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@ Local Minimization: BFGS methods
© Local BFGS-type methods
© A BFGS-type approach for global optimization

@ Repeller matrices for global optimization
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Local Minimization: BFGS methods

The phi operator

Given a matrix H and two vectors p, q, set:

1 1
¢(H,p,a) = H+-—aq’ —
( ) a’p p” Hp

Hpp'H (1)
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Local Minimization: BFGS methods

The phi operator

Given a matrix H and two vectors p, q, set:

1 1
¢(H,p,a) = H+-—aq’ — Hpp" H 1
( ) aTp T Hp (1)
¢(H,p,q)"! =
-1 _ 1 T -1 -1 qTH 19\ pp’”
H qu(qu +H qp) <1+ a’p >qu
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Local Minimization: BFGS methods

The phi operator

Given a matrix H and two vectors p, q, set:

1 1
¢(H,p,a) = H+-—aq’ — Hpp" H 1
( ) aTp T Hp (1)
¢(H,p,q)"! =
-1 _ 1 T -1 -1 qTH 19\ pp’”
H qu(qu +H qp) <1+ a’p >qu

¢ properties:

o H positive definite (pd) and q”p >0 = ¢(H,p,q) pd
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Local Minimization: BFGS methods

The phi operator

Given a matrix H and two vectors p, q, set:

1 1
¢(H,p,a) = H+-—aq’ — Hpp" H 1
( ) aTp T Hp (1)
¢(H,p,q)"! =
-1 _ 1 T -1 -1 qTH 19\ pp’”
H qu(qu +H qp) <1+ a’p >qu

¢ properties:

o H positive definite (pd) and q”p >0 = ¢(H,p,q) pd
e ¢(H,p,q)p=q ¢ satisfies the Secant Equation
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Local Minimization: BFGS methods

f(x.) = min f(x), find x, 2
(x.) = min f(x), find x (2)

BFGS-methods
generate a minimizing sequence {xk}jif) by the iterative scheme:
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Local Minimization: BFGS methods

f(x.) = min f(x), find x, 2
(x.) = min f(x), find x (2)

BFGS-methods
generate a minimizing sequence {xk}jif) by the iterative scheme:

xo € R", go=Vf(xo), do=—go, defineBy pd
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Local Minimization: BFGS methods

f(x.) = min f(x), find x, 2
(x.) = min f(x), find x (2)

BFGS-methods
generate a minimizing sequence {xk}jif) by the iterative scheme:

xo € R", go=Vf(xo), do=—go, defineBy pd
For k=0,1,...
Xpy1 = X + Ardg
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Local Minimization: BFGS methods

f(x.) = min f(x), find x, 2
(x.) = min f(x), find x (2)

BFGS-methods
generate a minimizing sequence {xk}jif) by the iterative scheme:

xo € R", go=Vf(xo), do=—go, defineBy pd
For k=0,1,...

X1 = Xk + Apdg

gk+1 = VF(Xk+1)
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Local Minimization: BFGS methods

f(x4) = min f(x), fi X 2
(x.) = min f(x), find x (2)
BFGS-methods

generate a minimizing sequence {xk}jif) by the iterative scheme:

xo € R", go=Vf(xo), do=—go, defineBy pd
For k=0,1,...
Xpy1 = X + Ardg
gk+1 = VF(Xk+1)
¢ (B,s,y) =B+ ﬁny — —Bss'B

s’ Bs
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Local Minimization: BFGS methods

f(x4) = min f(x), fi X 2
(x.) = min f(x), find x (2)
BFGS-methods

generate a minimizing sequence {xk}jif) by the iterative scheme:

xo € R", go=Vf(xo), do=—go, defineBy pd
For k=0,1,...
X1 = Xk + Apdg
gk+1 = VF(xki1)
¢ (B,s,y) =B+ ﬁny — 75.Bss"B
Bit1 = ¢ (B, Sk, Yk), Sk = Xk41 — Xk, Yk = Sk+1 — 8k
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Local Minimization: BFGS methods

f(x«) = min f(x), find x, (2)

xeER"

BFGS-methods
generate a minimizing sequence {xk}jif) by the iterative scheme:

xo € R", go=Vf(xo), do=—go, defineBy pd
For k=0,1,...
Xk+1 = Xk + Ardg
grki1 = VF(Xky1)
® (B7Sa y) =B+ ﬁny — sTlBs BSSTB
Biy1 =@ (Bk, Sk; Yk), Sk = Xk41 — Xk, Yk = 8k+1 — Bk
diy1 = 7Bk__:1gk+1 «— descent direction
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Local Minimization: BFGS methods

f(x4) = min f(x), fi X 2
(x.) = min f(x), find x (2)
BFGS-methods

generate a minimizing sequence {xk}jif) by the iterative scheme:

xo € R", go=Vf(xo), do=—go, defineBy pd
For k=0,1,...
X1 = Xk + Apdg
grki1 = VF(Xky1)
® (B7Sa y) =B+ ﬁny — sTlBs BSSTB
Bit1 = ¢ (B, Sk, Yk), Sk = Xk41 — Xk, Yk = Sk+1 — 8k
diy1 = 7Bk__:1gk+1 «— descent direction
> 0 such that f(xk41) < f(xx) and s]yx >0
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Local Minimization: BFGS methods

f(x.) = min f(x), find x, 2
(x.) = min f(x), find x (2)

BFGS-methods
generate a minimizing sequence {xk}jif) by the iterative scheme:

xo € R", go=Vf(xo), do=—go, defineBy pd
For k=0,1,...
X1 = Xk + Apdg
grki1 = VF(Xky1)
® (B7Sa y) =B+ ﬁny — sTlBs BSSTB
Bit1 = ¢ (B, Sk, Yk), Sk = Xk41 — Xk, Yk = Sk+1 — 8k
diy1 = 7Bk__:1gk+1 «— descent direction
> 0 such that f(xk41) < f(xx) and s]yx >0

s/yx >0 <& Vf(xk) monotone operator Yk =
= f algorithmically convex
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Local Minimization: BFGS methods

Secant Methods

Let Axy1 be pd and assume Vk d(k+1) — _A—l VF(x (k+1)) be
descent directions for a BFGS-method. Then, the method is called
if Agi1 solves the

A/<+1(X(kJr ) — X(k)) = Vf(x(k+1)) - Vf(x(k)) (3)

S. Fanelli University of Rome “Tor Vergata” Matrix structures in optimization: algebras, fast transforms anc



Local Minimization: BFGS methods

Secant Methods

Let Axy1 be pd and assume Vk d(k+1) — _A—l VF(x (k+1)) be
descent directions for a BFGS-method. Then, the method is called
if Agi1 solves the

Ak+1(x( ) - X(k)) = Vf(x(k+1)) - Vf(x(k)) (3)

(3) is the n-dimensional generalization of classical 1-dimensional
secant method to compute the zeroes of the derivative of a
function F(x) € CY{(RY), i.e.:

~ F'(xi)xk—1 — F'(xie—1)x«
Xk+1 = F’(Xk) _ F/(Xk—l) (4)
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Local Minimization: BFGS methods

Secant Methods

Let Axy1 be pd and assume Vk d(k+1) — _A—l VF(x (k+1)) be
descent directions for a BFGS-method. Then, the method is called
if Agi1 solves the

Ak+1(x( ) - X(k)) = Vf(x(k+1)) - Vf(x(k)) (3)

(3) is the n-dimensional generalization of classical 1-dimensional
secant method to compute the zeroes of the derivative of a
function F(x) € CY{(RY), i.e.:
F'(xi )xk—1 — F'(xk—1)xk
sy = E et ) @
F'(xx) — F'(xk—1)

(4) can be rewritten, in fact, in the following way:

F'(x
{ Xkl = Xk — 7;”

ak(xk — xk—1) = F'(xx) — F'(xk—1)
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Local Minimization: BFGS methods

From BFGS to BFGS-type

BFGS method: By — Bys1 = ¢(Bx, sk, k)

(superlinear convergence, O(n?) complexity)
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Local Minimization: BFGS methods

From BFGS to BFGS-type

BFGS method: By — Bys1 = ¢(Bx, sk, k)

(superlinear convergence, O(n?) complexity)

BFGS-type method: By — & — By = ¢(&, Sk, Yk)
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Local Minimization: BFGS methods

From BFGS to BFGS-type

BFGS method: By — Bys1 = ¢(Bx, sk, k)

(superlinear convergence, O(n?) complexity)
BFGS-type method: By — & — By = gb(&, Sk, Yk)

Memory-less BFGS: B = |
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Local Minimization: BFGS methods

From BFGS to BFGS-type

BFGS method: By — Bys1 = ¢(Bx, sk, k)

(superlinear convergence, O(n?) complexity)
BFGS-type method: By — & — By = gb(&, Sk, Yk)
Memory-less BFGS: B = |

(L-BFGS):
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Local Minimization: BFGS methods

From BFGS to BFGS-type

BFGS method: By — Bys1 = ¢(Bx, sk, k)

(superlinear convergence, O(n?) complexity)
BFGS-type method: By — & — By = gb(&, Sk, Yk)
Memory-less BFGS: B = |

(L-BFGS): By = 6l — QA1 Q]
O =39 Qr nx2m, Ay 2m x 2m depending upon
k—1,...,k—m.
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Local Minimization: BFGS methods

From BFGS to BFGS-type

BFGS method: By — Bys1 = ¢(Bx, sk, k)

(superlinear convergence, O(n?) complexity)
BFGS-type method: By — & — By = gb(&, Sk, Yk)
Memory-less BFGS: B = |

(L-BFGS): By = 6l — QA1 Q]
O =39 Qr nx2m, Ay 2m x 2m depending upon
k—1,...,k—m.

LQN: By = good approximation of By
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Local BFGS-type methods

Local Optimization BFGS-type algorithms

Given an approssimation By of V2f(wy), let us define the matrix Egk:

18, — Buller. = gin X = Bellre, |- ler. = Frob.norm

where £V C C"*"= algebra of matrices simultaneously diagonalized by a
fast unitary transform U.
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Local BFGS-type methods

Local Optimization BFGS-type algorithms

Given an approssimation By of V2f(wy), let us define the matrix Egk:

18, — Buller. = gin X = Bellre, |- ler. = Frob.norm

where £V C C"*"= algebra of matrices simultaneously diagonalized by a
fast unitary transform U. One can define descent methods LQN [DFLZ]:
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Local BFGS-type methods

Local Optimization BFGS-type algorithms

Given an approssimation By of V2f(wy), let us define the matrix Egk:
18, — Buller. = gin X = Bellre, |- ler. = Frob.norm

where LY C C"™*"= algebra of matrices simultaneously diagonalized by a

fast unitary transform U. One can define descent methods LQN [DFLZ]:

Xo € R", do = —go
For k=0,1,...
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Local BFGS-type methods

Local Optimization BFGS-type algorithms

Given an approssimation By of V2f(wy), let us define the matrix Egk:
18, — Buller. = gin X = Bellre, |- ler. = Frob.norm

where LY C C"™*"= algebra of matrices simultaneously diagonalized by a

fast unitary transform U. One can define descent methods LQN [DFLZ]:

Xo € R, do=—go
For k=0,1,...
Xe+1 =Xk + Mdie A >0
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Local BFGS-type methods

Local Optimization BFGS-type algorithms

Given an approssimation By of V2f(wy), let us define the matrix Egk:

18, — Buller. = gin X = Bellre, |- ler. = Frob.norm

where £V C C"*"= algebra of matrices simultaneously diagonalized by a
fast unitary transform U. One can define descent methods LQN [DFLZ]:
Xo € R", do=—go
For k=0,1,...
Xe+1 =Xk + Mdie A >0
Bit1 = ¢( Egk » Xk+1 — Xk, 8k+1 — 8k), 8k = VI(xk)
—_——— ——

Sk Yk
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Local BFGS-type methods

Local Optimization BFGS-type algorithms

Given an approssimation By of V2f(wy), let us define the matrix Egk:

18, — Buller. = gin X = Bellre, |- ler. = Frob.norm

where £V C C"*"= algebra of matrices simultaneously diagonalized by a
fast unitary transform U. One can define descent methods LQN [DFLZ]:
Xo € R", do=—go
For k=0,1,...
Xe+1 =Xk + Mdie A >0
Bit1 = ¢( Egk » Xk+1 — Xk, 8k+1 — 8k), 8k = VI(xk)
—_——— ——
Sk Yk

—1
diy1 = =B [18k+1
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Local BFGS-type methods

Local Optimization BFGS-type algorithms

Given an approssimation By of V2f(wy), let us define the matrix Egk:

18, — Buller. = gin X = Bellre, |- ler. = Frob.norm

where £V C C"*"= algebra of matrices simultaneously diagonalized by a
fast unitary transform U. One can define descent methods LQN [DFLZ]:

X0 € R", do=—gp
For k=0,1,...
Xe+1 =Xk + Mdie A >0
Bit1 = ¢( Egk » Xk+1 — Xk, 8k+1 — 8k), 8k = VI(xk)
—_—
Sk Yk
diy1 = —B gk
The classical BFGS method [NW] and the more recent minimization
methods introduced in [BDFZ], [DFZ2], [DFZ3] are examples of LON
algorithms, (being
LY =crxn, LY = {al},{Circulant — Hartley — type})
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Local BFGS-type methods

The step Ay is determined such that:

Mol siye >0 & Fxpp1) < F(xx)
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Local BFGS-type methods

The step Ay is determined such that:
M| siye >0 & fxpp1) < F(xx)

The updating function ¢ in Byi1 = ¢ (Egk,sk,yk) is

1
O =0+ ——yy' —
¢ (O,s,y) +yTsyy

-
STDSDSS .
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Local BFGS-type methods

The step Ay is determined such that:
M| sfyk >0 & Fxpy1) < Fxk)
The updating function ¢ in Byi1 = ¢ (Egk,sk,yk) is

1
O =0+ ——yy' —
¢ (O,s,y) +yTsyy

-
STDSDSS .

The choice of Ay and the properties of ¢ and Egk imply:

@ By 1 inherites positive definiteness from By
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Local BFGS-type methods

The step Ay is determined such that:
M| sfyk >0 & Fxpy1) < Fxk)
The updating function ¢ in Byi1 = ¢ (Egk,sk,yk) is

1
O =0+ ——yy' —
¢ (O,s,y) +yTsyy

-
STDSDSS .

The choice of Ay and the properties of ¢ and Egk imply:

@ By 1 inherites positive definiteness from By

@ Bii1(Xkt1 — Xk) = 8k+1 — 8k, = LQN secant methods
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Local BFGS-type methods

The step Ay is determined such that:
M| sfyk >0 & Fxpy1) < Fxk)
The updating function ¢ in Byi1 = ¢ (Egk,sk,yk) is

1
O =0+ ——yy' —
¢ (O,s,y) +yTsyy

-
STDSDSS .

The choice of Ay and the properties of ¢ and Egk imply:

@ By 1 inherites positive definiteness from By
@ Bii1(Xkt1 — Xk) = 8k+1 — 8k, = LQN secant methods
@ The structured space £V = LQN has low complexity
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Local BFGS-type methods

The step Ay is determined such that:
M| sfyk >0 & Fxpy1) < Fxk)
The updating function ¢ in Byi1 = ¢ (Egk,sk,yk) is

1
e (Os,y)=0+—yy" —

Css’ O.
y's

s’Os
The choice of Ay and the properties of ¢ and Egk imply:

By 1 inherites positive definiteness from By
Bit1(Xk+1 — Xk) = 8k+1 — 8k, = LQN secant methods
The structured space £Y = L£QN has low complexity

Every iteration of LQN has in our case a cost O(nlogn)
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Local BFGS-type methods

A Local Optimization Quasi-Newton(QN) Theorem

The following result holds (see [DFZ4], [NW]):
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Local BFGS-type methods

A Local Optimization Quasi-Newton(QN) Theorem

The following result holds (see [DFZ4], [NW]):
Theorem 1
Assume f(x) € C? and consider the unconstrained problem:

min f(x), x € C"
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Local BFGS-type methods

A Local Optimization Quasi-Newton(QN) Theorem

The following result holds (see [DFZ4], [NW]):
Theorem 1
Assume f(x) € C? and consider the unconstrained problem:

min f(x), x € C"

If in an iterative scheme of BFGS-type
x(kH1) = %) 1 B g (x(R), (B(k> = p(BK-D), ), Vk)
the following conditions are satisfied Vk:
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Local BFGS-type methods

A Local Optimization Quasi-Newton(QN) Theorem

The following result holds (see [DFZ4], [NW]):
Theorem 1
Assume f(x) € C? and consider the unconstrained problem:

min f(x), x € C"

If in an iterative scheme of BFGS-type
x(kH1) = %) 1 B g (x(R), (B(k> = p(BK-D), ), Vk)
the following conditions are satisfied Vk:

cond(BX) < N

IVAUHD) = VEM) 2y
(VF(x(D) = VE(x0)) T hd®) — y sy

<M
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Local BFGS-type methods

A Local Optimization Quasi-Newton(QN) Theorem

The following result holds (see [DFZ4], [NW]):
Theorem 1
Assume f(x) € C? and consider the unconstrained problem:

min f(x), x € C"

If in an iterative scheme of BFGS-type
x(kH1) = %) 1 B g (x(R), (B(k> = p(BK-D), ), Vk)
the following conditions are satisfied Vk:

cond(BX) < N

[VF(x k“) Vf( UDIE Dyl
(VF(xtD) = V(x( ))Ukd Coys

= IHxEDY: dimy oo VA(xK)) =

<M
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Local BFGS-type methods

Let us consider the case :

L£={L"Y = {diag("1,...7), 7i € C}
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Local BFGS-type methods

Let us consider the case :

L£={L"Y = {diag("1,...7), 7i € C}

Let Dyt € L' 2 | Dis1 — Bt /. = minyepr | X — Brga |,
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Local BFGS-type methods

Let us consider the case :

L£={L"Y = {diag("1,...7), 7i € C}

Let Dyt € L' 2 | Dis1 — Bt /. = minyepr | X — Brga |,

Let Diag(|z|?), z € C", denote:

212 o ... 0 0
0 z2 0 0
0 0 2,0
0 0 72
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Local BFGS-type methods

Let us consider the case :

L£={L"Y = {diag("1,...7), 7i € C}

Let Dyt € L' 2 | Dis1 — Bt /. = minyepr | X — Brga |,

Let Diag(|z|?), z € C", denote:

212 o ... 0 0
0 z2 0

0 0 ... z2, 0
o0 0 ... 0 2z

Then (see [CCDF]) every iteration has in this case a cost O(n) and:

Diag(|yx|? Diag(|Dsi|?
Diss — Dy + DPEUNE) _ Diog(Disil?)
Y Sk S Dksk
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A BFGS-type approach for global optimization

Structured matrices in Local and Global Optimization

@ Local Optimization phase
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A BFGS-type approach for global optimization

Structured matrices in Local and Global Optimization

@ Local Optimization phase
(2]
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A BFGS-type approach for global optimization

Structured matrices in Local and Global Optimization

@ Local Optimization phase

(2]
© o Branch and Bound (aBB) Convergence Scheme
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A BFGS-type approach for global optimization

Structured matrices in Local and Global Optimization

@ Local Optimization phase

(2]
© o Branch and Bound (aBB) Convergence Scheme

e Build a monotone sequence of local minima (maxima)
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A BFGS-type approach for global optimization

Structured matrices in Local and Global Optimization

@ Local Optimization phase
(2]
© o Branch and Bound (aBB) Convergence Scheme

e Build a monotone sequence of local minima (maxima)
e Determine a set of possible global minimizers
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A BFGS-type approach for global optimization

Structured matrices in Local and Global Optimization

@ Local Optimization phase
(2]
© o Branch and Bound (aBB) Convergence Scheme

e Build a monotone sequence of local minima (maxima)
e Determine a set of possible global minimizers

e Prove sufficient conditions for the convergence
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A BFGS-type approach for global optimization

Structured matrices in Local and Global Optimization

@ Local Optimization phase
(2]
© o Branch and Bound (aBB) Convergence Scheme

e Build a monotone sequence of local minima (maxima)
e Determine a set of possible global minimizers

e Prove sufficient conditions for the convergence

@ Structured approximation of the Hessian matrix
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A BFGS-type approach for global optimization

Structured matrices in Local and Global Optimization

@ Local Optimization phase
2]
© o Branch and Bound (aBB) Convergence Scheme

e Build a monotone sequence of local minima (maxima)
e Determine a set of possible global minimizers

e Prove sufficient conditions for the convergence

@ Structured approximation of the Hessian matrix

2]
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A BFGS-type approach for global optimization

Structured matrices in Local and Global Optimization

@ Local Optimization phase

(2]
© o Branch and Bound (aBB) Convergence Scheme

e Build a monotone sequence of local minima (maxima)
e Determine a set of possible global minimizers
e Prove sufficient conditions for the convergence

@ Structured approximation of the Hessian matrix

2]

© — Convergence is accelerated
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A BFGS-type approach for global optimization

Some preliminary results on Global Optimization

Classical "box-constrained” problems

{ min £(x)

ngxng
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A BFGS-type approach for global optimization

Some preliminary results on Global Optimization

Classical "box-constrained” problems

{ min £(x)

xt <x< xY
([FLO],[FLOV])
@ Tighter box constraints can be attained by partitioning the

rectangle of initial box constraints into smaller rectangles
by halving on the middle point of the longest side (Bisection)

S. Fanelli University of Rome “Tor Vergata” Matrix structures in optimization: algebras, fast transforms anc
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Some preliminary results on Global Optimization

Classical "box-constrained” problems

{ min £(x)

xt <x< xY
([FLO],[FLOV])

@ Tighter box constraints can be attained by partitioning the
rectangle of initial box constraints into smaller rectangles
by halving on the middle point of the longest side (Bisection)

@ The method selects the sub-rectangle associated to the minimum
value of the corresponding lower bounds (Branch and Bound)

S. Fanelli University of Rome “Tor Vergata” Matrix structures in optimization: algebras, fast transforms anc



A BFGS-type approach for global optimization

Some preliminary results on Global Optimization

Classical "box-constrained” problems

{ min £(x)

xt <x< xY
([FLO],[FLOV])

@ Tighter box constraints can be attained by partitioning the
rectangle of initial box constraints into smaller rectangles
by halving on the middle point of the longest side (Bisection)

@ The method selects the sub-rectangle associated to the minimum
value of the corresponding lower bounds (Branch and Bound)

@ A nondecreasing sequence for the lower bounds on f(x) and
a nonincreasing sequence for the upper bounds on f(x) are
computed by the algorithm
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A BFGS-type approach for global optimization

;et xé(m) < Xe(m) < xéj(m) denote the current box at iteration m.
et:

1 .
Ox(,y = MaX {0, —3 min )\(vzf(xc(m))}
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A BFGS-type approach for global optimization

;et xé(m) < Xe(m) < xéj(m) denote the current box at iteration m.
et:

1 .
Ox(,y = MaX {0, —3 min )\(vzf(xc(m))}

(Xc(m)) = f(xc(m)) + X (m) (Xé(m) - Xc(m))(xéj(m) - Xc(m))
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A BFGS-type approach for global optimization

;et xé(m) < Xe(m) < xéj(m) denote the current box at iteration m.
et:

1 .
Ox(,y = MaX {0, —3 min )\(vzf(xc(m))}

(Xc(m)) = f(xc(m)) + X (m) (Xé(m) - Xc(m))(xéj(m) - Xc(m))
Hence:
(XC(m)) < f(xc(m))a v Xc(m)
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A BFGS-type approach for global optimization

;et xé(m) < Xe(m) < xf_j(m) denote the current box at iteration m.
et:

1 .
Ox(,y = MaX {0, —3 min )\(vzf(xc(m))}

(Xc(m)) = f(xc(m)) + X (m) (Xé(m) - Xc(m))(xéj(m) - Xc(m))
Hence:
(XC(m)) < f(xc(m))7 v Xc(m)

inf (Xc(m)) < inf f(Xc(m))
Xc(m)

Xc(m)

F (X )+ Xm)/2) inr(n‘) F(Xe(m))

The following global convergence theorem holds ([FLO], [FLOV]):
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A BFGS-type approach for global optimization

Theorem 2

Consider the box-constrained problem. Assume f(x) € C? —
IV2F(x) Y <ec, Vm Faf = maXy,
Set:

Qi

(m) (m)

f = inf (Xc(m))

Xe(m)

filmy = F(XE(my + %)) /2)
then, it follows Vm:

i, <f < min f(Xc(my1)) = min f(x)
X

Xe(m+1)

fcl(Jm) > fc((jm+1) > mxin f(X) > f,

Moreover, Ve, > 0, dm*: Vm > m*:

fC‘(Jm) —f < €,
ng(m) — x5l € Vdea/c
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A BFGS-type approach for global optimization

A Global Optimization Quasi-Newton(QN) Theorem

By combining Theorem 1 and Theorem 2, one can prove (see [F]):
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A BFGS-type approach for global optimization

A Global Optimization Quasi-Newton(QN) Theorem

By combining Theorem 1 and Theorem 2, one can prove (see [F]):
Theorem 3
Assume f(x) € C? and consider the box-constrained problem:

{ min £(x)

xL§x§xU
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A BFGS-type approach for global optimization

A Global Optimization Quasi-Newton(QN) Theorem

By combining Theorem 1 and Theorem 2, one can prove (see [F]):
Theorem 3
Assume f(x) € C? and consider the box-constrained problem:

{ min £(x)

xL§x§xU

If in an iterative scheme of BFGS-type
(1) = %) 1, BT £(x()), (B(k) = (B, ), Vk)

xt < x(k)

< xY, the following conditions are satisfied Vk:
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A BFGS-type approach for global optimization

A Global Optimization Quasi-Newton(QN) Theorem

By combining Theorem 1 and Theorem 2, one can prove (see [F]):
Theorem 3
Assume f(x) € C? and consider the box-constrained problem:

{ min £(x)

xt <x< xY
If in an iterative scheme of BFGS-type
X1 = x(®) — B0 TTF(x), (B = o(BEY, ), vK)

xt < x® < xY, the following conditions are satisfied Vk:

cond(BK)) < N

IVF*D) = VFE) 2 Jlyel?

= <M
(VF(xktD)) — VF(x(K))T )\ d (k) ykTsk -
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A BFGS-type approach for global optimization

A Global Optimization Quasi-Newton(QN) Theorem

By combining Theorem 1 and Theorem 2, one can prove (see [F]):
Theorem 3
Assume f(x) € C? and consider the box-constrained problem:

{ min £(x)

xt <x< xY
If in an iterative scheme of BFGS-type
X1 = x(®) — B0 TTF(x), (B = o(BEY, ), vK)

xt < x® < xY, the following conditions are satisfied Vk:

cond(BK)) < N

IVF*D) = VFE) 2 Jlyel?
(VA(xkD) = VE(x0)) TAd®) — y sy

then the algorithm is convergent to the global minimum of f(x)

<M
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Repeller matrices for global optimization

Matrix Structures in a Global Minimization scheme

Let x(X) be an approximation of a local minimizer for f(x) € CZ.
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Repeller matrices for global optimization

Matrix Structures in a Global Minimization scheme

Let x(K) be an approximation of a local minimizer for f(x) € C".
A matrix A% is called a repeller matrix for x(¥) if 3x:

% = x(0 — AR vF(xk)
f(%) < f(x)
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Repeller matrices for global optimization

Matrix Structures in a Global Minimization scheme

Let x(K) be an approximation of a local minimizer for f(x) € C".
A matrix A% is called a repeller matrix for x(¥) if 3x:

% = x(0 — AR vF(xk)
f(%) < f(x)

The repeller matrix A(C,E’,';’)) in every box c(m) and for any given computed
(km)

local minimizer x
c(m)

can be approximated in the following way:
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Repeller matrices for global optimization

Matrix Structures in a Global Minimization scheme

Let x(K) be an approximation of a local minimizer for f(x) € C".
A matrix A% is called a repeller matrix for x(¥) if 3x:
% = x(0 — AR vF(xk)
F(R) < £(x(0)
The repeller matrix A(CTE’,';)) in every box c(m) and for any given computed
(km)

local minimizer x o(m ) can be approximated in the following way:

A(k ) ~ A (m) I+ (I/p+ Rc(m))fl, 2 < rank(Re(m)) < 4
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Repeller matrices for global optimization

Matrix Structures in a Global Minimization scheme

Let x(K) be an approximation of a local minimizer for f(x) € C".
A matrix A% is called a repeller matrix for x(¥) if 3x:

% = x(0 — AR vF(xk)

f(%) < f(x)

The repeller matrix A(C,E’,';’)) in every box c(m) and for any given computed

(km)

local minimizer X¢(m) €3N be approximated in the following way:

AS = A 4+ (4 Rem)) ™ 2 < rank(Re(my) < 4

being, by terminal attractors theory, A(CTE’;)) the maximal scalar repeller i.e.:
)‘(c( )) IR ||Vf(x(ctf;)))|| << Ve, desired precision

IVFS)IP
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Repeller matrices for global optimization

Matrix Structures in a Global Minimization scheme

Let x(K) be an approximation of a local minimizer for f(x) € C".
A matrix A% is called a repeller matrix for x(¥) if 3x:

% = x(k) — (k) Vf(x(i‘))
F(R) < £(x(0)

The repeller matrix A(C,E’,';’)) in every box c(m) and for any given computed

(km)

local minimizer x o(m ) can be approximated in the following way:

A(k ) ~ A (m) I+ (I/p+ Rc(m))fl, 2 < rank(Re(m)) < 4

being, by terminal attractors theory, AEIE’;)) the maximal scalar repeller i.e.:

Alm) _ ||Vf(x(7(’"))|| << Wes, desired precision
TR o

c(m)

Re(m) with the following structure:
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Repeller matrices for global optimization

R=upp” + 129" + p3pr” + parq’
P, g, r suitable vectors , M2, K3, g scalars,

The main steps of each optimization cycle of the are:
© Compute a local minimum x*”) in the box c(m)

c(m)

@ Apply a scalar repeller /\(ZE”)) and compute x(lE”)l)

© Approximate A(T(m)) with a R, correction, rank(Rc(,)) = 2

Q@ Compute x( kims2)

c(m)
. Km 0 km
Q If f(xc(m*f)) < f(x(c(m))) set x(c() )= x(( *)2)

and start a new local search in ¢(m)

@ Else: approximate A(("r;,)) with a R.(,, correction, rank(R.(,)) = 3,4
@ Repeat 4. and 5.
Q Else: define a new box ¢(m + 1)
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Repeller matrices for global optimization

Computational advantages of the Algorithm

@ Every application of Shermann-Morrison-Woodbury formula
in the tunneling phase has in our case a cost O(n)
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Repeller matrices for global optimization

Computational advantages of the Algorithm

@ Every application of Shermann-Morrison-Woodbury formula
in the tunneling phase has in our case a cost O(n)

@ The one-dimensional optimal search of /iy can be efficiently
performed by applying Armijo-Goldstein method
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Computational advantages of the Algorithm

@ Every application of Shermann-Morrison-Woodbury formula
in the tunneling phase has in our case a cost O(n)

@ The one-dimensional optimal search of /iy can be efficiently
performed by applying Armijo-Goldstein method

@ A satisfactory application of the algorithm depends on:

m)

m)

— the condition number of A(Cli”r;,))l + (1) 10 + Rc(m)( ))71

— the structure of eigenvalues of .A(ClE
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Computational advantages of the Algorithm

@ Every application of Shermann-Morrison-Woodbury formula
in the tunneling phase has in our case a cost O(n)

@ The one-dimensional optimal search of /iy can be efficiently
performed by applying Armijo-Goldstein method

@ A satisfactory application of the algorithm depends on:
m)
m)

— the condition number of )\(Clg(”r;,))l + (1) 10 + Rc(m)( ))71

— the structure of eigenvalues of .A(ClE

@ The number of box-iterations and/or the operations
performed in each iteration is in general considerably
reduced with respect to the classical BB procedure
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