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The phi operator

Given a matrix H and two vectors p,q, set:

φ(H,p,q) = H +
1

qTp
qqT − 1

pTHp
HppTH (1)

φ(H,p,q)−1 =

H−1 − 1
qT p

(
pqTH−1 + H−1qpT

)
+

(
1 + qT H−1q

qT p

)
ppT

pT q

φ properties:

H positive definite (pd) and qTp > 0 ⇒ φ(H,p,q) pd

φ(H,p,q)p = q φ satisfies the Secant Equation
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f (x∗) = min
x∈Rn

f (x), find x∗ (2)

BFGS-methods
generate a minimizing sequence {xk}+∞k=0 by the iterative scheme:

x0 ∈ Rn, g0 = ∇f (x0), d0 = −g0, define B0 pd
For k = 0, 1, . . .

xk+1 = xk + λkdk

gk+1 = ∇f (xk+1)
ϕ (B, s, y) = B + 1

yT syy
T − 1

sT BsBssTB

Bk+1 = ϕ (Bk , sk , yk), sk = xk+1 − xk , yk = gk+1 − gk

dk+1 = −B−1
k+1gk+1 ← descent direction

λk > 0 such that f (xk+1) < f (xk) and sT
k yk > 0

sT
k yk > 0 ⇔ ∇f (xk) monotone operator ∀k ⇒

⇒ f algorithmically convex
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Secant Methods

Let Ak+1 be pd and assume ∀k d(k+1) = −A−1
k+1∇f (x(k+1)) be

descent directions for a BFGS-method. Then, the method is called
secant if Ak+1 solves the secant equation:

Ak+1(x
(k+1) − x(k)) = ∇f (x(k+1))−∇f (x(k)) (3)

(3) is the n-dimensional generalization of classical 1-dimensional
secant method to compute the zeroes of the derivative of a
function F (x) ∈ C 1(R1), i.e.:

xk+1 =
F ′(xk)xk−1 − F ′(xk−1)xk

F ′(xk)− F ′(xk−1)
(4)

(4) can be rewritten, in fact, in the following way:{
xk+1 = xk − F ′(xk )

ak

ak(xk − xk−1) = F ′(xk)− F ′(xk−1)
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From BFGS to BFGS-type

BFGS method: Bk −→ Bk+1 = φ(Bk , sk , yk)

(superlinear convergence, O(n2) complexity)

BFGS-type method: Bk −→ B̃k −→ Bk+1 = φ(B̃k , sk , yk)

Memory-less BFGS: B̃k = I

Limited memory BFGS (L-BFGS): B̃k = δk I − QkΛ−1
k QT

k ,

δk = qT q
pT q

, Qk n × 2m, Λk 2m × 2m depending upon
pi ,qi, i = k − 1, . . . , k −m.

LQN: B̃k = good approximation of Bk

S. Fanelli University of Rome “Tor Vergata” Matrix structures in optimization: algebras, fast transforms and BFGS methods



Local Minimization: BFGS methods
Local BFGS-type methods

A BFGS-type approach for global optimization
Repeller matrices for global optimization

From BFGS to BFGS-type

BFGS method: Bk −→ Bk+1 = φ(Bk , sk , yk)

(superlinear convergence, O(n2) complexity)

BFGS-type method: Bk −→ B̃k −→ Bk+1 = φ(B̃k , sk , yk)

Memory-less BFGS: B̃k = I

Limited memory BFGS (L-BFGS): B̃k = δk I − QkΛ−1
k QT

k ,

δk = qT q
pT q

, Qk n × 2m, Λk 2m × 2m depending upon
pi ,qi, i = k − 1, . . . , k −m.

LQN: B̃k = good approximation of Bk

S. Fanelli University of Rome “Tor Vergata” Matrix structures in optimization: algebras, fast transforms and BFGS methods



Local Minimization: BFGS methods
Local BFGS-type methods

A BFGS-type approach for global optimization
Repeller matrices for global optimization

From BFGS to BFGS-type

BFGS method: Bk −→ Bk+1 = φ(Bk , sk , yk)

(superlinear convergence, O(n2) complexity)

BFGS-type method: Bk −→ B̃k −→ Bk+1 = φ(B̃k , sk , yk)

Memory-less BFGS: B̃k = I

Limited memory BFGS (L-BFGS): B̃k = δk I − QkΛ−1
k QT

k ,

δk = qT q
pT q

, Qk n × 2m, Λk 2m × 2m depending upon
pi ,qi, i = k − 1, . . . , k −m.

LQN: B̃k = good approximation of Bk

S. Fanelli University of Rome “Tor Vergata” Matrix structures in optimization: algebras, fast transforms and BFGS methods



Local Minimization: BFGS methods
Local BFGS-type methods

A BFGS-type approach for global optimization
Repeller matrices for global optimization

From BFGS to BFGS-type

BFGS method: Bk −→ Bk+1 = φ(Bk , sk , yk)

(superlinear convergence, O(n2) complexity)

BFGS-type method: Bk −→ B̃k −→ Bk+1 = φ(B̃k , sk , yk)

Memory-less BFGS: B̃k = I

Limited memory BFGS (L-BFGS):

B̃k = δk I − QkΛ−1
k QT

k ,

δk = qT q
pT q

, Qk n × 2m, Λk 2m × 2m depending upon
pi ,qi, i = k − 1, . . . , k −m.

LQN: B̃k = good approximation of Bk

S. Fanelli University of Rome “Tor Vergata” Matrix structures in optimization: algebras, fast transforms and BFGS methods



Local Minimization: BFGS methods
Local BFGS-type methods

A BFGS-type approach for global optimization
Repeller matrices for global optimization

From BFGS to BFGS-type

BFGS method: Bk −→ Bk+1 = φ(Bk , sk , yk)

(superlinear convergence, O(n2) complexity)

BFGS-type method: Bk −→ B̃k −→ Bk+1 = φ(B̃k , sk , yk)

Memory-less BFGS: B̃k = I

Limited memory BFGS (L-BFGS): B̃k = δk I − QkΛ−1
k QT

k ,

δk = qT q
pT q

, Qk n × 2m, Λk 2m × 2m depending upon
pi ,qi, i = k − 1, . . . , k −m.

LQN: B̃k = good approximation of Bk

S. Fanelli University of Rome “Tor Vergata” Matrix structures in optimization: algebras, fast transforms and BFGS methods



Local Minimization: BFGS methods
Local BFGS-type methods

A BFGS-type approach for global optimization
Repeller matrices for global optimization

From BFGS to BFGS-type

BFGS method: Bk −→ Bk+1 = φ(Bk , sk , yk)

(superlinear convergence, O(n2) complexity)

BFGS-type method: Bk −→ B̃k −→ Bk+1 = φ(B̃k , sk , yk)

Memory-less BFGS: B̃k = I

Limited memory BFGS (L-BFGS): B̃k = δk I − QkΛ−1
k QT

k ,

δk = qT q
pT q

, Qk n × 2m, Λk 2m × 2m depending upon
pi ,qi, i = k − 1, . . . , k −m.

LQN: B̃k = good approximation of Bk

S. Fanelli University of Rome “Tor Vergata” Matrix structures in optimization: algebras, fast transforms and BFGS methods



Local Minimization: BFGS methods
Local BFGS-type methods

A BFGS-type approach for global optimization
Repeller matrices for global optimization

Local Optimization BFGS-type algorithms

Given an approssimation Bk of ∇2f (wk), let us define the matrix LU
Bk

:

‖LU
Bk
− Bk‖Fr . = min

X∈L
‖X − Bk‖Fr ., ‖ · ‖Fr . = Frob.norm

where LU ⊂ Cn×n= algebra of matrices simultaneously diagonalized by a
fast unitary transform U.

One can define descent methods LQN [DFLZ]:

x0 ∈ Rn, d0 = −g0

For k = 0, 1, . . .
xk+1 = xk + λkdk λk > 0
Bk+1 = ϕ( LU

Bk
, xk+1 − xk︸ ︷︷ ︸

sk

, gk+1 − gk︸ ︷︷ ︸
yk

), gk = ∇f (xk)

dk+1 = −B−1
k+1gk+1

The classical BFGS method [NW] and the more recent minimization
methods introduced in [BDFZ], [DFZ2], [DFZ3] are examples of LQN
algorithms, (being
LU = Cn×n, LU = {αI}, {Circulant − Hartley − type})
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The step λk is determined such that:

λk | sT
k yk > 0 & f (xk+1) < f (xk)

The updating function ϕ in Bk+1 = ϕ (LU
Bk

, sk , yk) is

ϕ (�, s, y) = � +
1

yT s
yyT − 1

sT�s
�ssT�.

The choice of λk and the properties of ϕ and LU
Bk

imply:

Bk+1 inherites positive definiteness from Bk

Bk+1(xk+1 − xk) = gk+1 − gk , ⇒ LQN secant methods

The structured space LU ⇒ LQN has low complexity

Every iteration of LQN has in our case a cost O(nlogn)
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Local BFGS-type methods

A BFGS-type approach for global optimization
Repeller matrices for global optimization

A Local Optimization Quasi-Newton(QN) Theorem

The following result holds (see [DFZ4], [NW]):

Theorem 1
Assume f (x) ∈ C 2 and consider the unconstrained problem:

min f (x), x ∈ Cn

If in an iterative scheme of BFGS-type

x(k+1) = x(k) − µkB
(k)−1∇f (x(k)),

(
B(k) = ϕ(B̃(k−1), . . .), ∀k

)
the following conditions are satisfied ∀k:

cond(B(k)) ≤ N

‖∇f (x(k+1))−∇f (x(k))‖2

(∇f (x(k+1))−∇f (x(k)))Tλkd(k)
=
‖yk‖2

yT
k sk

≤ M

=⇒ ∃{x(ki)} : limki→+∞ ∇f (x(ki)) = 0
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Let us consider the case :

L = {LI} = {diag(γ1, ....γn), γi ∈ C}

Let Dk+1 ∈ LI : ‖Dk+1 − Bk+1‖Fr . = minX∈LI ‖X − Bk+1‖Fr .

Let Diag(|z |2), z ∈ Cn, denote:
z2
1 0 . . . 0 0
0 z2

2 0 . . . 0
...

...
. . .

0 0 . . . z2
n−1 0

0 0 . . . 0 z2
n


Then (see [CCDF]) every iteration has in this case a cost O(n) and:

Dk+1 = Dk +
Diag(|yk |2)

yT
k sk

− Diag(|Dksk |2)
sT
k Dksk
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Local Minimization: BFGS methods
Local BFGS-type methods

A BFGS-type approach for global optimization
Repeller matrices for global optimization

Structured matrices in Local and Global Optimization

1 Local Optimization phase

2 Tunneling (Repelling) phase

3 α Branch and Bound (αBB) Convergence Scheme

Build a monotone sequence of local minima (maxima)

Determine a set of possible global minimizers

Prove sufficient conditions for the convergence

1 Structured approximation of the Hessian matrix

2 Low rank approximation of the Repeller matrix

3 =⇒ Convergence is accelerated
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1 Structured approximation of the Hessian matrix

2 Low rank approximation of the Repeller matrix

3 =⇒ Convergence is accelerated
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Some preliminary results on Global Optimization

Classical “box-constrained” problems{
min f (x)
xL ≤ x ≤ xU

Main features of αBB algorithm ([FLO],[FLOV])

Tighter box constraints can be attained by partitioning the
rectangle of initial box constraints into smaller rectangles
by halving on the middle point of the longest side (Bisection)

The method selects the sub-rectangle associated to the minimum
value of the corresponding lower bounds (Branch and Bound)

A nondecreasing sequence for the lower bounds on f (x) and
a nonincreasing sequence for the upper bounds on f (x) are
computed by the algorithm
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Let xL
c(m) ≤ xc(m) ≤ xU

c(m) denote the current box at iteration m.
Set:

αxc(m)
= max {0,−1

2
min λ(∇2f (xc(m))

}

Lc(m)(xc(m)) = f (xc(m)) + αxc(m)
(xL

c(m) − xc(m))(x
U
c(m) − xc(m))

Hence:
Lc(m)(xc(m)) ≤ f (xc(m)), ∀ xc(m)

inf
xc(m)

Lc(m)(xc(m)) ≤ inf
xc(m)

f (xc(m))

f
(
(xL

c(m) + xU
c(m)/2

)
≥ inf

xc(m)

f (xc(m))

The following global convergence theorem holds ([FLO], [FLOV]):
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Theorem 2

Consider the box-constrained problem. Assume f (x) ∈ C 2 =⇒
‖∇2f (x)−1‖ ≤ c , ∀m ∃ α∗m = maxxc(m)

αxc(m)

Set:
f L
c(m) = inf

xc(m)

Lc(m)(xc(m))

f U
c(m) = f

(
(xL

c(m) + xU
c(m))/2

)
then, it follows ∀m:

f L
c(m) ≤ f L

c(m+1) ≤ min
xc(m+1)

f (xc(m+1)) ≡ min
x

f (x)

f U
c(m) ≥ f U

c(m+1) ≥ min
x

f (x) ≥ f L
c(m)

Moreover, ∀εa > 0, ∃m∗ : ∀m ≥ m∗:{
f U
c(m) − f L

c(m) < εa

‖xU
c(m) − xL

c(m)‖2 ≤
√

4εa/c
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A Global Optimization Quasi-Newton(QN) Theorem

By combining Theorem 1 and Theorem 2, one can prove (see [F]):

Theorem 3
Assume f (x) ∈ C 2 and consider the box-constrained problem:{

min f (x)
xL ≤ x ≤ xU

If in an iterative scheme of BFGS-type

x(k+1) = x(k) − µkB(k)−1∇f (x(k)),
(
B(k) = ϕ(B̃(k−1), . . .), ∀k

)
xL ≤ x

(k) ≤ xU, the following conditions are satisfied ∀k:

cond(B(k)) ≤ N

‖∇f (x(k+1))−∇f (x(k))‖2

(∇f (x(k+1))−∇f (x(k)))Tλkd(k)
=
‖yk‖2

yT
k sk

≤ M

then the algorithm is convergent to the global minimum of f (x)
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Matrix Structures in a Global Minimization scheme

Let x(k̃) be an approximation of a local minimizer for f (x) ∈ C 1.

A matrix A(k̃) is called a repeller matrix for x(k̃) if ∃x̂:{
x̂ = x(k̃) −A(k̃) ∇f (x(k̃))

f (x̂) < f (x(k̃))

The repeller matrix A(k̃m)
c(m) in every box c(m) and for any given computed

local minimizer x
(k̃m)
c(m) can be approximated in the following way:

A(k̃m)
c(m) ≈ λ

(k̃m)
c(m)I + (I/µ + Rc(m))

−1
, 2 ≤ rank(Rc(m)) ≤ 4

being, by terminal attractors theory, λ
(k̃m)
c(m) the maximal scalar repeller i.e.:

λ
(k̃m)
c(m) =

εa

‖∇f (x
(k̃m)
c(m))‖2

, ‖∇f (x
(k̃m)
c(m))‖ <<

√
εa, εa desired precision

Rc(m) with the following structure:
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{
R = µ1ppT + µ2qqT + µ3prT + µ4rqT

p, q, r suitable vectors µ1, µ2, µ3, µ4 scalars,

The main steps of each optimization cycle of the Algorithm are:

1 Compute a local minimum x
(k̃m)
c(m) in the box c(m)

2 Apply a scalar repeller λ
(k̃m)
c(m) and compute x

(k̃m+1)
c(m)

3 Approximate A(k̃m)
c(m) with a Rc(m) correction, rank(Rc(m)) = 2

4 Compute x
(k̃m+2)
c(m)

5 If f (x
(k̃m+2)
c(m) ) < f (x

(k̃m)
c(m)) set x

(0)
c(m) = x

(k̃m+2)
c(m)

and start a new local search in c(m)

6 Else: approximate A(k̃m)
c(m) with a Rc(m) correction, rank(Rc(m)) = 3, 4

7 Repeat 4. and 5.

8 Else: define a new box c(m + 1)
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Computational advantages of the Algorithm

Every application of Shermann-Morrison-Woodbury formula
in the tunneling phase has in our case a cost O(n)

The one-dimensional optimal search of µ0 can be efficiently
performed by applying Armijo-Goldstein method

A satisfactory application of the algorithm depends on: −→ the structure of eigenvalues of A(k̃m)
c(m)

−→ the condition number of λ
(k̃m)
c(m)I + (I/µ0 + Rc(m)(µ0))

−1

The number of box-iterations and/or the operations
performed in each iteration is in general considerably
reduced with respect to the classical αBB procedure
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Computational advantages of the Algorithm

Every application of Shermann-Morrison-Woodbury formula
in the tunneling phase has in our case a cost O(n)

The one-dimensional optimal search of µ0 can be efficiently
performed by applying Armijo-Goldstein method

A satisfactory application of the algorithm depends on: −→ the structure of eigenvalues of A(k̃m)
c(m)

−→ the condition number of λ
(k̃m)
c(m)I + (I/µ0 + Rc(m)(µ0))

−1

The number of box-iterations and/or the operations
performed in each iteration is in general considerably
reduced with respect to the classical αBB procedure
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