limit exists:

lim
ε→ε0

S(u(ε),v(ε)) = S ∈ R
n.

It will be shown that this matrix belongs to the class of semiseparable matrices
from Definition 4.

It is known that limε→ε0 (ui(ε)v j(ε)) ∈ R. (Note that this last demand does not
imply that limε→ε0 ui(ε), limε→ε0 v j(ε)∈R, which can lead to numerical unsound
problems when representing these semiseparable matrices with two generators
u,v.) It remains to prove that, ∀i ∈ {2, . . . ,n}:

rank

(

lim
ε→ε0

(S(u(ε),v(ε))(i : n,1 : i))

)

≤ 1.
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We have (∀i ∈ {2, . . . ,n}):

rank

(

lim
ε→ε0

(S(u(ε),v(ε))(i : n,1 : i))

)

= rank

(

lim
ε→ε0

(

u(ε)(i : n)v(ε)(1 : i)T )

)

≤ lim
ε→ε0

(

rank( u(ε)(i : n)v(ε)(1 : i)T )
)

(4)

= lim
ε→ε0

(rank (S(u(ε),v(ε))(i : n,1 : i)))

= lim
ε→ε0

1 = 1.

Only the equality (4) needs more explanation. We will prove this by contradic-
tion. Suppose equation (4) is not satisfied. This means that:

rank











lim
ε→ε0











ui(ε)v1(ε) ui(ε)v2(ε) . . . ui(ε)vi(ε)
ui+1(ε)v1(ε) ui+1(ε)v2(ε) . . . ui+1(ε)vi(ε)

...
...

...
un(ε)v1(ε) un(ε)v2(ε) . . . un(ε)vi(ε)





















≥ 2

This means that there exist an l and k such that rows l and k are linearly inde-
pendent. Suppose the following rows to be independent,

lim
ε→ε0

(

ul(ε)v1(ε), . . . ,ul(ε)vi(ε)
)

lim
ε→ε0

(

uk(ε)v1(ε), . . . ,uk(ε)vi(ε)
)

,

this will lead to a contradiction.

When the latter two vectors are independent, there exist an r,s ∈ {1, . . . , i} such
that the determinant of the following 2×2 matrix is different from zero:

D = det

(

limε→ε0 ul(ε)vr(ε) limε→ε0 ul(ε)vs(ε)
limε→ε0 uk(ε)vr(ε) limε→ε0 uk(ε)vs(ε)

)

6= 0.

We can rewrite the determinant above in the following way: (Because all the
limits are well defined we can place the limit outside)

D =

(

lim
ε→ε0

ul(ε)vr(ε)
)(

lim
ε→ε0

uk(ε)vs(ε)
)

−

(

lim
ε→ε0

ul(ε)vs(ε)
)(

lim
ε→ε0

uk(ε)vr(ε)
)

= lim
ε→ε0

(ul(ε)vr(ε)uk(ε)vs(ε)−ul(ε)vs(ε)uk(ε)vr(ε))

= lim
ε→ε0

(0)

= 0

This leads to a contradiction.
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⇐ Suppose a semiseparable matrix S is given such that it cannot be represented by
two generators. Then there exists a sequence S(u(ε),v(ε)) with ε → ε0 such that

lim
ε→ε0

S(u(ε),v(ε)) = S (5)

According to Proposition 4.1 the matrix can be written as a block diagonal mat-
rix, consisting of 2 diagonal blocks (more diagonal blocks can be dealt with in
an analogous way), which can both be represented by two generators, i.e., S has
the following structure:

S =

(

S(u,v) 0
0 S(s, t)

)

. (6)

In a straightforward way we can define the generators u(ε),v(ε):

u(ε) =
[u1

ε
, . . . ,

uk

ε
,s1, . . . ,sl

]

v(ε) = [εv1, . . . ,εvk, t1, . . . , tn] .

It is clearly seen that the limit:

lim
ε→0

S(u(ε),v(ε)) = S. (7)

This proves the theorem.

�

The proof shows that the limit

lim
ε→0

S(u(ε),v(ε)) = S (8)

exists, but the limits of the generating vectors

u(ε) =
[u1

ε
, . . . ,

uk

ε
,s1, . . . ,sl

]

v(ε) = [εv1, . . . ,εvk, t1, . . . , tn]

do not necessarily exist. In fact for ε→ 0 some elements of u(ε) will become extremely
large, while some elements of v(ε) will become extremely small. This is the behaviour
observed in Example 2.

The last theorem is an extension of Theorem 1.1.

Theorem 4.3 Suppose A is a symmetric invertible tridiagonal matrix, then its inverse
is a semiseparable matrix S as defined in Definition 4.

PROOF: If all the subdiagonal elements of the symmetric tridiagonal matrix are
different from zero, i.e., if it is unreducible, it is proved in Theorem 1.1 that the inverse
is semiseparable and representable by two generators u and v.

Without loss of generality, we can assume that only one sub-diagonal element is
different from zero (When there are more zero elements, the same arguments can be
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considered). Because one subdiagonal element equals zero, we can write the matrix A
in the following way:

A =

(

A1 0
0 A2

)

where A1 and A2 are two symmetric tridiagonal matrices with nonzero subdiagonal ele-
ments, the inverses of these matrices are semiseparable matrices S(u1,v1) and S(u2,v2).
This means that the inverse S of the matrix A looks like:

S =

(

S(u1,v1) 0
0 S(u2,v2)

)

Even though this matrix cannot be represented with two generators, one can clearly see
that it satisfies Definition 4. The case when there are more zero subdiagonal elements
can be dealt with in the same way, because one can split the matrix in more blocks. �

This last theorem proves that we have indeed a real expansion of the class of
semiseparable matrices. Satisfying all the properties of the class of tridiagonal matrices,
except for the representability, but this will be solved in the next section.

3 The definition of a representation

Before investigating different possible representations, it is necessary to define what is
exactly meant when talking about a representation of a tridiagonal or a semiseparable
matrix.

We define a representation based on a map as follows:

Definition 5 Suppose we have a map r

r : V → U ⊆ W (9)

with the following properties (V ,W are vector spaces and U is a set):

• dim(V ) ≤ dim(W )

• r(V ) = U, i.e. the map is surjective

• ∃ a map s : U → V such that r|s(U) is bijective.

Then this map r is called a representation map of the set U. The element v ∈ s(U)⊆ V
for which r(v) = u with u ∈ U is called a representation of u.

To check if this definition suits our needs, we investigate the following map, when
studying tridiagonal matrices. First we denote the class of symmetric tridiagonal matrices
with:

T = {A ∈ R
n×n|A is a symmetric tridiagonal matrix} (10)
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We have the following map:

rT : R
n−1 ×R

n → T

(d(s),d) 7→ T =



















d1 d(s)
1 0 . . . 0

d(s)
1 d2 d(s)

2

0 d(s)
2

. . .
. . .

. . .
. . . d(s)

n−1

0 d(s)
n−1 dn



















It can clearly be seen that all the properties from Definition 5 are satisfied, and the class
of tridiagonal matrices T is clearly closed for the pointwise limit. The map sT can be
defined very easily as sT = r−1

T . This states the fact that we can use the diagonal and
subdiagonal of a tridiagonal matrix to represent it.

3.1 The representation of semiseparable matrices with generators

Now we will work with the general class of semiseparable matrices as defined in Defin-
ition 4.

S = {A ∈ R
n×n|A is a symmetric semiseparable matrix of semiseparability rank 1

according to Definition 4}

First of all we investigate if the map corresponding to Definition 3 satisfies the proper-
ties of a representation map. This map rS1 is defined in the following natural way:

rS1 : R
n ×R

n → S
(u,v) 7→ tril(uvT )+ triu(vuT ,1)

What one would expect here is that the definition of the representation map would re-
veal all the problems mentioned above, and that therefore this map cannot be a suitable
representation map. Nevertheless we will try to make the map as close to a represent-
ation map as possible. The first demand on the map: dim(Rn ×R

n) < dim(Rn×n) is
satisfied in a natural way. The surjectivity condition however leads to problems. E.g.
the matrix

S1 =





0 1 0
1 0 0
0 0 1



 (11)

belongs to the class of semiseparable matrices S but S1 /∈ rS1(R
n ×R

n). Therefore
this representation can never be used to represent the complete class of semiseparable
matrices, so the target set needs to be adapted. Denote

Suv = rS1(R
n ×R

n) = {A ∈ S |A can be represented by u and v} (12)

and let us restrict the map to this subclass of the semiseparable matrices. Redefine rS1

as

rS1 : R
n ×R

n → Suv

(u,v) 7→ tril(uvT )+ triu(vuT ,1).

12



Perhaps this restriction will make rS1 a good representation for the class Suv. The
surjectivity is already satisfied. We will now search for the function sS1 . It is clearly
seen that the inverse of rS1 will not suit our needs, as shown by the following example:

Example 3 Take the following two vectors: u1 = [1,2,3]T and v1 = [2,2,2]T , the mat-
rix rS1(u1,v1) is the following:

rS1(u1,v2) =





2 4 6
4 4 6
6 6 6



 . (13)

Constructing rS1(u2,v2) with u2 = [2,4,6]T and v2 = [1,1,1]T gives the following res-
ult:

rS1(u2,v2) =





2 4 6
4 4 6
6 6 6



 . (14)

This means that the map

rS1 : r−1
S1

(Suv) = R
n ×R

n → Suv

(u,v) 7→ tril(uvT )+ triu(vuT ,1)

can never be bijective.

Some kind of normalization is needed such that every matrix will have a unique set of
generators. The demand u1 = 1 will often work for a unique representation, but not
always.

Example 4 Suppose the following matrix S is given:




0 0 0
0 2 3
0 3 6



 . (15)

The following vectors both have the first element of the vector u equal to 1 but are not
the same: u1 = [1,2,3]T ,v1 = [0,1,2]T and the couple u1 = [1,1,3/2]T ,v1 = [0,2,4]T .

Therefore sS1 needs to be defined in a solid way. Suppose we have a matrix S ∈ Suv,
S = [K1,K2, . . . ,Kn], when the Ki’s denote the columns of the matrix S. Suppose 1 ≤
l ≤ k ≤ n such that Kl is the first column in S different from zero, and Kk is the last
column in S different from zero. Define then u = Kl/S(k, l) and v = Kk, then we get a
unique set (u,v) for every semiseparable matrix in Suv. Using these calculations as a
standard definition for u and v we can define the function sS1 in the following way:

Definition 6 Suppose for each matrix S ∈ Suv of dimension n, Kl is the first column of
S different from zero and Kk is the last column of S different from zero. Then we define
the map sS1 in the following way:

sS1 : Suv → R
n ×R

n

S 7→

(

Kl

S(k, l)
,Kk

)

13



Because this defines the projection into the vectors u and v in a unique way, we have
that rS1 |s(Suv) is bijective. We have now a unique representation for each element of the
set Suv but we want to represent the complete set S . To represent the complete class S
and to overcome the numerical instabilities we have to search for a new representation.

3.2 A new representation for semiseparable matrices

We consider a new type of representation. For a semiseparable matrix of dimension
n, this representation consists of n− 1 Givens transformations and a vector of length
n. The Givens transformations are denoted as G = [G1, . . . ,Gn−1] and the vector as
d = [d1, . . . ,dn]. It is clearly seen that this representation also keeps O(n) information
to reconstruct the complete semiseparable matrix.

The following figures denote how the semiseparable matrix can be reconstructed,
using this information. The elements denoted by � make up the semiseparable part
of the matrix. Initially one starts on the first 2 rows of the matrix. The element d1 is
placed in the upper left position, then a Givens transformation is applied, and finally to
complete the first step element d2 is added in position (2,1). Only the first two columns
and rows are shown here.

(

d1 0
0 0

)

→ G1

(

d1 0
0 0

)

+

(

0 0
0 d2

)

→

(

� 0
� d2

)

.

The second step consists of applying the Givens transformation G2 on the second and
the third row, furthermore d3 is added in position (3,3). Here only the first three
columns are shown and the second and third row. This leads to:

(

� d2 0
0 0 0

)

→ G2

(

� d2 0
0 0 0

)

+

(

0 0 0
0 0 d3

)

→

(

� � 0
� � d3

)

.

This process can be repeated by applying the Givens transformation G3 on the third
and the fourth row of the matrix, and afterwards adding the diagonal element d4. After
applying all the Givens transformations and adding all the diagonal elements, the lower
triangular part of a symmetric semiseparable matrix is constructed. Because of the
symmetry also the upper triangular part is known.

Suppose the Givens and vector representation of a semiseparable matrix S is known.
When denoting the Givens transformations as:

Gl =

(

cl −sl

sl cl

)

. (16)

The elements S(i, j) with n > i ≥ j are calculated in the following way:
S(i, j) = cisi−1si−2 · · ·s jd j. When n = i we have S(i, j) = sn−1sn−2 · · ·s jd j. When n ≥
j > i, S(i, j) can be calculated in a similar way, because of the symmetry. The elements
of the semiseparable matrix can therefore be calculated in a stable way based on the
Givens vector representation. This means that we have constructed the following map

14



rS2

rS2 : R
2×(n−1) ×R

n → R
n×n (17)

[(

c1 . . . cn−1

s1 . . . sn−1

)

,(d1, . . . ,dn)

]

7→











c1d1

c2s1d1 c2d2

c3s2s1d1 c3s2d2 c3d3
...

...
. . .











Example 5 (Example 1 Continued) The Givens-vector representation of the matrix
in Example 2 is the following: (In the first row of G the elements c1, . . . ,c4 are stored
and in the second row the elements s1, . . . ,s4.)

G =

(

9.0903 ·10−1 9.7620 ·10−1 9.9999 ·10−1 1.0000
−4.1672 ·10−1 −2.1686 ·10−1 −1.2997 ·10−3 4.8030 ·10−10

)

and
d =

(

1.4012 2.2778 2.5026 1.0000 ·102 1.0000 ·105
)

(18)

All the elements of the semiseparable matrix can be reconstructed now with high rel-
ative precision if the corresponding elements of G and d are known with high relative
precision.

3.3 Retrieving the representation from a semiseparable matrix

Here, a method is proposed to retrieve the representation of a semiseparable matrix, in
terms of the Givens-vector representation in a stable way.

In fact we search for the map:

sS2 : S → R
2×(n−1) ×R

n

S 7→ (G,d)

Suppose we have a semiseparable matrix as in (17). The vector elements di can be
retrieved rather easily, from the matrix. In fact:

‖S(i : n, i)‖2

=
√

(cidi)2 +(ci+1sidi)2 + · · ·+(cn−1sn−2 . . .sidi)2 +(sn−1sn−2 . . .sidi)2

=
√

(cidi)2 +(ci+1sidi)2 + · · ·+(s2
n−1 + c2

n−1)(sn−2 . . .sidi)2

=
√

(c2
i + s2

i )d
2
i

= |di|

This means that the absolute values of di can be calculated by calculating the norms
of the ith column ‖S(i : n, i)‖. To calculate the corresponding Givens transformations
connected with the semiseparable matrix, we first map the matrix S towards another
semiseparable matrix. This procedure is quite expensive, but results in a stable way to

15



compute a representation. The matrix S is mapped onto the following matrix of norms.
Note that the choice of the norm does not play a role:

Ŝ =











‖S(1,1)‖
‖S(2,1)‖ ‖S(2,1 : 2)‖

...
. . .

‖S(n,1)‖ ‖S(n,1 : 2)‖ . . .‖S(n,1 : n)‖











(19)

So in fact a new matrix Ŝ is created with as elements Ŝi, j = ‖S(i,1 : j)‖. Remark that
this matrix has the same dependency between the rows as the matrix S (except for the
signs). We start with calculating the last Givens transformation Gn−1 such that

Gn−1 (rn−1 , 0)T = (‖S(n−1,1 : n−1)‖ , ‖S(n,1 : n−1)‖)T .

Before calculating the next Givens transformation we have to update the matrix Ŝ, by
applying the Givens transformation Gn−2 to the rows n− 1 and n. Denoting this new
matrix as Ŝ(n−1), the next Givens transformation Gn−2 is calculated such that :

Gn−2 (rn−2 , 0)T =
(

‖S(n−2,1 : n−2)‖ , Ŝ(n−2)
n−2,n−2

)T
.

Updating again the matrix Ŝ(n−2) by applying the Givens transformation GT
n−2 to the

rows n−2 and n−1 we get the matrix Ŝ(n−3) and we can calculate Gn−3. Consequet-
ively, all the Givens transformations can be calculated, satisfying:

Gi (ri , 0)T =
(

‖S(i,1 : i)‖ , Ŝ(i)
i,i

)T
.

This procedure gives us the Givens-vector representation, except for the sign, but
this is done rather easily, by taking a look at the signs of the original matrix, because
the Givens are uniquely determined, because we take ci always positive. And when a
Givens transformation of the following form has to be determined: G(0 , 0)T = (0 , 0)
we take G equal to the identity matrix.

This reconstruction of the representation is of course quite expensive, (faster, even
O(n) algorithms, can be constructed, for arbitrary semiseparable matrices, but they
are numerically unstable). In practice however, one should take a closer look at the
application one is working with, probably much faster algorithms can be devised cor-
responding to a particular problem.

In the reduction algorithm from symmetric to semiseparable, the output of the al-
gorithms is already in the appropriate form [41], also the QR algorithm as proposed in
[43] uses as input this representation and gives as output the Givens vector represent-
ation of the new semiseparable matrix. In both of these algorithms there is no need to
apply this expensive procedure for calculating the Givens vector representation.

This last procedure justifies our new representation, because the mappings rS2 and
sS2 are defined in the appropriate way and represent the complete set S .

Moreover, this representation reveals already the QR factorization of the semisepar-
able matrix S: the Givens transformations appearing in the representation of the matrix
are exactly the same as the Givens transformations appearing in the Q factor of the QR
factorization.(More information can be found in [42, 34].)
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4 An algorithm connected to the representation

In this section one example of an implementation with the new definition is given. In
[42, 44] other algorithms, based on the Givens-vector representation can be found. The
algorithms for retrieving the representation and for constructing the full semiseparable
matrix, given the Givens-vector representation, can be deduced easily with the inform-
ation in the previous section.

Here an O(n) implementation of a matrix vector multiplication will be given. The
formulas will be given for nonsymmetric semiseparable matrices, who have two se-
quences of Givens transformations and two vectors. Let us denote the first sequence
as:

G =

(

c1 c2 . . . cn−1

s1 s2 . . . sn−1

)

d =
(

d1 d2 . . . dn
)

and the second as:

H =

(

r1 r2 . . . rn−2

t1 t2 . . . tn−2

)

e =
(

e1 e2 . . . en−1
)

.

We want to calculate the multiplication between S and v where

S =























c1d1 r1e1 r2t1e1 . . . rn−2tn−3 · · · t1e1 tn−2tn−3 · · · t1e1

c2s1d1 c2d2 r2e2
...

...

c3s2s1d1 c3s2d2 c3d3
. . .

...
. . .

. . . rn−2en−2 tn−2en−2

cn−1sn−2 · · ·s1d1 . . . cn−1dn−1 en−1

sn−1sn−2 · · ·s1d1 . . . sn−1dn−1 dn























and
v =

(

v1 v2 . . . vn
)T

.

To deduce the algorithm, we have to decompose the matrix into a strict uppertriangular,
and a lower triangular part of S. Denote S1 = tril(S) and S2 = triu(S). We will now
compute:

y = S1v

z = S2v

such that x = y+ z = Sv is the solution. To calculate y =
(

y1 y2 . . . yn
)

in a fast
way, we rewrite the following formulas (only the first 4 components of y are denoted):

y1 = c1d1v1

y2 = c2s1d1v1 + c2d2v2

y3 = c3s2s1d1v1 + c3s2d2v2 + c3d3v3

y4 = c4s3s2s1d1v1 + c4s3s2d2v2 + c4s3d3v3 + c4d4v4.
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We use some help variables called ai. Rewriting the formulas reveals the order O(n)
algorithm for the multiplication.

y1 = c1 (d1v1)

= c1a1

y2 = c2 (s1d1v1 +d2v2)

= c2 (s1a1 +d2v2)

= c2a2

y3 = c3 (s2 (s1d1v1 +d2v2)+d3v3)

= c3 (s2a2 +d3v3)

= c3a3

y4 = c4 (s3 (s2 (s1d1v1 +d2v2)+d3v3)v3 +d4v4)

= c4 (s3a3 +d4v4)

= c4a4.

Combining the last 2 equalities of all the yi one can derive an order n algorithm to
perform the multiplication of S1 and v. The multiplication of S2 and v can be derived
in a completely analogous way.

5 Conclusions

In this paper, we have shown that the standard definition and representation of semisep-
arable matrices based on generators has some disadvantages. We have given an altern-
ative definition and a corresponding representation which keeps the interesting proper-
ties of the standard representation but does not exhibit the disadvantages.

Appendix A

Our main result here will be to prove, as in [21, Chapter II] , that the inverse of a
one-pair matrix is an unreducible tridiagonal matrix and vice versa.

First some notation has to be introduced. Suppose we have an arbitrary n×n matrix
A which is denoted as A = (ai, j)i, j∈{1,...,n}

Definition 7 Define the matrix A(i1, . . . , ip; j1, . . . , jp) as the matrix:

A(i1, . . . , ip; j1, . . . , jp) = (ai, j)

with the indices belonging to the following sets:

i ∈ {i1, . . . , ip}
j ∈ { j1, . . . , jp}.

For the determinant of a matrix we will use the following notation:

det(A) = |A|
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Before we can prove the first important statement a proposition is needed.

Proposition 7.1 Suppose a Jacobi matrix (this is a tridiagonal matrix) J of size n is
given. If

1 ≤ i1 < i2 < .. . < ip ≤ n
1 ≤ j1 < j2 < .. . < jp ≤ n

(20)

and
i1 = j1, i2 = j2, . . . , iν1 = jν1 ,
iν1+1 6= jν1+1, . . . , iν2 6= jν2 ,
iν2+1 = jν2+1, . . . , iν3 = jν3 ,
iν3+1 6= jν3+1, . . .

then

|J(i1, . . . , ip; j1, . . . , jp)|

= |J(i1, . . . , iν1 ; j1, . . . , jν1)| · |J(iν1+1; jν1+1)| . . .

|J(iν2 ; jν2)| · |J(iν2+1, . . . , iν3 ; jν2+1, . . . , jν3)| . . .

PROOF: In fact it is enough to prove that under the conditions (20), and iν 6= jν the
following equations hold:

|J(i1, . . . , ip; j1, . . . , jp)|

= |J(i1, . . . , iν; j1, . . . , jν)| · |J(iν+1, . . . , ip; jν+1, . . . , jp)| (21)

= |J(i1, . . . , iν−1; j1, . . . , jν−1)| · |J(iν, . . . , ip; jν, . . . , jp)| (22)

Proving the first of the two equations is enough. If iν < jν then we have, because the
matrix A is tridiagonal:

aiλ jµ = 0 (λ = 1,2, . . . ,ν;µ = ν+1, . . . , p)

otherwise iν > jν would lead to:

aiλ jµ = 0 (λ = ν+1, . . . , p;µ = 1,2, . . . ,ν)

These two last statements say that the matrix is either upper block triangular, or lower
block triangular. This proves (21). �

Now it is time to prove that the inverse of a symmetric Jacobi matrix is a so called
one-pair matrix.

PROOF: of Theorem 1.1 We will prove the theorem by explicitely constructing the
inverse of the tridiagonal matrix A. This matrix will then appear to be a one-pair matrix.
Suppose S is the inverse of the matrix A, this means that:

S(i, j) =
1

det(A)
(−1)i+ j|A(1, . . . , i−1, i+1, . . . ,n;1, . . . , j−1, j +1, . . . ,n)| (23)

We distinguish between two cases now:
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1. When i ≤ j

S(i, j) =
1

det(A)
(−1)i+ j|A(1, . . . , i−1;1, . . . , i−1)| · |A(i, i+1)| · · ·

|A( j−1, j)| · |A( j +1, . . . ,n; j +1, . . . ,n)|

=
1

det(A)
(−1)i+ j|A(1, . . . , i−1;1, . . . , i−1)|bi bi+1 . . .

b j−1 |A( j +1, . . . ,n; j +1, . . . ,n)|

2. When i ≥ j , we can do the same as above and one gets

S(i, j) =
1

det(A)
(−1)i+ j|A(1, . . . , j−1;1, . . . , j−1)|b j b j+1 . . .

bi−1 |A(i+1, . . . ,n; i+1, . . . ,n)|

When writing ui and v j now as: (Under the assumption that all the bi 6= 0)

ui =
(−1)i

det(A)
|A(1, . . . , i−1;1, . . . , i−1)|bi bi +1 . . .bn−1

vi =
(−1)i|A(1, . . . , i−1;1, . . . , i−1)|

bi bi +1 . . .bn−1

This means that

S(i, j) =

{

uiv j (i ≤ j)
u jvi (i ≥ j)

(24)

This proves the theorem. �

Proposition 7.2 Suppose we have a one-pair matrix S which is generated by the vec-
tors u and v. If

1 ≤ i1, j1 < i2, j2 < .. . < ip, jp ≤ n (25)

then

S(i1, . . . , ip; j1, . . . , jp) = uα1

∣

∣

∣

∣

vβ1
vα2

uβ1
uα2

∣

∣

∣

∣

∣

∣

∣

∣

vβ2
vα3

uβ2
uα3

∣

∣

∣

∣

. . .

∣

∣

∣

∣

vβp−1
vαp

uβp−1
uαp

∣

∣

∣

∣

vβp (26)

where
αν = min(iν, jν) βν = max(iν, jν)

PROOF: Because the matrix S is a symmetric matrix, we can without loss of gener-
ality assume that i2 ≤ j2, this means that α2 = i2 and β2 = j2, leading to the following
equality:

|S(i1, . . . , ip; j1, . . . , jp)|

= det







uα1 vβ1
ui1 v j2 ui1 v j3 . . . ui1 v jp

u j1 vi2 ui2 v j2 ui2 v j3 . . . ui2 v jp
...

. . .






.
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Subtracting from the first row the second one multiplied with ui1/vi2 gives the following
equation:

|S(i1, . . . , ip; j1, . . . , jp)|

=

(

uα1 vβ1
−

uk1 vi2 ui1

ui2

)

|S(i2, . . . , ip; j2, . . . , jp)|

=
uα1

uα2

∣

∣

∣

∣

vβ1
vα2

uβ1
uα2

∣

∣

∣

∣

|S(i2, . . . , ip; j2, . . . , jp)|

Applying the equation above successively and using the fact that

S(ip; jp) = uαp vαp (27)

gives the desired result. �

One more proposition about the determinants of minors of a one-pair matrix is
needed

Proposition 7.3 Suppose we have a one-pair matrix S. If

1 ≤ i1 < i2 < .. . < ip ≤ n

1 ≤ j1 < j2 < .. . < jp

but equation (25) is not satisfied then:

|S(i1, . . . , ip; j1, . . . , jp)| = 0 (28)

PROOF: Using the proposition 7.2 and assuming that

1 ≤ i1, j1 < i2, j2 < .. . < ir, jr (29)

whereas for example jr > ir+1. This means that

|S(i1, . . . , ip; j1, . . . , jp)|

=
uα1

uα2

∣

∣

∣

∣

vβ1
vα2

uβ1
uα2

∣

∣

∣

∣

. . .

∣

∣

∣

∣

vβr−1
vαr

uβ1−1
uαr

∣

∣

∣

∣

|S(ir, . . . , ip; jr, . . . , jp)| .

Because jr > ir+1, this means that the last determinant is zero. �

Now the theorem stating that the inverse of a one-pair matrix is a tridiagonal can
be stated.

Theorem 7.4 Suppose S is a one-pair matrix with all the elements of the generators
different from zero, then the inverse of S is a strict tridiagonal matrix.

PROOF: It is easy proved by using Propositions 7.2 and 7.3. �
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